CN107475669A - 金属氧化物或氮化物溅射工艺腔 - Google Patents

金属氧化物或氮化物溅射工艺腔 Download PDF

Info

Publication number
CN107475669A
CN107475669A CN201710844891.2A CN201710844891A CN107475669A CN 107475669 A CN107475669 A CN 107475669A CN 201710844891 A CN201710844891 A CN 201710844891A CN 107475669 A CN107475669 A CN 107475669A
Authority
CN
China
Prior art keywords
target
plasma
metal oxide
power supply
sputtering technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710844891.2A
Other languages
English (en)
Other versions
CN107475669B (zh
Inventor
张德培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Betone Semiconductor Energy Technology Co Ltd
Original Assignee
Shanghai Betone Semiconductor Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Betone Semiconductor Energy Technology Co Ltd filed Critical Shanghai Betone Semiconductor Energy Technology Co Ltd
Priority to CN201710844891.2A priority Critical patent/CN107475669B/zh
Publication of CN107475669A publication Critical patent/CN107475669A/zh
Application granted granted Critical
Publication of CN107475669B publication Critical patent/CN107475669B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

金属氧化物或氮化物溅射工艺腔,包括靶材、脉冲磁控电源、亥姆霍兹线圈、永磁装置、等离子射频电源一、等离子射频电源二、挡板装置和晶圆基材。所述靶材放置在反应腔上方位置;所述脉冲磁控电源与靶材相连,轰击靶材产生所需要的原子团或离子;所述永磁装置或所述两组垂直的亥姆霍兹线圈放置在靶材上方,产生均匀的旋转磁场,增加气体的电离率,从而增加等离子体密度;所述挡板装置在晶圆基材上方;所述双等离子射频电源可互相独立或互相关联的调节参数,改变离子密度和动能。本发明提供的工艺腔,形成电感耦合型射频等离子,增加离子密度和动能,改善镀膜的沉积速率、膜的应力和镀膜膜厚的均匀性。

Description

金属氧化物或氮化物溅射工艺腔
技术领域
本发明涉及半导体晶圆制造领域,尤其涉及金属氧化物或氮化物溅射工艺腔。
背景技术
目前,国内金属氧化物或氮化物溅射镀膜的应用市场已经达到相当的规模,这些金属氧化和氮化膜在半导体集成电路器件中的应用越来越广泛。例如:氧化铝,氮化铝,氧化钽,氧化铪,氧化钒等。金属氧化物或氮化物溅射工艺腔已经成为目前主流的工艺设备。但老旧溅射腔以及落后的辅助设备直接导致镀膜的均匀性、溅射速率,以及在溅射氧化钒时TCR(材料电阻温度系数)值和工艺稳定性达不到生产需求。本发明提供的工艺腔,针对优化镀膜均匀性和提高氧化钒电阻温度系数值及工艺稳定性做出巨大改善。通过设计脉冲磁控电源、永磁装置和等离子射频电源等装置,形成电感耦合型射频等离子,增加离子密度和动能,改善镀膜的沉积速率、膜的应力和镀膜膜厚的均匀性。
发明内容
本发明专利所要解决的技术问题是提供一种专用溅射反应腔,通过设计脉冲磁控电源、永磁装置和等离子射频电源等装置,形成电感耦合型射频等离子,增加离子密度和动能,从而改善镀膜的沉积速率、膜的应力和镀膜膜厚的均匀性;
为实现上述目的,本发明解决其技术问题所采用的技术方案是:金属氧化物或氮化物溅射工艺腔,包括靶材、脉冲磁控电源、亥姆霍兹线圈、永磁装置、等离子射频电源一、等离子射频电源二、档板装置和晶圆基材。所述靶材放置在反应腔上方位置,可采用圆形金属靶材,如钒靶材等;在溅射过程中,溅射腔内要通反应气体,如要形成金属氧化物,就需要通氧气和惰性气体氩气的混合气体,如要形成金属氮化物,就需要通氮气和惰性气体氩气的混合气体. 氧气或氮气与溅射的金属在晶圆表面形成化学反应,形成氧化膜或氮化膜.;所述脉冲磁控电源与靶材相连,轰击靶材产生所需要的原子团或离子;所述永磁装置放置在靶材上方,增加电子与分子间碰撞次数增加,增大等离子体中离子密度;所述两组垂直放置的亥姆霍兹线圈放置在靶材上方,通过控制电流的大小,可以在等离子体中产生可随时间变化的旋转磁场,用以替代永磁装置,通过控制离子密度,提高镀膜膜厚均匀性;所述晶圆基材放置在腔体底部位置,其材料采用高纯度多晶硅,外形呈圆形;所述档板装置可在晶圆基材上方起到遮挡或不遮挡的功能;在晶圆基材和靶材之间是等离子区,其中有工艺生产所需的等离子体;所述等离子射频电源一放置在等离子区两侧,用于增加等离子密度;所述等离子射频电源二与晶圆基材相连,用于控制离子打到晶圆表面的能量;
其中,所述脉冲磁控电源采用双向脉冲,双向脉冲在一个周期内存在正电压和负电压两个阶段,在负电压段,电源工作于靶材的溅射,正电压段,引入电子中和靶面累积的正电荷,并使表面清洁,裸露出金属表面电源。根据生产需求,脉冲磁控电源可自由调整脉冲时间控制参数;
其中,所述永磁装置放置在靶材上方,可采用多组永磁装置组合,将多个马蹄形磁铁固定在心形环和固定圆盘之间,马蹄形磁铁北极固定在心形环上,马蹄形磁铁南极固定在环心固定件上,形成组合的永磁装置;在生产中,通过磁铁产生的磁场,使等离子体内电子呈螺旋式运动,增加气体的电离率,从而增加等离子体密度. 通过旋转磁铁而达到改善镀膜均匀性的目的。传统的溅射设备直接将电压施加在金属靶材上,为了使靶材能够在单位时间溅射更多的金属材料,需增加施加在金属靶上的电压;另外就是加入一组或多组永磁铁,利用电磁力,使等离子体内电子呈螺旋式运动,借着电子与分子间碰撞次数增加,增加等离子体中离子密度;
其中,所述两组垂直放置的亥姆霍兹线圈放置在靶材上方,通过控制电流的大小,可以在等离子体中产生可随时间变化的旋转磁场,此装置可替代永磁装置使用;亥姆霍兹线圈是用两个半径和匝数完全相同的线圈,将其同轴排列并令间距等于半径,串接而成的线圈,在轴的中点附近的较大范围内产生均匀磁场,两组垂直亥姆霍兹线圈各通正玄波电流,但位相差90度,其在线圈中心产生的磁场强度不变,但磁场方向旋转的频率与正玄波的频率一致,这一装置可取代用旋转的永磁铁,可调节磁场强度的大小,从而提高工艺腔镀膜膜厚均匀性;
其中,所述等离子射频电源一和等离子射频电源二,形成双等离子射频电源,等离子射频电源一用于增加等离子体密度,而等离子射频电源二用于控制离子溅射到晶圆的能量;两个射频电源可分别调控参数,也可以相互关联调节参数,改变等离子体密度和能量;
其中,所述档板装置放置在晶圆基材上方,可以旋转到晶圆基材上方,使得溅射的材料打在档板装置上而不是在晶圆基材上;当档板装置旋转到旁边位置,靶材上的金属材料才能溅射到晶圆基材上,档板装置的作用是把靶材表面不纯的材料溅射到档板装置上而不是晶圆基材106上;
其中,所述晶圆基材采用最高工艺温度至500℃的基材;
本发明的有益效果是:本发明提供的工艺腔,针对优化镀膜均匀性和提高溅射氧化钒时TCR(材料电阻温度系数)值及工艺稳定性做出巨大改善。本发明工艺腔配置了脉冲磁控电源,安装了两组垂直的亥姆霍兹线圈或根据生产需求设计的永磁装置,增加等离子体中离子密度,改善镀膜沉积速率;增加了双等离子射频电源,提高反应离子密度和改善反应离子密度和能量;配备了档板装置,用于保护晶圆基材和清洁金属靶材表面氧化物或氮化物;并且采用最高工艺温度至摄氏500℃的晶圆基材。
附图说明
图1为本发明结构示意图;
101.永磁装置;102.亥姆霍兹线圈;103.靶材;104.等离子射频电源一;105.档板装置;106.晶圆基材;107.等离子射频电源二;108.脉冲磁控电源。
具体实施方式
下面结合附图和实施例对本发明做进一步说明;
如图1所示,本发明的金属氧化物或氮化物溅射工艺腔,包括靶材103、脉冲磁控电源108、两组垂直的亥姆霍兹线圈102、永磁装置101、等离子射频电源一104、等离子射频电源二107、档板装置105和晶圆基材106。所述靶材103放置在反应腔上方位置,可采用圆形金属靶材;所述脉冲磁控电源108与靶材103相连,通过脉冲磁控电源108产生晶圆生产所需靶材103原子;所述永磁装置101放置在靶材103上方,增加电子与分子间碰撞次数增加,增大等离子体中离子密度;所述两组垂直放置的亥姆霍兹线圈102放置在靶材103上方,通过控制电流的大小,可以在等离子体中产生可随时间变化的旋转磁场,可以替代永磁装置101,提高镀膜膜厚均匀性。所述晶圆基材106放置在反应腔底部位置,其材料采用高纯度多晶硅,外形呈圆形;所述档板装置105,可以旋转到晶圆基材106上方,使得溅射的材料打在档板装置105上而不是在晶圆基材106上,当档板装置105旋转到旁边位置,靶材103上的金属材料才能溅射到晶圆基材106上,档板装置105的作用是把靶材103表面不纯的材料溅射到档板装置105上而不是晶圆基材106上;在晶圆基材106和靶材103之间是等离子区,其中有工艺生产所需的等离子体,所述等离子射频电源一104放置在此区域两侧;所述等离子射频电源二107与晶圆基材106相连;
所述等离子射频电源一104和等离子射频电源二107,等离子射频电源一104用于增加等离子体密度,而等离子射频电源二107用于控制离子溅射到晶圆的能量;两个射频电源可分别调控参数,也可以相互关联调节参数,改变等离子体密度和能量;
其中,靶材103与晶圆基材106之间的等离子区域,有生产所需的氩离子、阳离子和离子化金属等。图1中,等离子区中圆形代表离子化金属,三角形代表氧离子,方形代表氩离子;氧离子与靶材103轰击出的原子反应,离子化金属沉积在晶圆基材106表面,氩离子与靶材103表面氮化物或氧化物反应,起清洁靶材作用;
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (7)

1.金属氧化物或氮化物溅射工艺腔,其特征在于:包括靶材、脉冲磁控电源、亥姆霍兹线圈、永磁装置、等离子射频电源一、等离子射频电源二、挡板装置和晶圆基材;所述靶材放置在反应腔上方位置;所述脉冲磁控电源与靶材相连,轰击靶材产生所需要的原子团或离子;所述永磁装置放置在靶材上方;所述亥姆霍兹线圈放置在靶材上方,可以替代永磁装置,通过控制离子密度,提高镀膜膜厚均匀性;所述挡板装置在晶圆基材上方;所述等离子射频电源一放置在等离子区两侧;所述等离子射频电源二与晶圆基材相连。
2.根据权利要求1所述的金属氧化物或氮化物溅射工艺腔,其特征在于:所述靶材,采用圆形金属靶材。
3.根据权利要求1所述的金属氧化物或氮化物溅射工艺腔,其特征在于:所述脉冲磁控电源采用双向脉冲,脉冲磁控电源可自由调整脉冲时间控制参数。
4.根据权利要求1所述的金属氧化物或氮化物溅射工艺腔,其特征在于:所述永磁装置,采用多组永磁装置组合,将多个马蹄形磁铁固定在心形环和固定圆盘之间,马蹄形磁铁北极固定在心形环上,马蹄形磁铁南极固定在环心固定件上,形成组合的永磁装置。
5.根据权利要求1所述的金属氧化物或氮化物溅射工艺腔,其特征在于:所述亥姆霍兹线圈,采用两组垂直的亥姆霍兹线圈,两个半径和匝数完全相同的线圈,将其同轴排列并令间距等于半径,串接而成,产生均匀磁场,两组垂直亥姆霍兹线圈各通正玄波电流,位相差90度,其在线圈中心产生的磁场强度不变,但磁场方向旋转的频率与正玄波的频率一致,提高工艺腔镀膜均匀性。
6.根据权利要求1所述的金属氧化物或氮化物溅射工艺腔,其特征在于:所述等离子射频电源一和所述等离子射频电源二,两个射频电源可分别调控参数,也可以相互关联调节参数,改变等离子体密度和能量。
7.根据权利要求1所述的金属氧化物或氮化物溅射工艺腔,其特征在于:所述晶圆基材采用最高工艺温度至500℃的基材。
CN201710844891.2A 2017-09-19 2017-09-19 金属氧化物或氮化物溅射工艺腔 Active CN107475669B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710844891.2A CN107475669B (zh) 2017-09-19 2017-09-19 金属氧化物或氮化物溅射工艺腔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710844891.2A CN107475669B (zh) 2017-09-19 2017-09-19 金属氧化物或氮化物溅射工艺腔

Publications (2)

Publication Number Publication Date
CN107475669A true CN107475669A (zh) 2017-12-15
CN107475669B CN107475669B (zh) 2024-05-31

Family

ID=60584063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710844891.2A Active CN107475669B (zh) 2017-09-19 2017-09-19 金属氧化物或氮化物溅射工艺腔

Country Status (1)

Country Link
CN (1) CN107475669B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349899A (zh) * 2018-12-20 2020-06-30 上海陛通半导体能源科技股份有限公司 物理气相沉积材料的方法和设备
CN113766719A (zh) * 2020-06-04 2021-12-07 山西大学 一种等离子体中带电粒子运动控制装置及方法
CN117364043A (zh) * 2023-10-20 2024-01-09 深圳金迈克精密科技有限公司 一种铝合金pvd流化工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121243A (ja) * 1996-10-09 1998-05-12 Sony Corp 真空薄膜成形装置
US6022460A (en) * 1999-01-18 2000-02-08 Inha University Foundation Enhanced inductively coupled plasma reactor
US20050199485A1 (en) * 2004-03-12 2005-09-15 Stanislav Kadlec Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
CN1948548A (zh) * 2006-11-06 2007-04-18 大连理工大学 一种磁镜场约束双靶非平衡磁控溅射方法
EP2175044A1 (de) * 2008-10-07 2010-04-14 Systec System- und Anlagentechnik GmbH & Co. KG PVD-Beschichtungsverfahren, Vorrichtung zur Durchführung des Verfahrens und nach dem Verfahren beschichtete Substanzen
CN106319460A (zh) * 2015-06-30 2017-01-11 中国科学院微电子研究所 一种金属薄膜溅射的pvd设备及工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121243A (ja) * 1996-10-09 1998-05-12 Sony Corp 真空薄膜成形装置
US6022460A (en) * 1999-01-18 2000-02-08 Inha University Foundation Enhanced inductively coupled plasma reactor
US20050199485A1 (en) * 2004-03-12 2005-09-15 Stanislav Kadlec Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
CN1948548A (zh) * 2006-11-06 2007-04-18 大连理工大学 一种磁镜场约束双靶非平衡磁控溅射方法
EP2175044A1 (de) * 2008-10-07 2010-04-14 Systec System- und Anlagentechnik GmbH & Co. KG PVD-Beschichtungsverfahren, Vorrichtung zur Durchführung des Verfahrens und nach dem Verfahren beschichtete Substanzen
CN106319460A (zh) * 2015-06-30 2017-01-11 中国科学院微电子研究所 一种金属薄膜溅射的pvd设备及工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
范玉殿: "《电子束和离子束加工》", 30 June 1989, 机械工业出版社, pages: 261 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349899A (zh) * 2018-12-20 2020-06-30 上海陛通半导体能源科技股份有限公司 物理气相沉积材料的方法和设备
CN111349899B (zh) * 2018-12-20 2022-02-25 上海陛通半导体能源科技股份有限公司 物理气相沉积材料的方法和设备
CN113766719A (zh) * 2020-06-04 2021-12-07 山西大学 一种等离子体中带电粒子运动控制装置及方法
CN117364043A (zh) * 2023-10-20 2024-01-09 深圳金迈克精密科技有限公司 一种铝合金pvd流化工艺

Also Published As

Publication number Publication date
CN107475669B (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
US8916034B2 (en) Thin-film forming sputtering system
CN103046008B (zh) 溅射方法
EP2164091B1 (en) Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
CN107475669A (zh) 金属氧化物或氮化物溅射工艺腔
CN102420091B (zh) 一种复合式磁控溅射阴极
KR20110020918A (ko) 균일한 증착을 위한 장치 및 방법
TW200949000A (en) Coaxial microwave assisted deposition and etch systems
KR102616067B1 (ko) Pvd 스퍼터링 증착 챔버의 경사형 마그네트론
US20110220494A1 (en) Methods and apparatus for magnetron metallization for semiconductor fabrication
CN101565818B (zh) 一种溅射镀膜的方法
KR20080045031A (ko) 플라즈마 데미지 프리 스퍼터 건 및 이를 구비한 스퍼터장치와 이를 이용한 플라즈마 처리장치 및 성막 방법
CN104810228B (zh) 螺旋形磁控管及磁控溅射设备
KR20120023792A (ko) 성막 장치
KR101429069B1 (ko) 성막 장치 및 성막 방법
Wasa Sputtering systems
CN202139478U (zh) 一种在SiC纤维表面沉积薄膜的装置
CN101570851A (zh) 一种给溅射镀膜阴极施加磁场的方法
KR100793569B1 (ko) 마그네트론 스퍼터링 장치
JP7084932B2 (ja) 磁石構造体、磁石ユニット及びこれを含むマグネトロンスパッタリング装置
CN209722286U (zh) 物理气相沉积腔可调磁控线圈装置
CN216738520U (zh) 一种用于提高离化率的类金刚石碳膜沉积设备
CN203999797U (zh) 一种可变磁通量分布的直流磁控溅射机磁通管
CN204918740U (zh) 一种真空镀膜设备
Tupik et al. Application of nanoscale metal films on cylindrically shaped products
KR101317087B1 (ko) 스퍼터링 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant