CN113771046B - 一种最小化Jerk指标摆动轨迹规划方法 - Google Patents

一种最小化Jerk指标摆动轨迹规划方法 Download PDF

Info

Publication number
CN113771046B
CN113771046B CN202111241375.3A CN202111241375A CN113771046B CN 113771046 B CN113771046 B CN 113771046B CN 202111241375 A CN202111241375 A CN 202111241375A CN 113771046 B CN113771046 B CN 113771046B
Authority
CN
China
Prior art keywords
track
swing
leg
speed
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111241375.3A
Other languages
English (en)
Other versions
CN113771046A (zh
Inventor
邢伯阳
刘宇飞
王志瑞
苏波
江磊
赵建新
李冀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intelligent Mobile Robot Zhongshan Research Institute
China North Vehicle Research Institute
Original Assignee
Intelligent Mobile Robot Zhongshan Research Institute
China North Vehicle Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intelligent Mobile Robot Zhongshan Research Institute, China North Vehicle Research Institute filed Critical Intelligent Mobile Robot Zhongshan Research Institute
Priority to CN202111241375.3A priority Critical patent/CN113771046B/zh
Publication of CN113771046A publication Critical patent/CN113771046A/zh
Application granted granted Critical
Publication of CN113771046B publication Critical patent/CN113771046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明提出一种最小化Jerk指标摆动轨迹规划方法,使用当前机器人估计质心速度与期望速度规划摆动落足点,摆动轨迹规划以最小化轨迹Jerk为目标,同时使用当前质心速度与期望速度作为轨迹始末的速度约束,从而规划出满足机器人本身速度状态且加速度平滑连续的摆动轨迹,基于最优Jerk目标保证轨迹总体冲击积分最小。

Description

一种最小化Jerk指标摆动轨迹规划方法
技术领域
本发明属于机器人运动控制技术领域,具体涉及一种适用于机器人的最小化Jerk指标摆动轨迹规划方法。
背景技术
四足机器人摆动相控制决定机器人是否能够按期望速度进行移动,足端位置轨迹需要实时进行规划并能够基于机器人本体速度与期望速度进行在线调节。现有摆动轨迹规划方法仅能够保证轨迹始末点位置和摆动高度,以目前四足机器人常用摆线轨迹为例,其速度和加速度往往不连续,存在大角度拐点。以力控四足机器人为例,如果加速度存在拐点会对执行器带来较大冲击;以电驱动四足机器人为例,其加速度方向切换时电机也需要换向,高频换向往往会对减速与传动机构带来损坏。因此,需要提出一种新的摆动轨迹规划方法,以在保证加速度平滑时满足位置约束。
发明内容
(一)要解决的技术问题
本发明的目的是提出一种最小化Jerk指标摆动轨迹规划方法,以解决如何在保证加速度平滑时满足位置约束的技术问题。
(二)技术方案
为解决上述技术问题,本发明提出一种最小化Jerk指标摆动轨迹规划方法,其特征在于,该摆动轨迹规划方法包括如下步骤:
S1.已知四足机器人当前质心高度、质心速度,结合给定的期望质心速度,根据以下公式规划在全局坐标系{N}下的落足点位置:
Figure BDA0003319665550000011
i=1…4
其中,
Figure BDA0003319665550000012
为机器人第i条腿在{N}系下的落足点位置,/>
Figure BDA0003319665550000013
为机器人第i个胯关节在{N}系下的位置,pcog,z为机器人当前质心高度,vcog为机器人当前质心速度,vcog,d为期望质心速度,Ts为支撑相时间,g为重力加速度;
S2.基于摆动控制坐标系描述对机器人第i条腿的足端位置进行坐标系转换
S2-1.基于机器人结构参数与单腿构型,使用关节角度反馈值,采用运动学正解计算第i条腿足端在胯关节坐标系{H}下的三维位置:
Figure BDA0003319665550000021
i=1…4
其中,
Figure BDA0003319665550000022
为第i条腿足端在{H}系下的三维位置,f(c1,c2,c3)为对应单腿构型的运动学正解计算函数,根据以下公式进行运动学正解计算,其中c1为机器人大腿角度,c2为小腿角度,c3为胯关节角度,L1为大腿长度,L2为小腿长度,L3为侧摆电机相对胯关节的偏差:
Figure BDA0003319665550000023
S2-2.基于机器人左右两侧腿胯关节间距和前后两侧腿胯关节间距,将第i条腿足端在{H}系下的三维位置转化为机体坐标系{B}下的三维位置:
Figure BDA0003319665550000024
i=1…4
其中,
Figure BDA0003319665550000025
为第i条腿足端在{B}系下的三维位置,W为机器人左右两侧腿胯关节间距,H为机器人前后两侧腿胯关节间距;
S2-3.基于机器人机载IMU测量得到的姿态四元数,获取当前{N}系与{B}系间的转换矩阵:
Figure BDA0003319665550000026
其中,
Figure BDA0003319665550000027
为{N}系与{B}系间的转换矩阵,q0、q1、q2、q3为机器人当前的姿态四元数;
根据以下公式,将第i条腿足端在{B}系下的三维位置转换为{N}系下的三维位置:
Figure BDA0003319665550000028
i=1…4
其中,
Figure BDA0003319665550000031
为第i条腿足端在{N}系下的三维位置,/>
Figure BDA0003319665550000032
为/>
Figure BDA0003319665550000033
的转置;
S2-4.设定期望摆动高度Hsw,根据以下公式计算得到第i条腿在{N}系下的摆动中点位置:
Figure BDA0003319665550000034
其中,
Figure BDA0003319665550000035
为第i条腿在{N}系下的摆动中点位置,/>
Figure BDA0003319665550000036
为第i条腿在{N}系下的摆动起始位置;
S3.基于摆动起始位置、摆动中点位置、落足点位置,构建第i条腿的摆动轨迹位置约束:
Figure BDA0003319665550000037
其中,Pst为摆动轨迹起始点的位置约束,Pmid为摆动轨迹起中点的位置约束,Pend为摆动轨迹结束点的位置约束;
基于当前质心速度vcog与期望质心速度vcog,d,根据以下公式构建摆动轨迹速度约束;在摆动轨迹轨迹中点不设具体速度值的约束,以保证摆动轨迹中点前后两段轨迹的速度连续,即:
Figure BDA0003319665550000038
其中,vst为摆动轨迹起始点的速度约束,vend为摆动轨迹结束点的速度约束;
S4.在确定摆动轨迹起点、中点和结束点的位置约束与速度约束后,以最小轨迹Jerk求解作为轨迹曲线函数的三次多项式的最优化多项式系数,保证轨迹加速度连续,构建连续前馈力矩,减小机器人摆动控制中的电机冲击;
S5.摆动轨迹由前后两段组成,采用步骤S3中的摆动轨迹位置约束条件和速度约束条件构建如下关系式:
Figure BDA0003319665550000041
其中,n为轨迹函数阶次,t0为摆动轨迹前半段时间,t1为摆动轨迹中点时间,t2为摆动轨迹后半段时间;
S6.求解步骤S5中关系式的未知项X,X作为轨迹对应的多项式系数,以最小化Jerk为优化目标求取最优的轨迹参数
根据以下公式,对摆动轨迹前后两段的Jerk值分别进行积分,作为优化目标:
Figure BDA0003319665550000042
其中,T为该段轨迹的时间,k为轨迹分段数量;
S7.基于优化目标,采用极小值原理进行参数求解,最优参数对应的轨迹与时间函数S*(t)如下:
Figure BDA0003319665550000043
其中,p0、v0、a0为该段轨迹起始点的位置、速度与加速度;
其中,
Figure BDA0003319665550000051
为最优轨迹多项式系数,结合已知轨迹终点的位置pe、速度ve和加速度ae,则多项式系数为:
Figure BDA0003319665550000052
S8.基于步骤S6-S7,根据以下公式求解出摆动轨迹前后两段曲线对应的多项式系数[αst-midβst-midγst-mid]和[αmid-endβmid-endγmid-end]:
Figure BDA0003319665550000053
Figure BDA0003319665550000054
结合轨迹多项式函数,得到摆动轨迹前半段和后半段任意时刻t的位置、速度和加速度:
Figure BDA0003319665550000055
Figure BDA0003319665550000056
其中,[pst vst ast]为摆动轨迹开始时的位置、速度和加速度,[pmid vmid amid]为摆动轨迹中点的位置、速度和加速度,[pend vend aend]为摆动轨迹终点的位置、速度和加速度,Ts为轨迹总时间。
(三)技术效果
本发明提出一种最小化Jerk指标摆动轨迹规划方法,使用当前机器人估计质心速度与期望速度规划摆动落足点,摆动轨迹规划以最小化轨迹Jerk为目标,同时使用当前质心速度与期望速度作为轨迹始末的速度约束,从而规划出满足机器人本身速度状态且加速度平滑连续的摆动轨迹,基于最优Jerk目标保证轨迹总体冲击积分最小。
附图说明
图1为本发明实施例中摆动轨迹规划方法流程图;
图2为本发明实施例中机器人坐标系描述:(a)机器人右视图,(b)机器人俯视图({H}为胯关节坐标系,{B}为机体坐标系);
图3(a)为本发明实施例中规划的摆动轨迹结果,图3(b)为摆线轨迹与规划的X加速度曲线,图3(c)为Z加速度曲线。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本实施例提出一种最小化Jerk指标摆动轨迹规划方法,主要流程如图1所示,具体包括如下步骤:
S1.已知四足机器人当前质心高度、质心速度,结合遥控器给定的期望质心速度,根据以下公式规划在全局坐标系{N}(简称“{N}系”)下的落足点位置:
Figure BDA0003319665550000061
i=1…4
其中,
Figure BDA0003319665550000062
为机器人第i条腿在{N}系下的落足点位置,/>
Figure BDA0003319665550000063
为机器人第i个胯关节在{N}系下的位置,pcog,z为机器人当前质心高度,vcog为机器人当前质心速度,vcog,d为期望质心速度,Ts为支撑相时间,g为重力加速度。
S2.基于摆动控制坐标系描述对机器人第i条腿的足端位置进行坐标系转换。
S2-1.基于机器人结构参数与单腿构型,使用关节角度反馈值,采用运动学正解计算第i条腿足端在胯关节坐标系{H}(简称“{H}系”)下的三维位置:
Figure BDA0003319665550000071
i=1…4
其中,
Figure BDA0003319665550000072
为第i条腿足端在{H}系下的三维位置,f(c1,c2,c3)为对应单腿构型的运动学正解计算函数,参考图2给出的机器人坐标系描述其计算方法,根据以下公式进行运动学正解计算,其中c1为机器人大腿角度,c2为小腿角度,c3为胯关节角度,L1为大腿长度,L2为小腿长度,L3为侧摆电机相对胯关节的偏差:
Figure BDA0003319665550000073
S2-2.基于机器人左右两侧腿胯关节间距和前后两侧腿胯关节间距,将第i条腿足端在{H}系下的三维位置转化为机体坐标系{B}(简称“{B}系”)下的三维位置:
Figure BDA0003319665550000074
i=1…4
其中,
Figure BDA0003319665550000075
为第i条腿足端在{B}系下的三维位置,W为机器人左右两侧腿胯关节间距,H为机器人前后两侧腿胯关节间距;
S2-3.基于机器人机载IMU测量得到的姿态四元数,获取当前{N}系与{B}系间的转换矩阵:
Figure BDA0003319665550000076
其中,
Figure BDA0003319665550000077
为{N}系与{B}系间的转换矩阵,q0、q1、q2、q3为机器人当前的姿态四元数;
根据以下公式,将第i条腿足端在{B}系下的三维位置转换为{N}系下的三维位置:
Figure BDA0003319665550000078
i=1…4
其中,
Figure BDA0003319665550000081
为第i条腿足端在{N}系下的三维位置,/>
Figure BDA0003319665550000082
为/>
Figure BDA0003319665550000083
的转置;
S2-4.设定期望摆动高度Hsw,根据以下公式计算得到第i条腿在{N}系下的摆动中点位置:
Figure BDA0003319665550000084
其中,
Figure BDA0003319665550000085
为第i条腿在{N}系下的摆动中点位置,/>
Figure BDA0003319665550000086
为第i条腿在{N}系下的摆动起始位置;
S3.基于摆动起始位置、摆动中点位置、落足点位置,构建第i条腿的摆动轨迹位置约束:
Figure BDA0003319665550000087
其中,Pst为摆动轨迹起始点的位置约束,Pmid为摆动轨迹起中点的位置约束,Pend为摆动轨迹结束点的位置约束。
基于当前质心速度vcog与期望质心速度vcog,d,根据以下公式构建摆动轨迹速度约束;在摆动轨迹轨迹中点不设具体速度值的约束,以保证摆动轨迹中点前后两段轨迹的速度连续,即:
Figure BDA0003319665550000088
其中,vst为摆动轨迹起始点的速度约束,vend为摆动轨迹结束点的速度约束。
S4.在确定摆动轨迹起点、中点和结束点的位置约束与速度约束后,以最小轨迹Jerk求解作为轨迹曲线函数的三次多项式的最优化多项式系数,保证轨迹加速度连续,构建连续前馈力矩,减小机器人摆动控制中的电机冲击。
S5.摆动轨迹由前后两段组成,采用步骤S3中的摆动轨迹位置约束条件和速度约束条件构建如下关系式:
Figure BDA0003319665550000091
其中,n为轨迹函数阶次,t0为摆动轨迹前半段时间,t1为摆动轨迹中点时间,t2为摆动轨迹后半段时间。
S6.求解步骤S5中关系式的未知项X,X作为轨迹对应的多项式系数,以最小化Jerk为优化目标求取最优的轨迹参数
根据以下公式,对摆动轨迹前后两段的Jerk值分别进行积分,作为优化目标:
Figure BDA0003319665550000092
其中,T为该段轨迹的时间,k为轨迹分段数量。
S7.基于优化目标,采用极小值原理进行参数求解,最优参数对应的轨迹与时间函数S*(t)如下:
Figure BDA0003319665550000093
其中,p0、v0、a0为该段轨迹起始点的位置、速度与加速度。
其中,
Figure BDA0003319665550000101
为最优轨迹多项式系数,结合已知轨迹终点的位置pe、速度ve和加速度ae,则多项式系数为:
Figure BDA0003319665550000102
S8.基于步骤S6-S7,根据以下公式求解出摆动轨迹前后两段曲线对应的多项式系数[αst-mid βst-mid γst-mid]和[αmid-end βmid-end γmid-end]:
Figure BDA0003319665550000103
Figure BDA0003319665550000104
结合轨迹多项式函数,得到摆动轨迹前半段和后半段任意时刻t的位置、速度和加速度:
Figure BDA0003319665550000105
Figure BDA0003319665550000106
其中,[pst vst ast]为摆动轨迹开始时的位置、速度和加速度,[pmid vmid amid]为摆动轨迹中点的位置、速度和加速度,[pend vend aend]为摆动轨迹终点的位置、速度和加速度,Ts为轨迹总时间。
基于本发明进行摆动轨迹规划的结果如图3所示。其中,图3(a)给出本发明与传统摆线轨迹规划的三维曲线结果,本发明和传统方法均能满足起点、中点、终点的轨迹位置约束;图3(b)和3(c)分别为X轴和Z轴轨迹加速度规划结果,可以看出本发明在轨迹中点时加速度能实现连续过度,而传统摆线轨迹会出现加速度突变。
上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (1)

1.一种最小化Jerk指标摆动轨迹规划方法,其特征在于,所述摆动轨迹规划方法包括如下步骤:
S1.已知四足机器人当前质心高度、质心速度,结合给定的期望质心速度,根据以下公式规划在全局坐标系{N}下的落足点位置:
Figure FDA0003319665540000011
其中,
Figure FDA0003319665540000012
为机器人第i条腿在{N}系下的落足点位置,/>
Figure FDA0003319665540000013
为机器人第i个胯关节在{N}系下的位置,pcog,z为机器人当前质心高度,vcog为机器人当前质心速度,vcog,d为期望质心速度,Ts为支撑相时间,g为重力加速度;
S2.基于摆动控制坐标系描述对机器人第i条腿的足端位置进行坐标系转换
S2-1.基于机器人结构参数与单腿构型,使用关节角度反馈值,采用运动学正解计算第i条腿足端在胯关节坐标系{H}下的三维位置:
Figure FDA0003319665540000014
其中,
Figure FDA0003319665540000015
为第i条腿足端在{H}系下的三维位置,f(c1,c2,c3)为对应单腿构型的运动学正解计算函数,根据以下公式进行运动学正解计算,其中c1为机器人大腿角度,c2为小腿角度,c3为胯关节角度,L1为大腿长度,L2为小腿长度,L3为侧摆电机相对胯关节的偏差:
Figure FDA0003319665540000016
S2-2.基于机器人左右两侧腿胯关节间距和前后两侧腿胯关节间距,将第i条腿足端在{H}系下的三维位置转化为机体坐标系{B}下的三维位置:
Figure FDA0003319665540000017
其中,
Figure FDA0003319665540000018
为第i条腿足端在{B}系下的三维位置,W为机器人左右两侧腿胯关节间距,H为机器人前后两侧腿胯关节间距;
S2-3.基于机器人机载IMU测量得到的姿态四元数,获取当前{N}系与{B}系间的转换矩阵:
Figure FDA0003319665540000021
其中,
Figure FDA0003319665540000022
为{N}系与{B}系间的转换矩阵,q0、q1、q2、q3为机器人当前的姿态四元数;
根据以下公式,将第i条腿足端在{B}系下的三维位置转换为{N}系下的三维位置:
Figure FDA0003319665540000023
其中,
Figure FDA0003319665540000024
为第i条腿足端在{N}系下的三维位置,/>
Figure FDA0003319665540000025
为/>
Figure FDA0003319665540000026
的转置;
S2-4.设定期望摆动高度Hsw,根据以下公式计算得到第i条腿在{N}系下的摆动中点位置:
Figure FDA0003319665540000027
其中,
Figure FDA0003319665540000028
为第i条腿在{N}系下的摆动中点位置,/>
Figure FDA0003319665540000029
为第i条腿在{N}系下的摆动起始位置;
S3.基于摆动起始位置、摆动中点位置、落足点位置,构建第i条腿的摆动轨迹位置约束:
Figure FDA00033196655400000210
其中,Pst为摆动轨迹起始点的位置约束,Pmid为摆动轨迹起中点的位置约束,Pend为摆动轨迹结束点的位置约束;
基于当前质心速度vcog与期望质心速度vcog,d,根据以下公式构建摆动轨迹速度约束;在摆动轨迹轨迹中点不设具体速度值的约束,以保证摆动轨迹中点前后两段轨迹的速度连续,即:
Figure FDA00033196655400000211
其中,vst为摆动轨迹起始点的速度约束,vend为摆动轨迹结束点的速度约束;
S4.在确定摆动轨迹起点、中点和结束点的位置约束与速度约束后,以最小轨迹Jerk求解作为轨迹曲线函数的三次多项式的最优化多项式系数,保证轨迹加速度连续,构建连续前馈力矩,减小机器人摆动控制中的电机冲击;
S5.摆动轨迹由前后两段组成,采用步骤S3中的摆动轨迹位置约束条件和速度约束条件构建如下关系式:
Figure FDA0003319665540000031
其中,n为轨迹函数阶次,t0为摆动轨迹前半段时间,t1为摆动轨迹中点时间,t2为摆动轨迹后半段时间;
S6.求解步骤S5中关系式的未知项X,X作为轨迹对应的多项式系数,以最小化Jerk为优化目标求取最优的轨迹参数
根据以下公式,对摆动轨迹前后两段的Jerk值分别进行积分,作为优化目标:
Figure FDA0003319665540000032
其中,T为该段轨迹的时间,k为轨迹分段数量;
S7.基于优化目标,采用极小值原理进行参数求解,最优参数对应的轨迹与时间函数S*(t)如下:
Figure FDA0003319665540000041
其中,p0、v0、a0为该段轨迹起始点的位置、速度与加速度;
其中,
Figure FDA0003319665540000042
为最优轨迹多项式系数,结合已知轨迹终点的位置pe、速度ve和加速度ae,则多项式系数为:
Figure FDA0003319665540000043
S8.基于步骤S6-S7,根据以下公式求解出摆动轨迹前后两段曲线对应的多项式系数[αst-mid βst-mid γst-mid]和[αmid-end βmid-end γmid-end]:
Figure FDA0003319665540000044
Figure FDA0003319665540000045
结合轨迹多项式函数,得到摆动轨迹前半段和后半段任意时刻t的位置、速度和加速度:
Figure FDA0003319665540000051
Figure FDA0003319665540000052
其中,[pst vst ast]为摆动轨迹开始时的位置、速度和加速度,[pmid vmid amid]为摆动轨迹中点的位置、速度和加速度,[pend vend aend]为摆动轨迹终点的位置、速度和加速度,Ts为轨迹总时间。
CN202111241375.3A 2021-10-25 2021-10-25 一种最小化Jerk指标摆动轨迹规划方法 Active CN113771046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111241375.3A CN113771046B (zh) 2021-10-25 2021-10-25 一种最小化Jerk指标摆动轨迹规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111241375.3A CN113771046B (zh) 2021-10-25 2021-10-25 一种最小化Jerk指标摆动轨迹规划方法

Publications (2)

Publication Number Publication Date
CN113771046A CN113771046A (zh) 2021-12-10
CN113771046B true CN113771046B (zh) 2023-06-30

Family

ID=78873498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111241375.3A Active CN113771046B (zh) 2021-10-25 2021-10-25 一种最小化Jerk指标摆动轨迹规划方法

Country Status (1)

Country Link
CN (1) CN113771046B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734445B (zh) * 2022-05-09 2024-06-28 中兵智能创新研究院有限公司 一种四足机器人动态适应负载的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991847A (zh) * 2019-01-11 2019-07-09 天津理工大学 一种柔性多体机器人近似时间最优轨迹规划方法
CN111766885A (zh) * 2020-07-08 2020-10-13 清华大学深圳国际研究生院 一种四足机器人的静步态规划方法
CN111896007A (zh) * 2020-08-12 2020-11-06 智能移动机器人(中山)研究院 一种补偿足地冲击的四足机器人姿态解算方法
CN112147889A (zh) * 2020-08-31 2020-12-29 南京理工大学 一种四足机器人复合式越障轨迹规划方法
CN112757306A (zh) * 2021-01-25 2021-05-07 北京交通大学 一种机械臂逆解多解选择和时间最优轨迹规划算法
CN113246120A (zh) * 2021-03-08 2021-08-13 山东大学 一种液压四足双臂机器人的遥操作控制方法
CN113524177A (zh) * 2021-06-25 2021-10-22 南方科技大学 一种足式机器人的控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8719212B2 (en) * 2011-05-09 2014-05-06 King Fahd University Of Petroleum And Minerals Parallel kinematic machine trajectory planning method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991847A (zh) * 2019-01-11 2019-07-09 天津理工大学 一种柔性多体机器人近似时间最优轨迹规划方法
CN111766885A (zh) * 2020-07-08 2020-10-13 清华大学深圳国际研究生院 一种四足机器人的静步态规划方法
CN111896007A (zh) * 2020-08-12 2020-11-06 智能移动机器人(中山)研究院 一种补偿足地冲击的四足机器人姿态解算方法
CN112147889A (zh) * 2020-08-31 2020-12-29 南京理工大学 一种四足机器人复合式越障轨迹规划方法
CN112757306A (zh) * 2021-01-25 2021-05-07 北京交通大学 一种机械臂逆解多解选择和时间最优轨迹规划算法
CN113246120A (zh) * 2021-03-08 2021-08-13 山东大学 一种液压四足双臂机器人的遥操作控制方法
CN113524177A (zh) * 2021-06-25 2021-10-22 南方科技大学 一种足式机器人的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
移动机器人低能耗最优路径规划方法;张浩杰;苏治宝;HERNANDEZ D E;苏波;;农业机械学报(第09期);全文 *

Also Published As

Publication number Publication date
CN113771046A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
Broquere et al. Soft motion trajectory planner for service manipulator robot
CN110315543B (zh) 一种双足机器人步态生成与优化方法
US6999851B2 (en) Robot apparatus and motion controlling method therefor
US8676381B2 (en) Humanoid robot and walking control method thereof
WO2017092463A1 (zh) 一种双足机器人的步态控制方法和装置
US8868239B2 (en) Walking control apparatus of robot and method of controlling the same
US8688273B2 (en) Walking control apparatus of robot and method of controlling the same
EP1559519A1 (en) Robot device, motion control device for robot device and motion control method
US20110178636A1 (en) Humanoid robot and walking control method thereof
KR101689793B1 (ko) 모터 제어장치 및 모터 제어 방법
WO2004030870A1 (ja) ロボット装置及びロボット装置の制御方法
CN108897220B (zh) 一种自适应稳定平衡控制方法和系统以及双足仿人机器人
CN110405769B (zh) 一种启发式仿人机器人摔倒保护方法
CN109739094A (zh) 一种基于自适应滑模控制的移动机器人轨迹跟踪新方法
WO2003068454A1 (fr) Robot androide marchant sur deux jambes
CN113681543A (zh) 一种基于模型预测的机械臂零力控制方法
CN113771046B (zh) 一种最小化Jerk指标摆动轨迹规划方法
JP2004167666A (ja) ロボット装置及びその動作制御方法
CN108724191A (zh) 一种机器人运动轨迹控制方法
EP2236251B1 (en) Mobile robot controller
CN115793683A (zh) 一种重心控制方法、调整机构及足式机器人
CN114384918A (zh) 基于落足点调整的四足机器人对角步态柔顺控制方法
CN116661293A (zh) 一种轮腿式车辆跳跃障碍的运动控制方法及系统
Liao et al. Energy efficient swing leg trajectory planning for quadruped robots walking on rough terrain
Yousefi-Koma et al. Surenaiv: Towards a cost-effective full-size humanoid robot for real-world scenarios

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant