CN113758994A - 一种基于磁光效应的动生涡流检测方法 - Google Patents

一种基于磁光效应的动生涡流检测方法 Download PDF

Info

Publication number
CN113758994A
CN113758994A CN202111154812.8A CN202111154812A CN113758994A CN 113758994 A CN113758994 A CN 113758994A CN 202111154812 A CN202111154812 A CN 202111154812A CN 113758994 A CN113758994 A CN 113758994A
Authority
CN
China
Prior art keywords
magneto
eddy current
optical sheet
laser
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111154812.8A
Other languages
English (en)
Inventor
冯搏
邓康轩
康宜华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202111154812.8A priority Critical patent/CN113758994A/zh
Publication of CN113758994A publication Critical patent/CN113758994A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明公开了一种基于磁光效应的动生涡流检测方法,包括:S1、当待测金属带材在生产线上高速运动时,在其上方一定距离处放置一个磁铁,从而在金属体中激励出动生涡流;S2、在磁铁和金属带之间放置一块磁光薄片,薄片中磁场为磁铁磁场与涡流磁场的叠加;S3、用激光器对准磁光薄片,并在激光传播路径上放置一块偏振片,使照射到磁光薄片上的偏振光为线偏振光;S4、在激光的反射路径上放置另一个偏振片和CCD传感器;S5、将CCD传感器与电脑相连,显示采集到的光强。当金属带材中出现缺陷时,将影响动生涡流强度,从而影响磁光薄片中的磁感应强度和偏振光经过磁光薄片时偏振方向的旋转角度,最终反映在CCD传感器检测到的光强上。

Description

一种基于磁光效应的动生涡流检测方法
技术领域
本发明涉及无损检测技术领域,特别涉及一种基于磁光效应的动生涡流检测方法。
背景技术
金属带材在工业领域应用广泛,但受生产工艺影响,金属带材在生产时可能出现缺陷,为后续使用带来安全隐患。动生涡流检测方法是近年来提出的一种无损检测新方法,其检测探头由永磁铁和磁场传感器构成,可安装在金属带材的生产线,对金属带材中的裂纹等缺陷进行检测。当金属带材高速通过探头下方时,永磁铁和金属材料之间的相对运动会使金属带材中形成动生涡流。根据毕奥萨伐尔定律,该涡流会形成一个二次磁场。当金属带材中存在缺陷时,对涡流产生扰动,从而影响二次磁场。采用磁场传感器拾取该涡流扰动场,即可实现对缺陷的检测与评估。
根据已公开的文献资料,动生涡流检测中采用的磁场传感器分为绝对式和相对式两类。绝对式传感器包括巨磁阻传感器(GMR)和霍尔传感器,其灵敏度较高,但线性工作范围小,永磁体产生的强磁场易使其超出线性工作范围。线圈不会受线性工作范围影响,但其灵敏度相对较低,难以完成微小缺陷的检测。因此,动生涡流检测方法中的磁场探测方法有待进一步改进。
发明内容
本发明针对现有技术的缺陷,提出一种基于磁光效应的动生涡流检测方法,旨在通过磁光效应对动生涡流产生的磁场进行探测,以解决传统磁场传感器存在的问题。
为了实现以上发明目的,本发明采取的技术方案如下:
一种基于磁光效应的动生涡流检测方法,包括以下步骤:
S1.在金属带材生产线的辊道上方安装永磁铁,永磁体与金属带材上表面保持一定距离,当金属带材在辊道上运动时,经过永磁体下方的区域内将产生涡流;
S2.在永磁体和金属带材之间放置一块磁光薄片,磁光薄片中的磁感应强度为磁铁磁场和涡流磁场的叠加;
S3.在磁光薄片上方一定倾角处安置激光器,激光器对准磁光薄片,并在激光传播路径上放置一个起偏器,使偏振光作用在磁光薄片上;
S4.磁光薄片将激光反射,在激光反射路径上放置另一块检偏器和电荷耦合器件CCD,对检偏后的激光强度进行检测;
S5.CCD输出电压与电脑相连,由电脑储存检测到的激光强度,并由该强度对缺陷进行评估。
作为优选,所述永磁体为矫顽力较大的钕铁硼磁铁。
作为优选,所述永磁体与金属带材上表面之间的距离为5mm-10mm。
作为优选,所述磁光薄片与金属带材之间距离为2-3mm。
作为优选,所述激光器与金属带材的倾角角度为10°-30°。
作为优选,所述磁光薄片材料为沉积在(GdCa)3(MgZrGa)5O12基体上的(GdBi)3(FeAl)5O12,磁光薄片底部通过汽化镀有一层铝膜。
作为优选,所述起偏器和检偏器都为线偏振片,直径为30mm。
与现有技术相比,本发明的优点在于:
本发明提供的动生涡流检测方法基于磁光效应,缺陷对动生涡流的扰动将改变磁光薄片中的磁感应强度,根据法拉第磁光效应,磁化强度的改变将改变偏振光的偏振角度,偏振角度的改变进一步影响通过检偏器后的光强,最终由CCD检测激光强度,由该光强实现缺陷评估。相比于基于GMR和霍尔的检测方式,本发明提出检测方式可以避免传感器超出线性工作范围的问题,相比于基于线圈的检测方式,本发明提出的检测方式具有更高的灵敏度。
附图说明
图1为本发明实施例动生涡流检测装置结构示意图;
图2为本发明实施例中动生涡流分布示意图;
图3为本发明实施例中涡流产生的磁场示意图;
图4为本发明实施例中动生涡流检测装置立体示意图;
图5为本发明实施例中缺陷对动生涡流扰动的示意图。
图中,1-待轧铝坯,2-轧机,3-轧制铝带,4-卷取机,5-磁铁,6-激光器,7-起偏器,8-磁光薄片,9-检偏器,10-CCD传感器。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下根据附图并列举实施例,对本发明做进一步详细说明。
如图1和4所示,动生涡流检测装置,包括:磁铁5、激光器6、起偏器7、磁光薄片8、检偏器9和CCD传感器10。
所述起偏器7和检偏器9都为偏振片。
在金属带材生产线上,待轧铝坯1经过轧机2后冷轧定型,成为轧制好的铝带3。在卷取机4的拉力作用下,铝带3环绕在卷取机4上,作为待出厂的原材料。
本发明提出的一种基于磁光效应的动生涡流检测方法,可用于检测轧制的铝带中是否存在缺陷。使用前,先在磁铁5远离磁光薄片8时对检偏器9进行调整。激光器6产生的激光经过起偏器7后形成线偏振光,由磁光薄片铝膜反射,再经过检偏器9后被CCD传感器10接收。调整检偏器9的角度,使其与线偏振光的偏振方向相同,此时CCD采集到的光强达到最大值I0
在生产线上,铝带具有一定的运动速度v,当其通过磁铁5下方时,其中的电子在洛伦兹力F=ev×B的作用下运动,从而形成动生涡流。如图2所示,动生涡流11成环状,集中在磁铁5下方。如图3所示,根据毕奥萨伐尔定律,动生涡流11产生二次磁场12。磁光薄片8中磁感应强度B1为磁场12与磁铁磁场的叠加。
根据法拉第磁光效应,线偏振光照射到磁光薄片后,经过磁光材料时偏振角度发生变化,其转角θ=VBL,其中V为磁光薄片的费尔德常数,它表征物质的磁光特性,B为磁光片中的磁场值,L为磁光片厚度。激光遇到磁光片底部的铝膜后发生反射,再次经过上方的磁光材料。磁光薄片8中磁感应强度B1时,激光偏振角变化为θ1=2VB1L,此时CCD传感器采集到的激光强度变为I1=I0×cos21)。
当被测金属带材中存在缺陷时,动生涡流将发生畸变,其磁场也发生相应改变,效果如图5所示。此时,磁光薄片8中磁场的磁感应强度变为B2=B1+ΔB。相应的,线偏振光经磁光薄片8反射后偏振角变为θ2=2V(B1+ΔB)L,CCD采集到的光强变为I2=I0×cos22)。根据光强变化,即可对被测金属带材中的缺陷进行检测。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (7)

1.一种基于磁光效应的动生涡流检测方法,其特征在于,包括以下步骤:
S1.在金属带材生产线的辊道上方安装永磁铁,永磁体与金属带材上表面保持一定距离,当金属带材在辊道上运动时,经过永磁体下方的区域内将产生涡流;
S2.在永磁体和金属带材之间放置一块磁光薄片,磁光薄片中的磁感应强度为磁铁磁场和涡流磁场的叠加;
S3.在磁光薄片上方一定倾角处安置激光器,激光器对准磁光薄片,并在激光传播路径上放置一个起偏器,使偏振光作用在磁光薄片上;
S4.磁光薄片将激光反射,在激光反射路径上放置另一块检偏器和电荷耦合器件CCD,对检偏后的激光强度进行检测;
S5.CCD输出电压与电脑相连,由电脑储存检测到的激光强度,并由该强度对缺陷进行评估。
2.根据权利要求1所述的一种基于磁光效应的动生涡流检测方法,其特征在于:所述永磁体为矫顽力较大的钕铁硼磁铁。
3.根据权利要求1所述的一种基于磁光效应的动生涡流检测方法,其特征在于:所述永磁体与金属带材上表面之间的距离为5mm-10mm。
4.根据权利要求1所述的一种基于磁光效应的动生涡流检测方法,其特征在于:所述磁光薄片与金属带材之间距离为2-3mm。
5.根据权利要求1所述的一种基于磁光效应的动生涡流检测方法,其特征在于:所述激光器与金属带材的倾角角度为10°-30°。
6.根据权利要求1所述的一种基于磁光效应的动生涡流检测方法,其特征在于:所述磁光薄片材料为沉积在(GdCa)3(MgZrGa)5O12基体上的(GdBi)3(FeAl)5O12,磁光薄片底部通过汽化镀有一层铝膜。
7.根据权利要求1所述的一种基于磁光效应的动生涡流检测方法,其特征在于:所述起偏器和检偏器都为线偏振片,直径为30mm。
CN202111154812.8A 2021-09-29 2021-09-29 一种基于磁光效应的动生涡流检测方法 Pending CN113758994A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111154812.8A CN113758994A (zh) 2021-09-29 2021-09-29 一种基于磁光效应的动生涡流检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111154812.8A CN113758994A (zh) 2021-09-29 2021-09-29 一种基于磁光效应的动生涡流检测方法

Publications (1)

Publication Number Publication Date
CN113758994A true CN113758994A (zh) 2021-12-07

Family

ID=78798390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111154812.8A Pending CN113758994A (zh) 2021-09-29 2021-09-29 一种基于磁光效应的动生涡流检测方法

Country Status (1)

Country Link
CN (1) CN113758994A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2720440Y (zh) * 2004-04-29 2005-08-24 西南科技大学 磁光涡流成像无损检测装置
CN101039762A (zh) * 2004-10-13 2007-09-19 西门子Vai金属技术两合公司 用于连续制造薄金属带材的方法和设备
JP2011163972A (ja) * 2010-02-10 2011-08-25 Fdk Corp 磁気光学式欠陥検出方法
US20140176698A1 (en) * 2010-10-12 2014-06-26 Indian Institute Of Technology Kanpur Systems and methods for imaging characteristics of a sample and for identifying regions of damage in the sample
CN107838200A (zh) * 2017-11-28 2018-03-27 徐鹏威 金属带材的带宽检测系统
CN107941855A (zh) * 2017-11-22 2018-04-20 四川大学 一种基于永磁体旋转加热的钢管管端热成像检测装置
CN107993225A (zh) * 2017-11-28 2018-05-04 电子科技大学 一种磁光涡流成像检测的缺陷识别方法
CN108526745A (zh) * 2018-06-27 2018-09-14 苏州瑞耀三维科技有限公司 一种基于磁光传感器的激光焊缝检测装置
CN110057904A (zh) * 2019-04-29 2019-07-26 电子科技大学 一种运动金属构件的缺陷定量检测方法及装置
CN112197685A (zh) * 2020-09-29 2021-01-08 华中科技大学 一种基于动生涡流的金属管壁厚测量方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2720440Y (zh) * 2004-04-29 2005-08-24 西南科技大学 磁光涡流成像无损检测装置
CN101039762A (zh) * 2004-10-13 2007-09-19 西门子Vai金属技术两合公司 用于连续制造薄金属带材的方法和设备
JP2011163972A (ja) * 2010-02-10 2011-08-25 Fdk Corp 磁気光学式欠陥検出方法
US20140176698A1 (en) * 2010-10-12 2014-06-26 Indian Institute Of Technology Kanpur Systems and methods for imaging characteristics of a sample and for identifying regions of damage in the sample
CN107941855A (zh) * 2017-11-22 2018-04-20 四川大学 一种基于永磁体旋转加热的钢管管端热成像检测装置
CN107838200A (zh) * 2017-11-28 2018-03-27 徐鹏威 金属带材的带宽检测系统
CN107993225A (zh) * 2017-11-28 2018-05-04 电子科技大学 一种磁光涡流成像检测的缺陷识别方法
CN108526745A (zh) * 2018-06-27 2018-09-14 苏州瑞耀三维科技有限公司 一种基于磁光传感器的激光焊缝检测装置
CN110057904A (zh) * 2019-04-29 2019-07-26 电子科技大学 一种运动金属构件的缺陷定量检测方法及装置
CN112197685A (zh) * 2020-09-29 2021-01-08 华中科技大学 一种基于动生涡流的金属管壁厚测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAGO ROCHA ET AL.: "Sub-Surface Defect Detection with Motion Induced Eddy Currents in Aluminium", 《2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE》 *

Similar Documents

Publication Publication Date Title
JP5186837B2 (ja) 微小凹凸表面欠陥の検出方法及び装置
EP2746761B1 (en) Method for magnetic flaw detection and magnetic flaw detector
US20110199081A1 (en) Barkhausen noise inspection apparatus and inspection method
US4207519A (en) Method and apparatus for detecting defects in workpieces using a core-type magnet with magneto-sensitive detectors
CN113758994A (zh) 一种基于磁光效应的动生涡流检测方法
EP1949024A2 (en) Non-destructive evaluation via measurement of magnetic drag force
CN113740413B (zh) 一种基于磁导率扰动测量的钢板分层缺陷检测方法及系统
JPH01212352A (ja) 電磁気探傷方法および装置
Lijian et al. Sensor development and application on the oil-gas pipeline magnetic flux leakage detection
CN104792859B (zh) 一种适用于线型缺陷的磁轭式局部微磁化检测装置
Aguila-Munoz et al. Crack detection in steel using a GMR-based MFL probe with radial magnetization
JP2003025017A (ja) 探傷結果情報が添付された熱延鋼板及びその製造方法
JPH05264508A (ja) 焼入硬化範囲の非破壊測定方法及びその装置
JP4349012B2 (ja) 強磁性体の磁気探傷方法
JPH04296648A (ja) 磁気探傷方法および装置
JP2005024295A (ja) 漏洩磁束探傷法
JP3530472B2 (ja) 棒鋼の傷検出装置
WO1992021963A1 (en) Method for sensing magnetism and device thereof
JPH11108900A (ja) 磁気探傷装置の感度校正方法及び装置
KR100285641B1 (ko) 박강판 흠탐상을 위한 자기센서의 신호처리 방법
Pelkner et al. Detection of hidden defects in thin steel plates using GMR sensor arrays
JP4822540B2 (ja) 局所着磁・磁場測定装置
JPH0815227A (ja) 鋼板の磁化装置
JPS6015020B2 (ja) 直交交差磁界による電磁誘導検知装置
JPH11211698A (ja) 磁気探傷装置の感度校正方法および装置ならびに校正 ロール

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211207

RJ01 Rejection of invention patent application after publication