CN113766719A - 一种等离子体中带电粒子运动控制装置及方法 - Google Patents

一种等离子体中带电粒子运动控制装置及方法 Download PDF

Info

Publication number
CN113766719A
CN113766719A CN202010500842.9A CN202010500842A CN113766719A CN 113766719 A CN113766719 A CN 113766719A CN 202010500842 A CN202010500842 A CN 202010500842A CN 113766719 A CN113766719 A CN 113766719A
Authority
CN
China
Prior art keywords
cavity
voltage source
charged particles
charged particle
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010500842.9A
Other languages
English (en)
Inventor
马一飞
王梅
韩杰敏
陈旭远
肖连团
贾锁堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202010500842.9A priority Critical patent/CN113766719A/zh
Publication of CN113766719A publication Critical patent/CN113766719A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/16Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

本发明公开了一种等离子体中带电粒子运动控制装置及方法,该装置包括带电粒子运动控制腔和多组亥姆霍兹线圈;多组亥姆霍兹线圈连接电流源,在带电粒子运动控制腔周围施加磁场,利用洛伦兹力调控带电粒子运动行为;带电粒子运动控制腔包括腔体和带电粒子种类筛选层,带电粒子种类筛选层用于筛选进入腔体内的带电粒子种类;腔体由底部极板和两组水平方向极板组成,腔体内部形成电场,用于控制进入腔体内部的带电粒子的运动方向和带电粒子冲击基底的运动能量。本发明可精确控制带电粒子运动,达到等离子体中带电粒子运动人为精确控制的目的,从而扩展了PECVD设备沉积或刻蚀功能及效果。

Description

一种等离子体中带电粒子运动控制装置及方法
技术领域
本发明涉及材料沉积、刻蚀设备制造技术领域,特别涉及一种等离子体中带电粒子运动控制装置及方法。
背景技术
等离子增强化学气相沉积(PECVD)设备沉积材料或刻蚀时,所获材料的结构性质是由PECVD中带电粒子、激子等活性粒子决定。其中,中性粒子会随着气流做热运动。而带电粒子会在等离子体中鞘层现象的作用下冲击目标基底并参与材料沉积或刻蚀。带电粒子的种类、能量、运动方向等性质将决定其在材料沉积或刻蚀过程中的效果。因此,控制带电粒子运动行为对整个沉积过程至关重要。例如,利用PECVD可以沉积三维结构的材料,其三维结构将会对应用效果起着至关重要的作用,而且不同的应用对三维材料结构要求也不同,PECVD中的带电粒子运动行为决定着材料的三维结构以及材料本征性质。
但是,在目前阶段,PECVD中带电粒子运动行为无法直接控制,导致材料三维结构难以人为控制,从而影响了材料的应用效果。
发明内容
本发明提供了一种等离子体中带电粒子运动控制装置及方法,以解决现有PECVD方法难以获得形貌结构可控的高质量材料的技术问题。达到等离子体中带电粒子运动人为精确控制的目的,扩展PECVD设备沉积或刻蚀功能及效果。
为解决上述技术问题,本发明提供了如下技术方案:
一方面,本发明提供了一种等离子体中带电粒子运动控制装置,该装置包括带电粒子运动控制腔和多组亥姆霍兹线圈;其中,
所述多组亥姆霍兹线圈布设在所述带电粒子运动控制腔周围,所述多组亥姆霍兹线圈连接电流源,当接通所述电流源时,所述多组亥姆霍兹线圈在带电粒子运动控制腔周围施加磁场,所述磁场利用洛伦兹力调控带电粒子运动行为;
所述带电粒子运动控制腔包括腔体和设置在所述腔体顶部的带电粒子种类筛选层,所述带电粒子种类筛选层连接第一电压源,用于筛选进入所述腔体内部的带电粒子种类;所述腔体连接第二电压源和偏电压源,当接通所述第二电压源和偏电压源时,所述腔体的内部形成电场,所述电场用于控制进入所述腔体内部的带电粒子的运动方向和带电粒子冲击基底的运动能量。
可选地,所述电流源为可编程电流源,磁场的大小及方向由电流源控制。
可选地,所述第一电压源、第二电压源和偏电压源均为可编程电压源。
可选地,所述带电粒子种类筛选层包括多层金属网筛,所述第一电压源包括与所述金属网筛的数量相匹配的多个相互独立的电压源;所述多层金属网筛与所述第一电压源中的多个相互独立的电压源一一对应连接;通过调节所述第一电压源中各独立的电压源使金属网筛层之间形成电势差,利用原理:F=(Ua-Ub)q=ma,按照带电粒子质量和电量筛选进入所述腔体内的带电粒子种类;其中,F表示带电粒子的受力,Ua、Ub分别表示相邻两层金属网筛的电势,q表示带电粒子的电量,m表示带电粒子的质量,a表示带电粒子的加速度。
可选地,所述腔体为长方体结构,其包括底部极板和两组水平方向极板;其中,所述第二电压源包括两个相互独立的电压源,所述两组水平方向极板与第二电压源中的两个独立的电压源一一对应连接,当接通所述第二电压源时,所述腔体的内部形成平行电场,通过调节所述第二电压源中各独立的电压源来调节所述平行电场的强度,以控制进入所述腔体内部的带电粒子的运动方向;
所述底部极板连接偏电压源,当接通所述偏电压源时,所述腔体的内部形成偏电压场,通过调节所述偏电压源来调节所述偏电压场的强度,以控制进入所述腔体内部的带电粒子冲击基底的运动能量。
另一方面,本发明还提供了一种基于上述的等离子体中带电粒子运动控制装置实现的等离子体中带电粒子运动控制方法,该方法包括:
将所述等离子体中带电粒子运动控制装置安装于等离子增强化学气相沉积PECVD设备的沉积区中,将目标基底放置于所述带电粒子运动控制腔内;向PECVD设备通入前驱气体,并开启PECVD加热;
当加热至设定温度时,将前驱气体电离,然后根据设定条件调节电流源、第一电压源、第二电压源和偏电压源的工作参数;通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量。
可选地,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,包括:
当等离子体进入等离子体中带电粒子运动控制装置时,通过调节磁场的场强和/或方向,调控带电粒子运动行为,同时束缚等离子体,增强等离子体密度。
可选地,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,还包括:
通过带电粒子种类筛选层,依据粒子质量和电量筛选进入腔体的粒子种类。
可选地,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,还包括:
通过调节第二电压源来调节腔体内的平行电场的强度,以控制进入腔体内部的带电粒子的运动方向。
可选地,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,还包括:
通过调节偏电压源来调节腔体内的偏电压场的强度,以控制进入腔体内部的带电粒子冲击目标基底的运动能量。
本发明提供的技术方案带来的有益效果至少包括:
本发明提供的等离子体中带电粒子运动控制装置可安装于传统PECVD设备腔体内部。由PECVD产生的等离子体将进入该等离子体中带电粒子运动控制装置,该装置将对等离子体中带电粒子种类、运动方向以及能量进行精确控制,从而实现对所沉积的材料结构形貌性质的精确控制。达到等离子体中带电粒子运动人为精确控制的目的,进而扩展了PECVD设备沉积或刻蚀功能及效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的等离子体中带电粒子运动控制装置结构示意图;
图2是本发明实施例提供的带电粒子运动控制腔结构示意图。
附图标记说明:
1、亥姆霍兹线圈;
2、带电粒子运动控制腔;
3、带电粒子种类筛选层;
4、目标基底。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
第一实施例
本实施例提供了一种等离子体中带电粒子运动控制装置,该装置的结构如图1和图2所示,其包括:多组亥姆霍兹线圈1和带电粒子运动控制腔2;其中,
多组亥姆霍兹线圈1布设在带电粒子运动控制腔2周围,如图1所示;多组亥姆霍兹线圈1连接可编程电流源,当接通电流源时,多组亥姆霍兹线圈1在带电粒子运动控制腔2周围施加多方向的磁场,磁场的大小及方向由电流源精确控制,磁场利用洛伦兹力:F=|q|νBsinθ,调控带电粒子运动行为;
带电粒子运动控制腔2包括腔体和设置在腔体顶部的带电粒子种类筛选层3,带电粒子种类筛选层3由多层金属网筛构成,相应地,第一电压源包括与金属网筛的数量相匹配的多个相互独立的电压源;每层金属网筛分别连接一个独立的电压源(可编程电压源);通过调节各独立的电压源使金属网筛层之间形成电势差,利用原理:F=(Ua-Ub)q=ma,按照带电粒子质量和电量等性质筛选进入腔体内的带电粒子种类;其中,F表示带电粒子的受力,Ua、Ub分别表示相邻两层金属网筛的电势,q表示带电粒子的电量,m表示带电粒子的质量,a表示带电粒子的加速度。金属网筛的数量不限制,不同金属网筛连接不同的电压可以筛选不同质量的粒子。
腔体连接第二电压源和偏电压源,当接通第二电压源和偏电压源时,腔体的内部形成电场,该电场用于控制进入腔体内部的带电粒子的运动方向和带电粒子冲击基底的运动能量。其中,第二电压源和偏电压源均为可编程电压源。
具体地,在本实施例中,腔体为顶部开口的长方体结构,其由底部极板和两组水平方向极板组成;其中,每组水平方向极板分别连接一独立的电压源,当接通各组水平方向极板对应的电压源时,在腔体的内部形成平行电场,通过调节各组水平方向极板对应的独立电压源来调节腔体内的平行电场的强度,从而精确控制进入腔体内部的带电粒子的运动方向;
底部极板连接偏电压源,在腔体的内部形成偏电压场,通过调节偏电压源来调节偏电压场的强度,从而精确控制进入腔体内部的带电粒子冲击目标基底4的运动能量。其中,带电粒子在水平方向电场和偏电压场中受力为:F=Eq。
工作时,等离子体进入带电粒子运动控制装置,通过调节多方向磁场的场强、方向,调控带电粒子运动行为,同时束缚等离子体,增强等离子体密度。等离子体中带电粒子接近带电粒子运动控制腔2时,会被带电粒子运动控制腔2周围的鞘层加速冲击带电粒子运动控制腔2。进入带电粒子运动控制腔2的带电粒子在带电粒子种类筛选层3中依据粒子质量、电量被筛选,筛选后的带电粒子会进入带电粒子运动控制腔2内部,其运动方向和能量会受到水平极板和底部极板产生的水平电场和偏电压场的精确控制,最终沉积到目标基底4之上。此过程实现了等离子体中带电粒子运动方向和能量的精确人为控制目的。
本实施例提供的等离子体中带电粒子运动控制装置可安装于传统PECVD设备腔体内部。由PECVD产生的等离子体将进入该等离子体中带电粒子运动控制装置,该装置将对等离子体中带电粒子种类、运动方向以及能量进行精确控制,从而实现对所沉积的材料结构形貌性质的精确控制。达到等离子体中带电粒子运动人为精确控制的目的,进而扩展了PECVD设备沉积或刻蚀功能及效果。
第二实施例
本实施例提供了一种基于上述的等离子体中带电粒子运动控制装置实现的等离子体中带电粒子运动控制方法,该方法包括:
将上述等离子体中带电粒子运动控制装置安装于等离子增强化学气相沉积PECVD设备的沉积区中,将目标基底4放置于带电粒子运动控制腔2内;向PECVD设备通入前驱气体,并开启PECVD加热;当实验条件达到设定温度的时候,将前驱气体电离,然后根据实验设计调节电流源、第一电压源、第二电压源和偏电压源的工作参数;通过开启或关闭磁场、带电粒子种类筛选层3、腔体内的水平电场和偏电压场控制到达目标基底4的粒子种类、运动方向及能量。
具体地,通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,包括:
当等离子体进入等离子体中带电粒子运动控制装置时,通过调节磁场的场强和/或方向,调控带电粒子运动行为,同时束缚等离子体,增强等离子体密度。通过带电粒子种类筛选层3,依据粒子质量和电量筛选进入腔体的粒子种类。通过调节第二电压源来调节腔体内的平行电场的强度,以控制进入腔体内部的带电粒子的运动方向。通过调节偏电压源来调节腔体内的偏电压场的强度,以控制进入腔体内部的带电粒子冲击目标基底的运动能量。
下面结合具体的实验进一步说明本实施例的方案:
实验一,实验参数参见表1:
表1实验一的相关实验参数
Figure BDA0002524767490000061
材料沉积分以下几个步骤:1.H2通入反应腔;2.腔体温度加热至850℃;3.单频率200W起辉,对基底表面进行还原预处理;4.处理结束后,关闭射频输入,通入CH4气体;5.单频率500W起辉,将X、Y、Z方向磁场电流分别设置为0、20、15mA,关闭带电粒子种类筛选层,X、Y方向电场分别设置为100、0V,基底偏电压设为70V,然后沉积材料40min。6.关闭射频输入,关闭加热,关闭磁场、电场、偏电压场,待温度冷却至室温,关闭气体,取出目标沉积材料。
实验二,实验参数参见表2:
表2实验二的相关实验参数
Figure BDA0002524767490000062
Figure BDA0002524767490000071
材料刻蚀分为以下几个步骤:1.放入待刻蚀样品碳纤维于基底上;2反应腔抽真空至0.01Torr;3.腔体温度加热至300℃;4.通入O2,等待反应腔压力稳定;5.单频率250W起辉,将X、Y、Z方向磁场电流分别设置为0mA、0mA、30mA,关闭带电粒子种类筛选层,X、Y方向电场分别设置为50V、0V,基底偏电压设为100V,然后刻蚀样品3分钟。6.关闭射频输入,关闭加热,关闭磁场、电场、偏电压场,待温度冷却至室温,关闭气体,取出目标材料。
本实施例通过上述装置对等离子体中带电粒子种类、运动方向及能量进行精确控制,实现了对所沉积的材料结构形貌性质的精确控制。达到等离子体中带电粒子运动人为精确控制的目的,扩展了PECVD设备沉积或刻蚀功能及效果。
此外,需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
还需要说明的是,以上所述仅是本发明的优选实施方式,应当指出,尽管已描述了本发明的优选实施例,但对于本技术领域的技术人员来说,一旦得知了本发明的基本创造性概念,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。

Claims (10)

1.一种等离子体中带电粒子运动控制装置,其特征在于,所述等离子体中带电粒子运动控制装置包括带电粒子运动控制腔和多组亥姆霍兹线圈;其中,
所述多组亥姆霍兹线圈布设在所述带电粒子运动控制腔周围,所述多组亥姆霍兹线圈连接电流源,当接通所述电流源时,所述多组亥姆霍兹线圈在带电粒子运动控制腔周围施加磁场,所述磁场利用洛伦兹力调控带电粒子运动行为;
所述带电粒子运动控制腔包括腔体和设置在所述腔体顶部的带电粒子种类筛选层,所述带电粒子种类筛选层连接第一电压源,用于筛选进入所述腔体内部的带电粒子种类;所述腔体连接第二电压源和偏电压源,当接通所述第二电压源和偏电压源时,所述腔体的内部形成电场,所述电场用于控制进入所述腔体内部的带电粒子的运动方向和带电粒子冲击基底的运动能量。
2.如权利要求1所述的等离子体中带电粒子运动控制装置,其特征在于,所述电流源为可编程电流源,所述磁场的大小及方向由所述电流源控制。
3.如权利要求1所述的等离子体中带电粒子运动控制装置,其特征在于,所述第一电压源、第二电压源和偏电压源均为可编程电压源。
4.如权利要求3所述的等离子体中带电粒子运动控制装置,其特征在于,所述带电粒子种类筛选层包括多层金属网筛,所述第一电压源包括与所述金属网筛的数量相匹配的多个相互独立的电压源;所述多层金属网筛与所述第一电压源中的多个相互独立的电压源一一对应连接;
通过调节所述第一电压源中各独立的电压源,使金属网筛层之间形成电势差,利用原理:F=(Ua-Ub)q=ma,按照带电粒子质量和电量筛选进入所述腔体内的带电粒子种类;其中,F表示带电粒子的受力,Ua、Ub分别表示相邻两层金属网筛的电势,q表示带电粒子的电量,m表示带电粒子的质量,a表示带电粒子的加速度。
5.如权利要求3所述的等离子体中带电粒子运动控制装置,其特征在于,所述腔体为长方体结构,其包括底部极板和两组水平方向极板;其中,
所述第二电压源包括两个相互独立的电压源,所述两组水平方向极板与第二电压源中的两个独立的电压源一一对应连接,当接通所述第二电压源时,所述腔体的内部形成平行电场,通过调节所述第二电压源中各独立的电压源来调节所述平行电场的强度,以控制进入所述腔体内部的带电粒子的运动方向;
所述底部极板连接偏电压源,当接通所述偏电压源时,所述腔体的内部形成偏电压场,通过调节所述偏电压源来调节所述偏电压场的强度,以控制进入所述腔体内部的带电粒子冲击基底的运动能量。
6.一种基于权利要求1-5任一项所述的等离子体中带电粒子运动控制装置实现的等离子体中带电粒子运动控制方法,其特征在于,所述方法包括:
将所述等离子体中带电粒子运动控制装置安装于等离子增强化学气相沉积PECVD设备的沉积区中,将目标基底放置于所述带电粒子运动控制腔内;向PECVD设备通入前驱气体,并开启PECVD加热;
当加热至设定温度时,将前驱气体电离,然后根据设定条件调节电流源、第一电压源、第二电压源和偏电压源的工作参数;通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量。
7.如权利要求6所述的等离子体中带电粒子运动控制方法,其特征在于,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,包括:
当等离子体进入等离子体中带电粒子运动控制装置时,通过调节磁场的场强和/或方向,调控带电粒子运动行为,同时束缚等离子体,增强等离子体密度。
8.如权利要求7所述的等离子体中带电粒子运动控制方法,其特征在于,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,还包括:
通过带电粒子种类筛选层,依据粒子质量和电量筛选进入腔体的粒子种类。
9.如权利要求8所述的等离子体中带电粒子运动控制方法,其特征在于,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,还包括:
通过调节第二电压源来调节腔体内的平行电场的强度,以控制进入腔体内部的带电粒子的运动方向。
10.如权利要求9所述的等离子体中带电粒子运动控制方法,其特征在于,所述通过开启或关闭磁场、带电粒子种类筛选层、腔体内电场控制到达目标基底的粒子种类、运动方向及能量,还包括:
通过调节偏电压源来调节腔体内的偏电压场的强度,以控制进入腔体内部的带电粒子冲击目标基底的运动能量。
CN202010500842.9A 2020-06-04 2020-06-04 一种等离子体中带电粒子运动控制装置及方法 Pending CN113766719A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010500842.9A CN113766719A (zh) 2020-06-04 2020-06-04 一种等离子体中带电粒子运动控制装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010500842.9A CN113766719A (zh) 2020-06-04 2020-06-04 一种等离子体中带电粒子运动控制装置及方法

Publications (1)

Publication Number Publication Date
CN113766719A true CN113766719A (zh) 2021-12-07

Family

ID=78783650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010500842.9A Pending CN113766719A (zh) 2020-06-04 2020-06-04 一种等离子体中带电粒子运动控制装置及方法

Country Status (1)

Country Link
CN (1) CN113766719A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018015A1 (de) * 2000-04-11 2001-10-25 Infineon Technologies Ag Anordnung zur Durchführung eines plasmabasierten Verfahrens
CN1779575A (zh) * 2004-11-25 2006-05-31 Psk有限公司 等离子室系统及使用该系统灰化光刻胶图案的方法
CN101118854A (zh) * 2006-08-02 2008-02-06 美商慧程系统科技股份有限公司 等离子体刻蚀系统
CN103708444A (zh) * 2013-12-20 2014-04-09 上海中电振华晶体技术有限公司 石墨烯薄膜的制备方法及设备
CN103871829A (zh) * 2012-12-10 2014-06-18 中国科学院大连化学物理研究所 具有质量过滤功能的反射式飞行时间质谱仪及使用方法
CN106507576A (zh) * 2016-11-04 2017-03-15 中国工程物理研究院流体物理研究所 金属氢化物离子源的离子过滤装置、方法及中子发生器
CN107475669A (zh) * 2017-09-19 2017-12-15 上海陛通半导体能源科技股份有限公司 金属氧化物或氮化物溅射工艺腔
CN107507752A (zh) * 2017-08-02 2017-12-22 金华职业技术学院 一种用于研究离子光激发后产物的装置
CN109423610A (zh) * 2017-08-24 2019-03-05 京东方科技集团股份有限公司 一种蒸镀装置及蒸镀方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018015A1 (de) * 2000-04-11 2001-10-25 Infineon Technologies Ag Anordnung zur Durchführung eines plasmabasierten Verfahrens
CN1779575A (zh) * 2004-11-25 2006-05-31 Psk有限公司 等离子室系统及使用该系统灰化光刻胶图案的方法
CN101118854A (zh) * 2006-08-02 2008-02-06 美商慧程系统科技股份有限公司 等离子体刻蚀系统
CN103871829A (zh) * 2012-12-10 2014-06-18 中国科学院大连化学物理研究所 具有质量过滤功能的反射式飞行时间质谱仪及使用方法
CN103708444A (zh) * 2013-12-20 2014-04-09 上海中电振华晶体技术有限公司 石墨烯薄膜的制备方法及设备
CN106507576A (zh) * 2016-11-04 2017-03-15 中国工程物理研究院流体物理研究所 金属氢化物离子源的离子过滤装置、方法及中子发生器
CN107507752A (zh) * 2017-08-02 2017-12-22 金华职业技术学院 一种用于研究离子光激发后产物的装置
CN109423610A (zh) * 2017-08-24 2019-03-05 京东方科技集团股份有限公司 一种蒸镀装置及蒸镀方法
CN107475669A (zh) * 2017-09-19 2017-12-15 上海陛通半导体能源科技股份有限公司 金属氧化物或氮化物溅射工艺腔

Similar Documents

Publication Publication Date Title
US7405415B2 (en) Ion source with particular grid assembly
DE69828904T3 (de) Plasmabehandlungsgerät mit rotierenden magneten
US5022977A (en) Ion generation apparatus and thin film forming apparatus and ion source utilizing the ion generation apparatus
DE19983211B4 (de) System und Verfahren der Substratverarbeitung sowie deren Verwendung zur Hartscheibenherstellung
CN201614406U (zh) 沉积材料形成镀层的设备
JP2001520433A (ja) 加速された粒子を発生させる装置並びに方法
CN100590221C (zh) 能输出单一离子能量的离子束发射源
DE10080124B3 (de) Substratverarbeitungssystem, dessen Verwendung sowie Verfahren zur Bearbeitung eines Substrates
DE10018015A1 (de) Anordnung zur Durchführung eines plasmabasierten Verfahrens
KR102045058B1 (ko) 리니어 icp 플라즈마 소스 및 rf 플라즈마 소스의 안테나 모듈의 제조 방법
US20070169702A1 (en) Equipment innovations for nano-technology aquipment, especially for plasma growth chambers of carbon nanotube and nanowire
WO2007015445A1 (ja) プラズマ発生装置およびこれを用いた成膜方法
CN113766719A (zh) 一种等离子体中带电粒子运动控制装置及方法
DD294511A5 (de) Verfahren und vorrichtung zum reaktiven gasflusssputtern
EP0413291B1 (en) Method and device for sputtering of films
WO2019239613A1 (ja) 特定種イオン源およびプラズマ成膜装置
US20170330773A1 (en) Plasma processing system using electron beam and capacitively-coupled plasma
KR20150069073A (ko) Ecr 플라즈마 스퍼터링 장치
CN103178349A (zh) 微结构加工方法
WO2005008717A2 (de) Hochfrequenzquelle zur erzeugung eines durch magnetfelder geformten plasmastrahls und verfahren zum bestrahlen einer oberfläche
Tyczkowski Audio-frequency glow discharge for plasma chemical vapor deposition from organic compounds of the carbon family
EP1868255A1 (en) Method for surface processing in a vacuum environment
CN1725424A (zh) 改良型离子枪
KR20170108469A (ko) 복합 자성물질 증착용 스퍼터링 타겟 및 이를 이용한 복합 자성물질 증착방법
EP1393340B1 (en) Ion gun

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211207