CN113754440A - 一种SiC陶瓷材料及其制备方法 - Google Patents

一种SiC陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113754440A
CN113754440A CN202111271983.9A CN202111271983A CN113754440A CN 113754440 A CN113754440 A CN 113754440A CN 202111271983 A CN202111271983 A CN 202111271983A CN 113754440 A CN113754440 A CN 113754440A
Authority
CN
China
Prior art keywords
ceramic material
sic ceramic
sic
pressure
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111271983.9A
Other languages
English (en)
Other versions
CN113754440B (zh
Inventor
关莉
张锐
陈家辉
王海龙
李明亮
赵彪
张新月
范冰冰
郭少杰
周逸凡
李永欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202111271983.9A priority Critical patent/CN113754440B/zh
Publication of CN113754440A publication Critical patent/CN113754440A/zh
Application granted granted Critical
Publication of CN113754440B publication Critical patent/CN113754440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明属于高温结构陶瓷技术领域,提供了一种SiC陶瓷材料及其制备方法,其制备方法包括如下步骤:S1、将粒径不同的SiC颗粒进行不同的质量比例混合,然后加入聚碳硅烷,混合均匀后,得混合粉体;S2、将S1得到混合粉体装入模具中,对混合粉体预压后,采用振荡热压烧结,冷却得到SiC陶瓷材料。本发明采用不同粒径的SiC颗粒,按照不同比例进行颗粒级配,加入聚碳硅烷,在不添加烧结助剂条件下,通过振荡热压技术进行烧结以获得高致密度、高性能的无烧结助剂SiC陶瓷。

Description

一种SiC陶瓷材料及其制备方法
技术领域
本发明属于高温结构陶瓷技术领域,提供了一种SiC陶瓷材料及其制备方法。
背景技术
先进陶瓷材料具有极高的理论强度,但其实际断裂强度远低于理论强度,主要是陶瓷材料的结构缺陷和制备过程缺陷导致,如残余气孔、团聚体、微裂纹等。烧结技术是促进陶瓷致密化和提高材料强度的关键技术之一,振荡热压烧结是一种适用于高性能陶瓷制备的动态压力烧结新技术,即在烧结过程中施加一个具有一定频率和振幅的振荡压力,用于解决热压平衡后颈部原子扩散驱动力不足的问题。在振荡热压烧结过程中,当压力高于压力中值时,由于又提高了一部分压力,给予了颈部表面原子更高的扩散驱动力,促进了原子的扩散;当压力低于压力中值时,颈部应力集中减小,造成颈部松弛。循环往复作用下,颈部原子出现结构上疲劳,应力疲劳,从而在颈部产生更多缺陷,缺陷的存在区域为高能区,造成更多的原子扩散去弥补缺陷,形成应力循环疲劳效应。
SiC为强共价键化合物,其高温扩散系数非常低,在烧结时靠扩散传质难以实现致密化过程,力学性能不如人意。作为高温结构陶瓷,一方面需要有效控制材料的内部缺陷,使晶界上不含或少含玻璃相,因此限制了制备过程中粘结剂、烧结助剂等的加入量;另一方面又要求陶瓷高度致密,以获得良好的力学及其它性能,而在烧结助剂缺失的情况下只有靠提高扩散驱动力来弥补,即提高烧结温度或烧结压力。因此,高致密度SiC陶瓷制品的制备具有很大的挑战。
发明内容
本发明的目的在于,针对现有技术的不足,提供一种SiC陶瓷的制备方法,在不添加烧结助剂条件下,采用振荡热压技术,通过对烧结温度、压力条件、不同粒径的SiC颗粒比例以及聚碳硅烷的加入比例的调控从而实现对SiC陶瓷的致密度的控制,进一步改善SiC陶瓷的力学性能。
本发明的目的之一是提供一种SiC陶瓷的制备方法,包括如下步骤:
S1、将粒径不同的SiC颗粒进行不同的质量比例干混,然后加入聚碳硅烷,混合均匀后,得混合粉体;
S2、将S1得到混合粉体装入模具中,对混合粉体预压后,采用振荡热压烧结,冷却得到SiC陶瓷材料。
优选的,S1中,所述SiC颗粒,粒径为0.5~5μm,干混的质量比为3~7:2~3。
优选的,S1中,所述聚碳硅烷和SiC颗粒的质量比为3~10:90~100。
优选的,S2中,所述预压的压力不大于15MPa。
优选的,S2中,所述振荡热压烧结的温度T2为1900~2000℃,压力为50~70MPa,振幅为1~10MPa、振荡频率为1~10Hz。
优选的,S2中,所述振荡热压烧结的升温方式为:先以6~8℃/min的第一升温速率升温至T1,再以3~5℃/min的第二升温速率升温至振荡压力烧结的温度T2,1550℃≤T1<T2。
优选的,S2中,所述振荡热压烧结的升压程序为:在达到聚碳硅烷的固化温度前施加不大于20MPa的压力;根据聚碳硅烷的裂解温度,在750℃~1600℃时以不大于5KN/min的升压速率将压力升高至20~40MPa。
优选的,S2中,所述振荡热压烧结的时间不超过3h,其中热压时间不大于2h。
优选的,S2中,所述振荡热压烧结在降温阶段将压力值降低至不大于3MPa。本发明的目的之二是提供上述制备方法制备的SiC陶瓷。
与现有技术相比其有益效果在于:
1、本发明通过不同粒径的SiC颗粒按照不同比例进行颗粒级配,加入聚碳硅烷后采用振荡热压烧结,在不同烧结温度条件下,成功制备出无烧结助剂SiC陶瓷;通过对烧结温度、压力条件、不同粒径SiC颗粒比例以及聚碳硅烷的加入比例的调控从而实现对SiC陶瓷的致密度的提高,进一步改善SiC陶瓷的力学性能。
2、本发明制备方法简单,操作简便,并且在制备过程中不会引入其他杂质,制备的SiC陶瓷,相对致密度达到86.048%,维氏硬度达到16.82GPa,是一种高性能SiC陶瓷材料。
附图说明
图1为本发明实施例1-3制备的SiC陶瓷的X射线衍射图;
图2为本发明对比例1-3制备的SiC陶瓷的X射线衍射图;
图3为本发明实施例1制备的SiC陶瓷的扫描电镜图;
图4为本发明实施例2制备的SiC陶瓷的扫描电镜图;
图5为本发明实施例3制备的SiC陶瓷的扫描电镜图;
图6为本发明对比例1制备的SiC陶瓷的扫描电镜图;
图7为本发明对比例2制备的SiC陶瓷的扫描电镜图;
图8为本发明对比例3制备的SiC陶瓷的扫描电镜图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围,除非另有特别说明,本发明以下各实施例中用到的各种原料、试剂、仪器和设备均可通过市场购买得到或者通过现有方法制备得到。
实施例1
一种SiC陶瓷的制备方法,包括如下步骤:
采用粒径为5μm和0.5μm的6H-SiC颗粒,将5μm和0.5μm的6H-SiC颗粒按照质量比为3:2进行干混球磨,转速为80r/min,乙烯基氢化液态聚碳硅烷(VHPCS)与6H-SiC颗粒质量比为3:100;将得到混合粉体装入模具中,对混合粉体预压后,预压的压力为5MPa,然后采用振荡热压烧结,其烧结温度1900℃,保温2h(其中前1h施加70±5MPa,频率1HZ的振荡压力;后1h施加70MPa的恒定压力);升温过程中,首先在开始升温时施加2.83MPa的压力,当温度以6℃/min的升温速率到达VHPCS的固化温度220~240℃时,将压力值从2.83MPa随温度升高以1.69KN/min的升压速率同步增加到10MPa;当温度升高到1600℃时,将压力值从10MPa以5KN/min的升压速率增加到30MPa,温度以4℃/min的升温速率到达1900℃,将压力值从30MPa以5KN/min的升压速率增加到振荡压力值,开始进行1h振荡热压烧结,结束后保持70MPa的恒定压力进行1h的热压烧结;热压结束后,以5KN/min的速率将压力下调至2.83MPa,开始进行降温。
实施例2
SiC陶瓷的制备方法同实施例1,区别在于:烧结温度为1950℃。
实施例3
SiC陶瓷的制备方法同实施例1,区别在于:烧结温度为2000℃。
实施例4
一种SiC陶瓷的制备方法,包括如下步骤:
采用粒径为1μm和0.5μm的6H-SiC颗粒,将1μm和0.5μm的6H-SiC颗粒按照质量比为7:3进行干混球磨,转速为80r/min,乙烯基氢化液态聚碳硅烷(VHPCS)与6H-SiC颗粒质量比为3:100;将得到混合粉体装入模具中,对混合粉体预压后,预压的压力为7MPa,然后采用振荡热压烧结,其烧结温度1900℃,保温2h(其中前1h施加60±5MPa,频率5HZ的振荡压力;后1h施加60MPa的恒定压力);升温过程中,首先在开始升温时施加2.83MPa的压力,当温度以8℃/min的升温速率到达VHPCS的固化温度220~240℃时,将压力值从2.83MPa随温度升高以1.69KN/min的升压速率同步增加到10MPa;当温度升高到750℃时,将压力值从10MPa以5KN/min的升压速率增加到20MPa;当温度升高到1600℃时,温度以3℃/min的升温速率到达1900℃,将压力值从20MPa以5KN/min的升压速率增加到振荡压力值,开始进行1h振荡热压烧结,结束后保持60MPa的恒定压力进行1h的热压烧结;热压结束后,以5KN/min的速率将压力下调至2.83MPa,开始进行降温。
实施例5
一种SiC陶瓷的制备方法,包括如下步骤:
采用粒径为1μm和0.5μm的6H-SiC颗粒,将1μm和0.5μm的6H-SiC颗粒按照质量比为3:2进行干混球磨,转速为80r/min,乙烯基氢化液态聚碳硅烷(VHPCS)与6H-SiC颗粒质量比为10:90;将得到混合粉体装入模具中,对混合粉体预压后,预压的压力为7MPa,然后采用振荡热压烧结,其烧结温度1900℃,保温2h(其中前1h施加50±5MPa,频率10HZ的振荡压力;后1h施加50MPa的恒定压力);升温过程中,首先在开始升温时施加2.83MPa的压力,当温度以6℃/min的升温速率到达VHPCS的固化温度220~240℃时,将压力值从2.83MPa随温度升高以1.69KN/min的升压速率同步增加到10MPa;当温度升高到1600℃时,将压力值从10MPa以5KN/min的升压速率增加到40MPa,温度以3℃/min的升温速率到达1900℃,将压力值从40MPa以5KN/min的升压速率增加到振荡压力值,开始进行1h振荡热压烧结,结束后保持50MPa的恒定压力进行1h的热压烧结;热压结束后,以5KN/min的速率将压力下调至2.83MPa,开始进行降温。
对比例1
一种SiC陶瓷的制备方法,包括如下步骤:
采用1μm的6H-SiC颗粒和乙烯基氢化液态聚碳硅烷(VHPCS),VHPCS与6H-SiC颗粒质量比为1:9;将得到混合粉体装入模具中,对混合粉体预压后,预压的压力为5MPa,然后采用振荡热压烧结,其烧结温度1900℃,保温2h(其中前1h施加70±5MPa,频率1HZ的振荡压力;后1h施加70MPa的恒定压力);升温过程中,首先在开始升温时施加2.83MPa的压力,当温度以6℃/min的升温速率到达VHPCS的固化温度220~240℃时,将压力值从2.83MPa随温度升高以1.69KN/min的升压速率同步增加到10MPa;当温度升高到1600℃时,将压力值从10MPa以5KN/min的升压速率增加到30MPa,温度以4℃/min的升温速率到达1900℃,将压力值从30MPa以5KN/min的升压速率增加到振荡压力值,开始进行1h振荡热压烧结,结束后保持70MPa的恒定压力进行1h的热压烧结;热压结束后,以5KN/min的速率将压力下调至2.83MPa,开始进行降温。
对比例2
SiC陶瓷的制备方法同对比例1,区别在于:烧结温度为1950℃。
对比例3
SiC陶瓷的制备方法同对比例2,区别在于:烧结温度为2000℃。
采用X射线衍射分析仪(XRD)对实施例1~6的SiC陶瓷材料进行物相表征,进而分析得到原料及其制备过程中的物相变化和最终的SiC陶瓷材料的物相组成,实施例1~3的XRD测试结果如图1所示,对比例1~3的SiC陶瓷材料的XRD测试结果如图2所示,从图1和图2可以看出,实施例1~3与对比例1~3得到的样品中均存在6H-SiC(α相)和3C-SiC(β相)两种SiC相,而且没有相对明显的杂峰。将样品和所使用的原料SiC粉体进行对比可以看出,样品中生成了3C-SiC,这是由于加入的VHPCS生成了新的SiC,但是在2200℃以下生成的SiC均为β相,在2200℃以上才会生成α相SiC,综上所述,说明VHPCS已经全部转化为SiC且没有引入其他杂质。
采用扫描电子显微镜(SEM)来检测分析实施例1~3与对比例1~3制备的SiC陶瓷材料的微观形貌,如图3、图4和图5所示,由于实施例1~3所用为质量比为3:2的5μm和0.5μm的SiC颗粒,而在图3、图4和图5中已经基本看不到直径小于5μm的晶粒,造成这种现象是由于在振荡热压、颗粒级配和VHPCS的“造粒”的协同作用下导致晶粒生长,这一现象有效减少了样品的气孔率,提高SiC陶瓷材料的致密度;而图6、图7和图8中,对比例1~3所使用的仅为粒径为1μm的SiC颗粒,虽然可以看出晶粒有明显长大现象,但是长大后的大颗粒之间存在较大的空隙。
采用阿基米德测密度法测量实施例1~3与对比例1~3制得的SiC陶瓷材料的密度。然后计算实际密度与理论密度的比值得到相对密度,结果见表1,表中可以看出,采用颗粒级配之后的实施例1~3,在各个烧结温度条件下相对密度及硬度均高于对比例1~3,这与扫描电镜图片所反映的现象对应。
表1实施例1~3与对比例1~3制得的SiC陶瓷材料的密度及维氏硬度
密度/g·cm<sup>-3</sup> 相对密度/% 维氏硬度/GPa
实施例1 2.2953 71.371 10.04
实施例2 2.2444 69.789 9.96
实施例3 2.7673 86.048 16.82
对比例1 1.9991 62.161 2.45
对比例2 2.1413 66.583 9.81
对比例3 2.0960 65.174 4.23
需要说明的是,本发明中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,由于采用的步骤方法与实施例相同,为了防止赘述,本发明描述了优选的实施例。尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种SiC陶瓷材料的制备方法,其特征在于,包括如下步骤:
S1、将粒径不同的SiC颗粒进行不同的质量比例干混,然后加入聚碳硅烷,混合均匀后,得混合粉体;
S2、将S1得到混合粉体装入模具中,对混合粉体预压后,采用振荡热压烧结,冷却得到SiC陶瓷材料。
2.根据权利要求1所述的SiC陶瓷材料的制备方法,其特征在于,S1中,所述SiC颗粒粒径为0.5~5μm,干混的质量比为3~7:2~3。
3.根据权利要求2所述的SiC陶瓷材料的制备方法,其特征在于,S1中,所述聚碳硅烷和SiC颗粒的质量比为3~10:90~100。
4.根据权利要求3所述的SiC陶瓷材料的制备方法,其特征在于,S2中,所述预压的压力不大于15MPa。
5.根据权利要求4所述的SiC陶瓷材料的制备方法,其特征在于,S2中,所述振荡热压烧结的温度T2为1900~2000℃,压力为50~70MPa,振幅为1~10MPa、振荡频率为1~10Hz。
6.根据权利要求5所述的SiC陶瓷材料的制备方法,其特征在于,S2中,所述振荡热压烧结的升温方式为:先以6~8℃/min的第一升温速率升温至T1,再以3~5℃/min的第二升温速率升温至振荡压力烧结的温度T2,1550℃≤T1<T2。
7.根据权利要求6所述的SiC陶瓷材料的制备方法,其特征在于,S2中,所述振荡热压烧结的升压程序为:在达到聚碳硅烷的固化温度前施加不大于20MPa的压力;根据聚碳硅烷的裂解温度,在750℃~1600℃时以不大于5KN/min的升压速率将压力升高至20~40MPa。
8.根据权利要求7所述的SiC陶瓷材料的制备方法,其特征在于,S2中,所述振荡热压烧结的时间不超过3h,其中热压时间不大于2h。
9.根据权利要求8所述的SiC陶瓷材料的制备方法,其特征在于,S2中,所述振荡热压烧结在降温阶段将压力值降低至不大于3MPa。
10.一种权利要求1所述方法制备的SiC陶瓷材料。
CN202111271983.9A 2021-10-29 2021-10-29 一种SiC陶瓷材料及其制备方法 Active CN113754440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111271983.9A CN113754440B (zh) 2021-10-29 2021-10-29 一种SiC陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111271983.9A CN113754440B (zh) 2021-10-29 2021-10-29 一种SiC陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113754440A true CN113754440A (zh) 2021-12-07
CN113754440B CN113754440B (zh) 2023-08-22

Family

ID=78784573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111271983.9A Active CN113754440B (zh) 2021-10-29 2021-10-29 一种SiC陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113754440B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907120A (zh) * 2022-04-19 2022-08-16 滁州用朴新材料科技有限公司 一种超细晶钛基高塑性陶瓷材料及其制备方法
CN115196990A (zh) * 2022-08-03 2022-10-18 郑州航空工业管理学院 一种多孔SiC陶瓷材料及其制备方法
CN115295198A (zh) * 2022-08-04 2022-11-04 中国核动力研究设计院 一种振荡烧结制备全陶瓷微封装弥散燃料的方法
BE1029767B1 (fr) * 2022-12-19 2023-12-05 Univ Zhengzhou Aeronautics Un matériau céramique SiC et sa méthode de préparation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298467A (en) * 1991-08-19 1994-03-29 Solvay Deutschland Gmbh Granulated product composed of silicon carbide powder and silicon carbide ceramic formed therefrom
CN102503521A (zh) * 2011-11-23 2012-06-20 浙江大学 高强度碳化硅多孔陶瓷的制备方法
CN103011887A (zh) * 2011-09-28 2013-04-03 贵州师范大学 碳化硅泡沫陶瓷及其制备方法
CN103664199A (zh) * 2012-09-19 2014-03-26 洛阳新巨能高热技术有限公司 以聚碳硅烷为结合剂制备碳化硅耐火材料的方法
CN106316401A (zh) * 2016-08-30 2017-01-11 宁波东联密封件有限公司 一种高致密度的碳化硅复合材料的制备方法
CN106380204A (zh) * 2016-08-30 2017-02-08 宁波东联密封件有限公司 一种碳化硅复合材料的制备方法
CN106396687A (zh) * 2016-08-30 2017-02-15 宁波东联密封件有限公司 一种高性能碳化硅复合材料的制备方法
CN112062574A (zh) * 2020-08-19 2020-12-11 广东工业大学 一种高性能纳米碳化硅陶瓷及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298467A (en) * 1991-08-19 1994-03-29 Solvay Deutschland Gmbh Granulated product composed of silicon carbide powder and silicon carbide ceramic formed therefrom
CN103011887A (zh) * 2011-09-28 2013-04-03 贵州师范大学 碳化硅泡沫陶瓷及其制备方法
CN102503521A (zh) * 2011-11-23 2012-06-20 浙江大学 高强度碳化硅多孔陶瓷的制备方法
CN103664199A (zh) * 2012-09-19 2014-03-26 洛阳新巨能高热技术有限公司 以聚碳硅烷为结合剂制备碳化硅耐火材料的方法
CN106316401A (zh) * 2016-08-30 2017-01-11 宁波东联密封件有限公司 一种高致密度的碳化硅复合材料的制备方法
CN106380204A (zh) * 2016-08-30 2017-02-08 宁波东联密封件有限公司 一种碳化硅复合材料的制备方法
CN106396687A (zh) * 2016-08-30 2017-02-15 宁波东联密封件有限公司 一种高性能碳化硅复合材料的制备方法
CN112062574A (zh) * 2020-08-19 2020-12-11 广东工业大学 一种高性能纳米碳化硅陶瓷及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李辰冉等: "碳化硅陶瓷材料烧结技术的研究与应用进展", 《陶瓷学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907120A (zh) * 2022-04-19 2022-08-16 滁州用朴新材料科技有限公司 一种超细晶钛基高塑性陶瓷材料及其制备方法
CN115196990A (zh) * 2022-08-03 2022-10-18 郑州航空工业管理学院 一种多孔SiC陶瓷材料及其制备方法
CN115295198A (zh) * 2022-08-04 2022-11-04 中国核动力研究设计院 一种振荡烧结制备全陶瓷微封装弥散燃料的方法
CN115295198B (zh) * 2022-08-04 2024-03-19 中国核动力研究设计院 一种振荡烧结制备全陶瓷微封装弥散燃料的方法
BE1029767B1 (fr) * 2022-12-19 2023-12-05 Univ Zhengzhou Aeronautics Un matériau céramique SiC et sa méthode de préparation

Also Published As

Publication number Publication date
CN113754440B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN113754440A (zh) 一种SiC陶瓷材料及其制备方法
CN110483085B (zh) 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN101892411A (zh) 一种新型wc基硬质合金材料及其制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN104072140A (zh) 致密复合材料、其制造方法、接合体及半导体制造装置用部件
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN110304924B (zh) 一种层状结构碳化硅复合材料及其制备方法
CN111004034B (zh) 碳化硅陶瓷及其制备方法和半导体零件
Liu et al. Synergistically toughening effect of SiC whiskers and nanoparticles in Al 2 O 3-based composite ceramic cutting tool material
CN111892415A (zh) 一种碳化硅晶须/氧化铝陶瓷复合材料及其制备方法
CN113416076A (zh) 一种自增强碳化硅陶瓷材料的制备方法
Qin et al. Silicon nitride ceramics consolidated by oscillatory pressure sintering
Duan et al. Effect of solid contents on the mechanical properties of SiC–10 wt.% AlN ceramic composites prepared by gelcasting
CN114315361B (zh) 纳米晶碳化硅超硬块材及其制备方法
CN108048685B (zh) 一种TiC/SiC/Al复合材料
CN105884358A (zh) 一种以单质粉体为起始原料的碳化硼-碳化硅复合陶瓷及其制备方法
CN113387705B (zh) 一种碳化硼陶瓷的制备方法
CN115368140B (zh) 一种低磨损的碳陶刹车材料及其制备方法
Chen et al. Novel method of adding seeds for preparation of mullite
CN109266941A (zh) 板状碳化钨-钴合金及其制备方法
CN104086183A (zh) 一种气孔率可控多孔Si3N4的制备方法
CN107793157B (zh) 一种立方碳化硅超精油石的制备方法
BE1029767B1 (fr) Un matériau céramique SiC et sa méthode de préparation
Jach et al. Influence of binder on porous ceramic properties prepared by polymeric sponge method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant