CN113764534A - 一种纯相高性能CsPbBr3太阳电池及其制备方法 - Google Patents

一种纯相高性能CsPbBr3太阳电池及其制备方法 Download PDF

Info

Publication number
CN113764534A
CN113764534A CN202110846519.1A CN202110846519A CN113764534A CN 113764534 A CN113764534 A CN 113764534A CN 202110846519 A CN202110846519 A CN 202110846519A CN 113764534 A CN113764534 A CN 113764534A
Authority
CN
China
Prior art keywords
cspbbr
tio
fto
substrate
cspb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110846519.1A
Other languages
English (en)
Inventor
朱卫东
巴延双
张泽阳
张春福
陈大正
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110846519.1A priority Critical patent/CN113764534A/zh
Publication of CN113764534A publication Critical patent/CN113764534A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种纯相高性能CsPbBr3太阳电池及其制备方法,所述制备方法包括:选取带有FTO电极阴极的玻璃衬底;在FTO电极阴极上制备TiO2电子传输层,获得FTO/TiO2基底;在TiO2电子传输层上形成CsPb2Br5二维钙钛矿薄膜,获得FTO/TiO2/CsPb2Br5基底;利用CsBr水溶液通过原位相变将CsPb2Br5二维钙钛矿薄膜转变为CsPbBr3钙钛矿光吸收层,获得FTO/TiO2/CsPbBr3基底;在CsPbBr3钙钛矿光吸收层上沉积碳电极阳极,获得纯相高性能CsPbBr3太阳能电池。该制备方法基于原位相变,利用PbBr2和CsBr生成二维钙钛矿CsPb2Br5,而后通过原位相变方法将二维钙钛矿CsPb2Br5转变为纯相的三维钙钛矿CsPbBr3,依照该方法可以得到纯相的CsPbBr3薄膜,且制备工艺简单、成本较低。

Description

一种纯相高性能CsPbBr3太阳电池及其制备方法
技术领域
本发明属于钙钛矿太阳电池技术领域,具体涉及一种纯相高性能CsPbBr3太阳电池及其制备方法。
背景技术
钙钛矿太阳电池是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳电池,属于第三代太阳电池。有机金属卤化物钙钛矿的优点显著,具有带隙可调、载流子扩散长度长、迁移率高、缺陷密度低等诸多优异的光学和电学性质。这使得钙钛矿太阳电池具有与硅基太阳电池相当的效率,此外由于其光电转换效率高、制备工艺简单且成本低廉等潜在,成为了近年来光电器件研究领域的热点。
目前,由于有机-无机杂化铅卤钙钛矿包含易挥发、亲水性的有机阳离子组份,使其在高温、高湿或持续光照条件易于分解而退化。因此,在高温、高湿或持续光照等极端条件下,有机-无机杂化铅卤钙钛矿太阳电池难以避免地存在可靠性差的问题,另一方面,大多数钙钛矿光伏器件包含有机的电荷传输层和金属电极,前者自身存在稳定性差的问题。此外,器件金属电极中的原子倾向于扩散至有机-无机杂化铅卤钙钛矿薄膜/电荷传输层界面,与薄膜中的卤素发生化学反应,进一步加剧了器件的衰退。然而,碳基CsPbBr3无机钙钛矿太阳电池,其完全避免了使用稳定性较差的有机-无机杂化铅卤钙钛矿材料、有机电荷传输材料以及金属电极,因而,成为克服钙钛矿光伏器件所面临的可靠性问题的重要途径之一。另外,由于采用了廉价的碳电极取代了金属电极和有机电荷传输层,器件的制造成本得到了进一步的降低。
然而,目前的CsPbBr3钙钛矿光吸收层通常采用一步溶液旋涂法或两步旋涂法来制备,其中一步法制备虽然过程简单,但是成膜质量低,对器件性能产生不利影响;通过两步法制备CsPbBr3薄膜虽然在成膜质量上有所改观,但是无法制备纯相的CsPbBr3薄膜,而非纯相的薄膜会引入不受控制的杂相,进而会产生缺陷及能量势垒,阻碍载流子传输影响器件性能。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种纯相高性能CsPbBr3太阳电池及其制备方法。本发明要解决的技术问题通过以下技术方案实现:
本发明的一个方面提供了一种纯相高性能CsPbBr3太阳电池的制备方法,包括:
选取带有FTO电极阴极的玻璃衬底;
在所述FTO电极阴极上制备TiO2电子传输层,获得FTO/TiO2基底;
在所述TiO2电子传输层上形成CsPb2Br5二维钙钛矿薄膜,获得FTO/TiO2/CsPb2Br5基底;
利用CsBr水溶液通过原位相变将所述CsPb2Br5二维钙钛矿薄膜转变为CsPbBr3钙钛矿光吸收层,获得FTO/TiO2/CsPbBr3基底;
在所述CsPbBr3钙钛矿光吸收层上沉积碳电极阳极,获得所述纯相高性能CsPbBr3太阳能电池。
在本发明的一个实施例中,选取带有FTO电极阴极的玻璃衬底,包括:
选取带有FTO电极阴极的玻璃衬底,并将其依次放入Decon-90水溶液、去离子水、丙酮、无水乙醇中超声清洗15-30min;随后,将清洗过的该玻璃衬底放在UV-OZONE清洗仪中进行紫外臭氧处理15-30min。
在本发明的一个实施例中,在所述FTO电极阴极上形成TiO2电子传输层,获得FTO/TiO2基底,包括:
将80-100μL的TiO2溶胶在空气环境中以1500-3000rpm的转速在所述FTO电极阴极上表面旋涂30-60s;
在空气环境下450-550℃退火1-2h,形成厚度为50-80nm的TiO2电子传输层,得到FTO/TiO2基底。
在本发明的一个实施例中,在所述TiO2电子传输层上形成CsPb2Br5二维钙钛矿薄膜,获得FTO/TiO2/CsPb2Br5基底,包括:
取摩尔比为1:20-1:2的CsBr固体和PbBr2固体溶于二甲基甲酰胺溶液中,得到CsPb2Br5前驱体溶液;
在N2气氛中,取80-100μL的CsPb2Br5前驱体溶液以1500-3000rpm转速在所述FTO/TiO2基底上旋涂30-60s;
将旋涂有CsPb2Br5前驱体溶液的FTO/TiO2基底置在80-100℃温度下退火30-40min,形成厚度为200-400nm的CsPb2Br5薄膜,得到FTO/TiO2/CsPb2Br5基底。
在本发明的一个实施例中,利用CsBr水溶液通过原位相变将所述CsPb2Br5二维钙钛矿薄膜转变为CsPbBr3钙钛矿光吸收层,获得FTO/TiO2/CsPbBr3基底,包括:
将CsBr固体溶于去离子水中,获得浓度为212.8mg/mL的CsBr水溶液;
在空气室温环境中,将70-100μL的所述CsBr水溶液以1500-3000rpm转速在所述FTO/TiO2/CsPb2Br5基底上旋涂30-60s;
将旋涂有CsBr溶液的FTO/TiO2/CsPb2Br5基底在200-300℃温度下退火5-15min,形成厚度为400-600nm的CsPbBr3钙钛矿光吸收层,进而得到所述FTO/TiO2/CsPbBr3基底。
在本发明的一个实施例中,在所述CsPbBr3钙钛矿光吸收层上沉积碳电极阳极,包括:
在室温环境下,使用丝网印刷方法在所述CsPbBr3钙钛矿光吸收层上沉积碳浆,并在100-150℃温度下退火15-30min,形成得到厚度为5-10μm的碳电极阳极。
本发明的另一方面提供了一种纯相高性能CsPbBr3太阳电池,根据上述实施例中任一项所述的制备方法制得,所述太阳电池包括自下而上依次分布的玻璃衬底、FTO电极阴极、TiO2电子传输层、CsPbBr3钙钛矿光吸收层以及碳电极阳极。
在本发明的一个实施例中,所述玻璃衬底的厚度为1.5-2.5mm,所述FTO电极阴极厚度为100-120nm,所述TiO2电子传输层厚度为50-80nm,所述CsPbBr3钙钛矿光吸收层厚度为400-600nm,所述碳电极阳极厚度为5-10μm。
与现有技术相比,本发明的有益效果在于:
本发明的纯相高性能CsPbBr3太阳能电池的制备方法基于原位相变,首先利用PbBr2和CsBr生成二维钙钛矿CsPb2Br5,而后向CsPb2Br5上滴加CsBr水溶液,通过原位相变方法将二维钙钛矿CsPb2Br5转变为纯相的三维钙钛矿CsPbBr3,最终制备出高性能钙钛矿太阳电池。依照该方法制备的CsPbBr3薄膜保有了两步法制备薄膜质量优异的优势,并且可以得到纯相的CsPbBr3薄膜,同时兼顾了制作工艺难度和成本的要求,提升了CsPbBr3太阳电池的效率,展现了强大的应用潜力。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种纯相高性能CsPbBr3太阳电池的制备方法流程示意图;
图2a~图2e本发明实施例提供的一种纯相高性能CsPbBr3太阳电池的制备过程示意图;
图3是本发明实施例提供的一种纯相高性能CsPbBr3太阳电池的结构示意图;
图4是通过不同方法制备的CsPbBr3太阳电池的效率对比图;
图5是通过本发明实施例的方法制备的纯相高性能CsPbBr3太阳电池的CsPbBr3薄膜扫描电镜(SEM)图。
具体实施方式
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的一种纯相高性能CsPbBr3太阳电池及其制备方法进行详细说明。
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
实施例一
请参见图1和图2a至图2e,图1是本发明实施例提供的一种纯相高性能CsPbBr3太阳电池的制备方法流程示意图;图2a~图2e本发明实施例提供的一种纯相高性能CsPbBr3太阳电池的制备过程示意图。该制备方法包括以下步骤:
S1:选取带有FTO电极阴极的玻璃衬底。
具体地,如图2a所示,选取带有FTO电极阴极的玻璃衬底,并将其依次放入Decon-90水溶液、去离子水、丙酮、无水乙醇中超声清洗15-30min;随后,将清洗过的该玻璃衬底放在UV-OZONE清洗仪中进行紫外臭氧处理15-30min。
在本实施例中,带有FTO电极阴极的玻璃衬底为掺杂氟的SnO2透明导电玻璃(SnO2:F),其中FTO电极阴极的厚度为100nm~120nm,不包括FTO电极阴极的玻璃衬底厚度为1.5mm~2.5mm。
Decon-90水溶液为迪康Decon 90碱性清洗液,其为一种表面活性清洁剂/放射性污染净化剂,可用于实验室、医疗及专门工业的各种用途,以非黏性浓缩液体形式提供,用水进行稀释,可生物递降分解、完全可漂洗且不易燃烧。
S2:在所述FTO电极阴极上制备TiO2电子传输层,得到FTO/TiO2基底。
具体地,使用匀胶机将80-100μL的TiO2(二氧化钛)溶胶在空气环境中以1500-3000rpm的转速在UV-OZONE处理后的FTO电极阴极上表面旋涂30-60s;将旋涂有TiO2的样片置于马弗炉中,并以空气氛围450-550℃退火1-2h,获得厚度为50-80nm的TiO2电子传输层,形成FTO/TiO2基底,如图2b所示。
S3:在所述TiO2电子传输层上制备CsPb2Br5二维钙钛矿薄膜,得到FTO/TiO2/CsPb2Br5基底。
具体地,取摩尔比为1:20-1:2的CsBr固体和PbBr2固体溶于二甲基甲酰胺溶液中,常温下搅拌直至完全溶解,得到CsPb2Br5前驱体溶液;将所述FTO/TiO2基底置于手套箱N2环境中,并取80-100μL的CsPb2Br5前驱体溶液以1500-3000rpm的转速在所述FTO/TiO2基底上旋涂30-60s;将旋涂有CsPb2Br5前驱体溶液的FTO/TiO2基底置于80-100℃热台上退火30-40min,制备厚度为200-400nm的CsPb2Br5薄膜,进而得到FTO/TiO2/CsPb2Br5基底,如图2c所示。
S4:利用CsBr水溶液通过原位相变将所述CsPb2Br5薄膜转变为CsPbBr3钙钛矿光吸收层,得到FTO/TiO2/CsPbBr3基底;
具体地,取质量为212.8mg的CsBr固体溶于1mL去离子水中,常温下搅拌直至完全溶解得到浓度为212.8mg/mL的CsBr水溶液;将所述FTO/TiO2/CsPb2Br5基底置于空气室温环境中,并将70-100μL的上述CsBr水溶液以1500-3000rpm的转速在所述FTO/TiO2/CsPb2Br5基底上旋涂30-60s;将旋涂有CsBr溶液的FTO/TiO2/CsPb2Br5基底置于200-300℃热台上退火5-15min,制备厚度为400-600nm的CsPbBr3钙钛矿光吸收层,进而得到所述FTO/TiO2/CsPbBr3基底,如图2d所示。
S5:在所述CsPbBr3钙钛矿光吸收层上沉积碳电极阳极,获得纯相高性能CsPbBr3太阳能电池。
具体地,在室温环境下,使用丝网印刷方法在所述CsPbBr3钙钛矿光吸收层上沉积导电的碳浆,并置于100-150℃的热台上退火15-30min,得到厚度为5-10μm、面积为0.085cm2的碳电极阳极,以完成纯相高性能CsPbBr3太阳电池的制备,如图2e所示。
综上,本实施例的纯相高性能CsPbBr3太阳能电池制备方法基于原位相变,首先利用PbBr2和CsBr生成二维钙钛矿CsPb2Br5,而后向CsPb2Br5上滴加CsBr水溶液,通过原位相变方法将二维钙钛矿CsPb2Br5转变为纯相的三维钙钛矿CsPbBr3,最终制备出高性能钙钛矿太阳电池。依照该方法制备的CsPbBr3薄膜保有了两步法制备薄膜质量优异的优势,并且可以得到纯相的CsPbBr3薄膜,同时兼顾了制作工艺难度和成本的要求,提升了CsPbBr3太阳电池的效率,展现了强大的应用潜力。
实施例二
在上述实施例一的基础上,本实施例提出了一种通过原位相变制备的纯相高性能CsPbBr3太阳电池的方法,该制备方法包括以下步骤:
步骤1:选取带有FTO电极阴极的玻璃衬底,并将其依次放入Decon-90水溶液、去离子水、丙酮、无水乙醇中超声清洗15min;随后,将清洗过的该玻璃衬底放在UV-OZONE清洗仪中进行紫外臭氧处理15min。
在本实施例中,带有FTO电极阴极的玻璃衬底为掺杂氟的SnO2透明导电玻璃(SnO2:F),FTO电极阴极的厚度为100nm,不包括FTO电极阴极的玻璃衬底厚度为1.5mm。
步骤2:使用匀胶机将80μL的TiO2(二氧化钛)溶胶在空气环境中以3000rpm的转速在UV-OZONE处理后的FTO电极阴极上表面旋涂30s;将旋涂有TiO2的样片置于马弗炉中,并以空气氛围500℃退火1h,获得厚度为80nm的TiO2电子传输层,形成FTO/TiO2基底。
步骤3:取摩尔比为1:20-1:2的CsBr固体和PbBr2固体溶于二甲基甲酰胺溶液中,常温下搅拌直至完全溶解,得到CsPb2Br5前驱体溶液;将所述FTO/TiO2基底置于手套箱N2环境中,并取80μL的CsPb2Br5前驱体溶液以3000rpm的转速在所述FTO/TiO2基底上旋涂30s;将旋涂有CsPb2Br5前驱体溶液的FTO/TiO2基底置于80-100℃热台上退火30-40min,制备厚度为200-400nm的CsPb2Br5薄膜,进而得到FTO/TiO2/CsPb2Br5基底。
在本实施例中,取CsBr固体和PbBr2固体的摩尔比为1:20。具体地,取质量为10.6mg的CsBr固体和367mg的PbBr2固体溶于1mL的二甲基甲酰胺溶液中。
步骤4:取质量为212.8mg的CsBr固体溶于1mL去离子水中,常温下搅拌直至完全溶解得到浓度为212.8mg/mL的CsBr水溶液;将所述FTO/TiO2/CsPb2Br5基底置于空气室温环境中,并将80μL的上述CsBr水溶液以2000rpm的转速在所述FTO/TiO2/CsPb2Br5基底上旋涂30s;将旋涂有CsBr溶液的FTO/TiO2/CsPb2Br5基底置于250℃热台上退火5min,制备厚度为400nm的CsPbBr3钙钛矿光吸收层,进而得到所述FTO/TiO2/CsPbBr3基底。
步骤5:在室温环境下,使用丝网印刷方法在所述CsPbBr3钙钛矿光吸收层上沉积导电的碳浆,并置于120℃的热台上退火15min,得到厚度为5-10μm、面积为0.085cm2的碳电极阳极,以完成纯相高性能CsPbBr3太阳电池的制备。
实施例三
在上述实施例的基础上,本实施例提供了一种纯相高性能CsPbBr3太阳电池,该太阳电池利用上述实施例所述的制备方法进行制备。请参见图3,图3是本发明实施例提供的一种纯相高性能CsPbBr3太阳电池的结构示意图。该纯相高性能CsPbBr3太阳电池包括:自下而上依次分布的玻璃衬底1、FTO电极阴极2、TiO2电子传输层3、CsPbBr3薄膜4,在所述CsPbBr3钙钛矿光吸收层4上方设有碳电极阳极5。其中,玻璃衬底1的厚度为1.5mm~2.5mm,FTO电极阴极2厚度为100nm~120nm,TiO2电子传输层3厚度为50nm~80nm,CsPbBr3钙钛矿光吸收层4厚度为400nm~600nm,碳电极阳极5厚度为5μm~10μm、面积为0.085cm2
以下通过对比实验来进一步说明本发明实施例制备的纯相高性能CsPbBr3太阳电池的性能。请参见图4和图5,图4是通过不同方法制备的CsPbBr3太阳电池的效率对比图;其中,w/o CsBr表示现有一步溶液旋涂法,w/CsBr 0.05mol和w/CsBr 0.1mol均为本实施例的方法,且w/CsBr 0.05mol表示在步骤3中向1mol PbBr2中掺入0.05mol CsBr,w/CsBr0.1mol表示在步骤3中向1mol PbBr2中掺入0.1mol CsBr。可明显看出,先利用PbBr2和CsBr生成二维钙钛矿CsPb2Br5,而后向CsPb2Br5上滴加CsBr水溶液,通过原位相变方法将二维钙钛矿CsPb2Br5转变为纯相的三维钙钛矿CsPbBr3,所制备的太阳电池性能有明显提升。
请参见图5,图5是通过本发明实施例的方法制备的纯相高性能CsPbBr3太阳电池的CsPbBr3薄膜的SEM图,其中,左侧图为在步骤3中向PbBr2溶液中掺入0.05mol CsBr所制备CsPbBr3薄膜的SEM图片,右侧图为在步骤3中向PbBr2溶液中掺入0.1molCsBr所制备CsPbBr3薄膜的SEM图片,可以看出,掺入0.1mol CsBr所制备薄膜结晶性更好,晶粒尺寸较大,与图4所示太阳电池效率相对应。添加0.1mol的CsBr所制备的薄膜结晶性更好,从而获得较为优秀的太阳电池性能,可以看出不同实施例中掺入CsBr剂量不同对太阳电池性能存在一定的影响。
本实施例的纯相高性能CsPbBr3太阳能电池制备方法基于原位相变,首先利用PbBr2和CsBr生成二维钙钛矿CsPb2Br5,而后向CsPb2Br5上滴加CsBr水溶液,通过原位相变方法将二维钙钛矿CsPb2Br5转变为纯相的三维钙钛矿CsPbBr3,最终制备出高性能钙钛矿太阳电池。依照该方法制备的CsPbBr3薄膜保有了两步法制备薄膜质量优异的优势,并且可以得到纯相的CsPbBr3薄膜,同时兼顾了制作工艺难度和成本的要求,提升了CsPbBr3太阳电池的效率,展现了强大的应用潜力。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种纯相高性能CsPbBr3太阳电池的制备方法,其特征在于,包括:
选取带有FTO电极阴极的玻璃衬底;
在所述FTO电极阴极上制备TiO2电子传输层,获得FTO/TiO2基底;
在所述TiO2电子传输层上形成CsPb2Br5二维钙钛矿薄膜,获得FTO/TiO2/CsPb2Br5基底;
利用CsBr水溶液通过原位相变将所述CsPb2Br5二维钙钛矿薄膜转变为CsPbBr3钙钛矿光吸收层,获得FTO/TiO2/CsPbBr3基底;
在所述CsPbBr3钙钛矿光吸收层上沉积碳电极阳极,获得所述纯相高性能CsPbBr3太阳能电池。
2.根据权利要求1所述的纯相高性能CsPbBr3太阳电池的制备方法,其特征在于,选取带有FTO电极阴极的玻璃衬底,包括:
选取带有FTO电极阴极的玻璃衬底,并将其依次放入Decon-90水溶液、去离子水、丙酮、无水乙醇中超声清洗15-30min;随后,将清洗过的该玻璃衬底放在UV-OZONE清洗仪中进行紫外臭氧处理15-30min。
3.根据权利要求1所述的纯相高性能CsPbBr3太阳电池的制备方法,其特征在于,在所述FTO电极阴极上形成TiO2电子传输层,获得FTO/TiO2基底,包括:
将80-100μL的TiO2溶胶在空气环境中以1500-3000rpm的转速在所述FTO电极阴极上表面旋涂30-60s;
在空气环境下450-550℃退火1-2h,形成厚度为50-80nm的TiO2电子传输层,得到FTO/TiO2基底。
4.根据权利要求1所述的纯相高性能CsPbBr3太阳电池的制备方法,其特征在于,在所述TiO2电子传输层上形成CsPb2Br5二维钙钛矿薄膜,获得FTO/TiO2/CsPb2Br5基底,包括:
取摩尔比为1:20-1:2的CsBr固体和PbBr2固体溶于二甲基甲酰胺溶液中,得到CsPb2Br5前驱体溶液;
在N2气氛中,取80-100μL的CsPb2Br5前驱体溶液以1500-3000rpm转速在所述FTO/TiO2基底上旋涂30-60s;
将旋涂有CsPb2Br5前驱体溶液的FTO/TiO2基底置在80-100℃温度下退火30-40min,形成厚度为200-400nm的CsPb2Br5薄膜,得到FTO/TiO2/CsPb2Br5基底。
5.根据权利要求1所述的纯相高性能CsPbBr3太阳电池的制备方法,其特征在于,利用CsBr水溶液通过原位相变将所述CsPb2Br5二维钙钛矿薄膜转变为CsPbBr3钙钛矿光吸收层,获得FTO/TiO2/CsPbBr3基底,包括:
将CsBr固体溶于去离子水中,获得浓度为212.8mg/mL的CsBr水溶液;
在空气室温环境中,将70-100μL的所述CsBr水溶液以1500-3000rpm转速在所述FTO/TiO2/CsPb2Br5基底上旋涂30-60s;
将旋涂有CsBr溶液的FTO/TiO2/CsPb2Br5基底在200-300℃温度下退火5-15min,形成厚度为400-600nm的CsPbBr3钙钛矿光吸收层,进而得到所述FTO/TiO2/CsPbBr3基底。
6.根据权利要求1所述的纯相高性能CsPbBr3太阳电池的制备方法,其特征在于,在所述CsPbBr3钙钛矿光吸收层上沉积碳电极阳极,包括:
在室温环境下,使用丝网印刷方法在所述CsPbBr3钙钛矿光吸收层上沉积碳浆,并在100-150℃温度下退火15-30min,形成得到厚度为5-10μm的碳电极阳极。
7.一种纯相高性能CsPbBr3太阳电池,其特征在于,根据权利要求1至6中任一项所述的制备方法制得,所述太阳电池包括自下而上依次分布的玻璃衬底、FTO电极阴极、TiO2电子传输层、CsPbBr3钙钛矿光吸收层以及碳电极阳极。
8.根据权利要求7所述的通过原位相变两步法制备的纯相高性能CsPbBr3太阳电池,其特征在于,所述玻璃衬底的厚度为1.5-2.5mm,所述FTO电极阴极厚度为100-120nm,所述TiO2电子传输层厚度为50-80nm,所述CsPbBr3钙钛矿光吸收层厚度为400-600nm,所述碳电极阳极厚度为5-10μm。
CN202110846519.1A 2021-07-26 2021-07-26 一种纯相高性能CsPbBr3太阳电池及其制备方法 Pending CN113764534A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110846519.1A CN113764534A (zh) 2021-07-26 2021-07-26 一种纯相高性能CsPbBr3太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110846519.1A CN113764534A (zh) 2021-07-26 2021-07-26 一种纯相高性能CsPbBr3太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
CN113764534A true CN113764534A (zh) 2021-12-07

Family

ID=78787942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110846519.1A Pending CN113764534A (zh) 2021-07-26 2021-07-26 一种纯相高性能CsPbBr3太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN113764534A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540771A (zh) * 2022-03-04 2022-05-27 浙江大学 一种纯无机铅卤钙钛矿吸收层及其制备方法和应用
CN117623373A (zh) * 2023-11-17 2024-03-01 中山大学 一种CsPbBr3钙钛矿薄膜及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004048A (zh) * 2018-07-25 2018-12-14 合肥工业大学 一种铯铅溴无机钙钛矿量子点薄膜的制备方法及基于其的光伏器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004048A (zh) * 2018-07-25 2018-12-14 合肥工业大学 一种铯铅溴无机钙钛矿量子点薄膜的制备方法及基于其的光伏器件

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIAMING LIU ET AL: "Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells", 《SUSTAINABLE ENERGY & FUELS》, vol. 2019, no. 1, pages 184 - 194 *
张子扬: "钙钛矿太阳能电池的制备方法及前景研究", 《当代化工研究-行业动态》, 31 October 2019 (2019-10-31) *
王亚丽等: "钙钛矿吸光层薄膜制备工艺研究进展", 《材料工程-信息记录材料》, vol. 17, no. 5, 31 October 2016 (2016-10-31) *
陈思彤等: "Cs-Pb-Br 体系钙钛矿材料光学性能研究进展", 《山东科学》, vol. 33, no. 3 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540771A (zh) * 2022-03-04 2022-05-27 浙江大学 一种纯无机铅卤钙钛矿吸收层及其制备方法和应用
CN114540771B (zh) * 2022-03-04 2022-12-20 浙江大学 一种纯无机铅卤钙钛矿吸收层及其制备方法和应用
CN117623373A (zh) * 2023-11-17 2024-03-01 中山大学 一种CsPbBr3钙钛矿薄膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
Dong et al. Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells
Zheng et al. Combustion synthesized zinc oxide electron‐transport layers for efficient and stable perovskite solar cells
Hou et al. Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution
Khang Recent progress in Si-PEDOT: PSS inorganic–organic hybrid solar cells
CN110635040B (zh) 一种制备双层钙钛矿吸光层的方法
CN113764534A (zh) 一种纯相高性能CsPbBr3太阳电池及其制备方法
Xiang et al. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells
CN108598268A (zh) 一种环境条件下印刷制备高效平面异质结钙钛矿太阳电池的方法
Zhao et al. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays
Javed et al. Encapsulation of TiO2 nanotubes with Cs nanoparticles to enhance electron injection and thermal stability of perovskite solar cells
CN111987220A (zh) 基于下转换层的钙钛矿太阳能电池及制备方法
Nwankwo et al. Effects of alkali and transition metal-doped TiO 2 hole blocking layers on the perovskite solar cells obtained by a two-step sequential deposition method in air and under vacuum
He et al. Reducing hysteresis and enhancing performance of perovskite solar cells using acetylacetonate modified TiO2 nanoparticles as electron transport layers
CN111900254A (zh) 一种SnO2薄膜钙钛矿太阳能电池及其制备方法
Lalpour et al. Self-healing perovskite solar cells based on copolymer-templated TiO2 electron transport layer
Hoang Huy et al. Review on surface modification of SnO2 electron transport layer for high-efficiency perovskite solar cells
CN112349843B (zh) 一种太阳能电池的空穴传输层材料、锑基太阳能电池及其制备方法
CN112420929A (zh) 一种以掺杂铯的二氧化锡薄膜为电子传输层的钙钛矿太阳能电池及其制备方法
CN113764540B (zh) 具有双层钙钛矿光活性层的太阳能电池的制备方法及结构
CN113764541A (zh) 一种窄带全无机钙钛矿光电探测器及其制备方法
CN114583014A (zh) 一种无机钙钛矿太阳能电池及其制作方法
CN109935695A (zh) 一种SrGeO3作为电子传输层制备钙钛矿太阳能电池的方法
CN113921650A (zh) 一种含CsPbIBr2钙钛矿光活性层的太阳能电池及其制备方法
CN112993168B (zh) 一种无退火效应的二氧化锡多孔结构钙钛矿光伏电池及其制备方法
CN116507139B (zh) 长支链烷基铵修饰的甲脒钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination