CN113746349A - 一种三相六桥臂模块化多电平换流器的控制方法 - Google Patents

一种三相六桥臂模块化多电平换流器的控制方法 Download PDF

Info

Publication number
CN113746349A
CN113746349A CN202111075543.6A CN202111075543A CN113746349A CN 113746349 A CN113746349 A CN 113746349A CN 202111075543 A CN202111075543 A CN 202111075543A CN 113746349 A CN113746349 A CN 113746349A
Authority
CN
China
Prior art keywords
reference value
bridge arm
voltage
state space
space model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111075543.6A
Other languages
English (en)
Inventor
夏超英
曹保勤
于佳丽
门旭明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202111075543.6A priority Critical patent/CN113746349A/zh
Publication of CN113746349A publication Critical patent/CN113746349A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种三相六桥臂模块化多电平矩阵换流器的控制方法,包括以下步骤:根据电路拓扑结构,基于基尔霍夫定律建立数学模型和桥臂子模块电容电压均值方程;对上述数学模型和桥臂子模块电容电压均值方程进行化简,通过坐标变换,建立状态空间模型;计算参考状态空间模型的输入侧电流参考值、环流参考值、桥臂子模块电容电压参考值和桥臂导通模块数的参考值;根据实际状态空间模型和参考状态空间模型得到误差状态空间模型,基于误差状态空间模型设计控制器。通过李雅普诺夫稳定性理论可以证明与本发明控制方法对应的系统的稳定性。本发明需调节参数数量少,且具有良好的稳定性、动态响应能力和鲁棒性。

Description

一种三相六桥臂模块化多电平换流器的控制方法
技术领域
本发明涉及电力电子与电力传动技术领域,具体涉及一种三相六桥臂模块化多电平换流器的控制方法。
背景技术
三相六桥臂模块化多电平换流器(hexagonal converter,Hexverter)是一种采用全桥子模块的特殊交-交换流器,具有电压质量高、谐波含量少、开关频率低和损耗小等优点。桥臂数目是传统背靠背模块化多电平换流器的一半,且无直流故障问题。发展前景广阔,引起了广泛的关注。
三相六桥臂模块化多电平换流器现有的控制方法一般是通过功率外环求得输入侧和输出侧的电流参考值,输入侧和输出侧电流参考值通过代数运算得各桥臂电流参考值,最后桥臂电流参考值与实际值之差通过内环控制器求得各桥臂电压参考值。这些控制方法需要使用大量的控制器,需要调节大量参数,调参困难。
发明内容
鉴于以上控制方法所存在的问题,本发明提供了一种三相六桥臂模块化多电平换流器的控制方法,通过数学模型和桥臂子模块电容电压均值方程建立状态空间模型,在误差模型的基础上设计合适的控制器,使实际模型趋近参考模型。
为了解决上述技术问题,本发明提出的一种三相六桥臂模块化多电平换流器的控制方法,包括以下步骤:
步骤一、根据电路拓扑结构,基于基尔霍夫定律建立数学模型和桥臂子模块电容电压均值方程;
步骤二、对上述数学模型和桥臂子模块电容电压均值方程进行化简,建立状态空间模型;
步骤三、计算参考状态空间模型的输入侧电流参考值、环流参考值、桥臂子模块电容电压参考值和桥臂导通模块数的参考值;
步骤四、根据实际状态空间模型和参考状态空间模型得到误差状态空间模型,基于误差状态空间模型设计控制器。
进一步讲,上述各步骤的具体内容如下:
所述步骤一具体步骤包括:
步骤1-1)基于基尔霍夫定律建立的数学模型如下:
Figure BDA0003262008680000021
Figure BDA0003262008680000022
Figure BDA0003262008680000023
Figure BDA0003262008680000024
Figure BDA0003262008680000025
Figure BDA0003262008680000026
式(1)至式(6)中,esu、esv、esw和isu、isv、isw分别为输入侧U、V、W三相电源电压和电流,ux、ix为桥臂x电压和电流,x=1,2,3,4,5,6;Ls为输入侧电感,Rb、Lb分别为桥臂的电阻和电感,Rl、Ll分别为输出侧的电阻和电感,ila、ilb、ilc分别为输出侧的电流;uno为共模电压。
将公式(1)~(6)相加可得:
Figure BDA0003262008680000027
式(7)中,icir为环流;
步骤1-2)桥臂子模块电容电压均值方程表达式如下:
Figure BDA0003262008680000028
Figure BDA0003262008680000029
Figure BDA00032620086800000210
Figure BDA00032620086800000211
Figure BDA00032620086800000212
Figure BDA00032620086800000213
式(8)至式(13)中,ucx为桥臂x子模块电容电压均值;nx为桥臂x导通模块数,x=1,2,3,4,5,6;N为桥臂子模块数,每个桥臂子模块的电容容值均为C。
所述步骤二中,整理化简步骤一得到的数学模型和桥臂子模块电容电压均值方程,得到如下状态空间模型表达式:
Figure BDA0003262008680000031
式(14)中,
x=[x1,x2]T (15)
x1=[isu,isv,ila,ilb,icir] (16)
x2=[uc1,uc2,uc3,uc4,uc5,uc6] (17)
u=[n1,n2,n3,n4,n5,n6]T (18)
e=[esu,esv,esw]T (19)
D2=diag[CN CN CN CN CN CN] (20)
Figure BDA0003262008680000032
Figure BDA0003262008680000033
Figure BDA0003262008680000034
Figure BDA0003262008680000041
Figure BDA0003262008680000042
所述的步骤三中:
根据输出电流参考值
Figure BDA0003262008680000043
i=a,b,c,得到输出侧电压参考值为:
Figure BDA0003262008680000044
在αβ坐标系下,输出侧有功功率参考值和无功功率参考值分别为:
Figure BDA0003262008680000045
Figure BDA0003262008680000046
式(27)和式(28)中,
Figure BDA0003262008680000047
分别为输出侧电压参考值
Figure BDA0003262008680000048
变换到αβ坐标系下α轴和β轴分量,
Figure BDA0003262008680000049
Figure BDA00032620086800000410
分别为
Figure BDA00032620086800000411
变换到αβ坐标系下α轴和β轴分量,i=a,b,c;
Figure BDA00032620086800000412
分别为输出侧有功功率参考值和无功功率参考值;
忽略换流器内部损耗,当换流器稳定运行时,输入有功功率参考值
Figure BDA00032620086800000413
与输出有功功率参考值
Figure BDA00032620086800000414
相等,即
Figure BDA00032620086800000415
可得输入侧电流参考值
Figure BDA00032620086800000416
(j=u,v,w)在αβ坐标系下α轴分量
Figure BDA00032620086800000417
和β轴分量
Figure BDA00032620086800000418
Figure BDA00032620086800000419
Figure BDA00032620086800000420
式(29)和式(30)中,e,e分别为输入侧电源电压esj变换到αβ坐标系下α轴和β轴分量,j=u,v,w;
Figure BDA00032620086800000421
分别为输入侧有功功率参考值和无功功率参考值;
Figure BDA00032620086800000422
进行2/3变换,得到输入侧三相电流参考值
Figure BDA00032620086800000423
基于基尔霍夫定律可得,输入侧电压参考值为:
Figure BDA0003262008680000051
为抵消因两侧系统无功功率
Figure BDA0003262008680000052
因此的相邻支路之间的转移功率,需注入共模电压和环流。共模电压参考值和环流参考值为:
Figure BDA0003262008680000053
Figure BDA0003262008680000054
式(32和式(33)中,Us和Is为输入侧电压参考值
Figure BDA0003262008680000055
和电流参考值
Figure BDA0003262008680000056
的幅值,Ul和Il为输入侧电压参考值
Figure BDA0003262008680000057
和电流参考值
Figure BDA0003262008680000058
的幅值;
将输入侧三相电流参考值
Figure BDA0003262008680000059
输出电流参考值
Figure BDA00032620086800000510
环流参考值
Figure BDA00032620086800000511
进行代数运算得到桥臂电流参考值
Figure BDA00032620086800000512
忽略桥臂电阻Rb和电感Lb桥臂电阻和电感上的压降,将输入侧电压参考值
Figure BDA00032620086800000513
输出侧电压参考值
Figure BDA00032620086800000514
共模电压参考值
Figure BDA00032620086800000515
进行代数运算得到桥臂电压参考值
Figure BDA00032620086800000516
x=1,2,3,4,5,6;
桥臂子模块电容电压均值参考值为:
Figure BDA00032620086800000517
式(34)中,ucN为桥臂子模块电容电压直流平均值;
桥臂导通模块数的参考值为:
Figure BDA00032620086800000518
所述的步骤四的具体步骤如下:
在如式(14)所示的状态空间模型的基础上,如果其中的参数为理想参数,则得到如是(36)所示的参考状态空间模型:如果其中的参数为实际测量参数,则得到如式(37)所示的实际状态空间模型,
Figure BDA00032620086800000519
Figure BDA00032620086800000520
参考状态空间模型与实际状态空间模型相减,可得误差状态空间模型:
Figure BDA00032620086800000521
式(38)中,
Figure BDA00032620086800000522
Figure BDA0003262008680000061
令控制量增量:
Figure BDA0003262008680000062
则构成一个闭环系统;其中,K∈R6×6为控制器增益,是对角矩阵,
Figure BDA0003262008680000063
各桥臂导通模块数的实际值为:
Figure BDA0003262008680000064
由公式(40)得到各桥臂导通模块数的实际值,选择载波移相调制算法,最终实现对三相六桥臂模块化多电平换流器进行调制。
与现有技术相比,本发明的有益效果是:
在状态空间模型的基础上,设计了合适的控制器构成反馈系统,使实际模型趋近参考模型,具有良好的动态响应性能和稳定性,且调节参数只有一个,远小于相关的控制方法所需的调节参数数量。当系统参数在额定值附近波动时,也具有一定的稳定性。通过李雅普诺夫稳定性理论可以证明与本发明控制方法对应的系统的稳定性。本发明需调节参数数量少,且具有良好的稳定性、动态响应能力和鲁棒性。
附图说明
图1为三相六桥臂模块化多电平换流器的电路拓扑图;
图2为三相六桥臂模块化多电平换流器的整体控制框图;
图3为三相六桥臂模块化多电平换流器的误差模型;
图4为三相六桥臂模块化多电平换流器的误差控制闭环连接图;
图5示出了输出侧电流波形;
图6示出了输入侧电流波形;
图7示出了桥臂子模块电容电压均值波形。
具体实施方式
下面结合附图及具体实施例对本发明做进一步的说明,但下述实施例绝非对本发明有任何限制。
图1为三相六桥臂模块化多电平换流器的电路拓扑图,由三相六桥臂模块化多电平换流器和阻感性负载组成。换流器分别连接输入侧三相电源和输出侧三相阻感负载,每条桥臂由N个全桥子模块、电感和电阻串联组成。esu、esv、esw分别为输入侧U、V、W三相电源电压,isu、isv、isw分别为输入侧三相电流,ux、ix为桥臂x(x=1,2,3,4,5,6)电压和桥臂电流,Ls为输入侧电感,Rb、Lb为桥臂电阻和电感,Rl、Ll为输出侧电阻和电感,ila、ilb、ilc为输出侧电流,icir为环流,uno为共模电压,ucx为桥臂x(x=1,2,3,4,5,6)子模块电容电压均值,N为桥臂子模块数,C为桥臂子模块电容容值,ucN为电容电压直流平均值。
每个子模块为全桥结构,包括:大功率可控电力电子开关,一般为绝缘栅型双极晶体管(IGBT);反并联二极管;子模块直流电容。
如图2所示,是三相六桥臂模块化多电平换流器的整体控制框图,具体包括:通过输出端的电压参考值和电流参考值,计算输入端的电压和电流参考值,再计算得支路电压、电流、导通模块数的参考值;通过状态误差反馈控制求得导通模块数,通过调制算法获得各支路子模块的开关信号,使实际模型与参考模型的误差随时间减小到0.具体包括以下步骤:
(1)根据电路拓扑结构,基于基尔霍夫定律建立数学模型和桥臂子模块电容电压均值方程
基于基尔霍夫定律,数学模型为:
Figure BDA0003262008680000071
Figure BDA0003262008680000072
Figure BDA0003262008680000073
Figure BDA0003262008680000074
Figure BDA0003262008680000075
Figure BDA0003262008680000076
将公式(1)~(6)相加可得:
Figure BDA0003262008680000077
桥臂子模块电容电压均值表达式为:
Figure BDA0003262008680000078
Figure BDA0003262008680000079
Figure BDA0003262008680000081
Figure BDA0003262008680000082
Figure BDA0003262008680000083
Figure BDA0003262008680000084
式(8)至式(13)中,ucx为桥臂x子模块电容电压均值;nx为桥臂x导通模块数,x=1,2,3,4,5,6;N为桥臂子模块数,每个桥臂子模块的电容容值均为C。
(2)对上述数学模型和桥臂子模块电容电压均值方程进行化简,建立状态空间模型;
整理化简上述方程,可得状态空间表达式:
Figure BDA0003262008680000085
其中:
x=[x1,x2]T (15)
x1=[isu,isv,ila,ilb,icir] (16)
x2=[uc1,uc2,uc3,uc4,uc5,uc6] (17)
u=[n1,n2,n3,n4,n5,n6]T (18)
e=[esu,esv,esw]T (19)
Figure BDA0003262008680000086
D2=diag[CN CN CN CN CN CN] (21)
Figure BDA0003262008680000091
Figure BDA0003262008680000092
Figure BDA0003262008680000093
Figure BDA0003262008680000094
(3)计算参考值,包括计算参考状态空间模型的输入侧电流参考值、环流参考值和桥臂导通模块数的参考值
根据输出侧电流参考值
Figure BDA0003262008680000095
(i=a,b,c),可得输出侧电压参考值为:
Figure BDA0003262008680000096
在两相静止坐标系下,输出侧有功功率参考值和无功功率参考值为:
Figure BDA0003262008680000097
Figure BDA0003262008680000098
其中,
Figure BDA0003262008680000099
分别为
Figure BDA00032620086800000910
(i=a,b,c)变换到αβ坐标系下α轴和β轴分量,
Figure BDA00032620086800000911
Figure BDA00032620086800000912
分别为
Figure BDA0003262008680000101
(i=a,b,c)变换到αβ坐标系下α轴和β轴分量,
Figure BDA0003262008680000102
分别为输出侧有功功率和无功功率参考值;
忽略换流器内部损耗,当换流器稳定运行时,输入有功功率与输出有功功率相等,即
Figure BDA0003262008680000103
本文以输出侧单位功率运行进行分析即
Figure BDA0003262008680000104
可得输入侧电流参考值
Figure BDA0003262008680000105
(j=u,v,w)在αβ坐标系下α轴分量
Figure BDA0003262008680000106
和β轴分量
Figure BDA0003262008680000107
Figure BDA0003262008680000108
Figure BDA0003262008680000109
其中,e,e分别为esj(j=u,v,w)变换到αβ坐标系下α轴和β轴分量,
Figure BDA00032620086800001010
分别为输入侧有功功率和无功功率参考值;
Figure BDA00032620086800001011
进行2/3变换,可得到
Figure BDA00032620086800001012
基于基尔霍夫定律可得,输入侧电压参考值为:
Figure BDA00032620086800001013
为抵消因两侧系统无功功率
Figure BDA00032620086800001014
因此的相邻支路之间的转移功率,需注入共模电压和环流。共模电压参考值和环流参考值为:
Figure BDA00032620086800001015
Figure BDA00032620086800001016
式(32和式(33)中,Us和Is为输入侧电压参考值
Figure BDA00032620086800001017
和电流参考值
Figure BDA00032620086800001018
的幅值,Ul和Il为输入侧电压参考值
Figure BDA00032620086800001019
和电流参考值
Figure BDA00032620086800001020
的幅值;
将输入侧三相电流参考值
Figure BDA00032620086800001021
输出电流参考值
Figure BDA00032620086800001022
环流参考值
Figure BDA00032620086800001023
进行代数运算得到桥臂电流参考值
Figure BDA00032620086800001024
忽略桥臂电阻Rb和电感Lb桥臂电阻和电感上的压降,将输入侧电压参考值
Figure BDA00032620086800001025
输出侧电压参考值
Figure BDA00032620086800001026
两中性点电压差uno进行代数运算得到桥臂电压参考值
Figure BDA00032620086800001027
x=1,2,3,4,5,6;
桥臂子模块电容电压均值参考值为:
Figure BDA00032620086800001028
式(34)中,ucN为桥臂子模块电容电压直流平均值;
桥臂导通模块数的参考值为:
Figure BDA00032620086800001029
(4)根据实际状态空间模型和参考状态空间模型得到误差状态空间模型,基于误差状态空间模型设计控制器。
式(14)示出了状态空间模型,如果是实际系统,则为实际状态空间模型,如式(36)。如果其中的参数是理想参数,则可建立参考状态空间模型,如式(37)。
参考状态空间模型:
Figure BDA0003262008680000111
实际状态空间模型:
Figure BDA0003262008680000112
所述的参考状态空间模型与实际状态空间模型相减,可得误差状态空间模型:
Figure BDA0003262008680000113
式(38)中,
Figure BDA0003262008680000114
Figure BDA0003262008680000115
令控制量增量:
Figure BDA0003262008680000116
则构成一个闭环系统;其中,K∈R6×6为控制器增益,是对角矩阵,
Figure BDA0003262008680000117
如图3所示,为三相六桥臂模块化多电平换流器误差模型结构图,令
Figure BDA0003262008680000118
其中,K∈R6×6为控制器增益,是对角矩阵;.
图4为三相六桥臂模块化多电平换流器反馈连接图,是一个闭环系统,通过李雅普诺夫理论,可以证明,该系统是一致渐进稳定的,即随着时间t的增大,误差逐渐收敛到0,实际模型趋近参考模型。
首先,选取李雅普诺夫函数:
Figure BDA0003262008680000119
对李雅普诺夫函数求导可得:
Figure BDA00032620086800001110
由于A+AT是负定的,故
Figure BDA00032620086800001111
趋于0;由于系统输入是持续充分激励的,矩阵B的状态变量有充分多的频率,因此
Figure BDA00032620086800001112
可以得到:闭环系统是一致渐进稳定,即随着时间t的增大,系统状态误差
Figure BDA00032620086800001113
收敛到0;
各桥臂导通模块实际值为:
Figure BDA00032620086800001114
由公式(40)得到各桥臂导通模块数的实际值,选择载波移相调制算法(CarrierPhase-Shifted PWM,CPS-PWM),最终实现对三相六桥臂模块化多电平换流器进行调制。
为验证所提出控制方法的性能,在matlab中建立了三相六桥臂模块化多电平换流器的仿真模型,主电路参数见表1,仿真结果如图5、图6和图7所示。
表1主电路仿真模型参数
输入侧线电压有效值/kV 3.3
输入侧电感/mH 5
输入侧频率/f<sub>s</sub> 50
桥臂子模块数N 6
子模块初始值/V 1200
子模块电容值C/μF 4600
桥臂电感/mH 2
桥臂电阻/Ω 0.02
输出侧电感/mH 1
输出侧电阻/Ω 6
输出侧频率/f<sub>l</sub> 25
输出侧相电流/A 250
从图5和图6中可以看出,输出侧三相电流和输入侧三相电流正弦度,波形质量好,从图7中可以看出子模块电容电压稳定在初始值附近,因此,本发明提出的控制方法能使系统稳定工作。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (5)

1.一种三相六桥臂模块化多电平换流器的控制方法,其特征在于,具体包括以下步骤:
步骤一、根据电路拓扑结构,基于基尔霍夫定律建立数学模型和桥臂子模块电容电压均值方程;
步骤二、对上述数学模型和桥臂子模块电容电压均值方程进行化简,建立状态空间模型;
步骤三、计算参考状态空间模型的输入侧电流参考值、环流参考值、桥臂子模块电容电压参考值和桥臂导通模块数的参考值;
步骤四、根据实际状态空间模型和参考状态空间模型得到误差状态空间模型,基于误差状态空间模型设计控制器。
2.根据权利要求1所述的三相六桥臂模块化多电平换流器的控制方法,其特征在于,所述步骤一具体步骤包括:
步骤1-1)基于基尔霍夫定律建立的数学模型如下:
Figure FDA0003262008670000011
Figure FDA0003262008670000012
Figure FDA0003262008670000013
Figure FDA0003262008670000014
Figure FDA0003262008670000015
Figure FDA0003262008670000016
式(1)至式(6)中,esu、esv、esw和isu、isv、isw分别为输入侧三相电源电压和电流,ux、ix为桥臂x电压和电流,x=1,2,3,4,5,6;Ls为输入侧电感,Rb、Lb分别为桥臂的电阻和电感,Rl、Ll分别为输出侧的电阻和电感,ila、ilb、ilc分别为输出侧的电流;uno为共模电压;
将公式(1)~(6)相加可得:
Figure FDA0003262008670000017
式(7)中,icir为环流;
步骤1-2)桥臂子模块电容电压均值方程表达式如下:
Figure FDA0003262008670000021
Figure FDA0003262008670000022
Figure FDA0003262008670000023
Figure FDA0003262008670000024
Figure FDA0003262008670000025
Figure FDA0003262008670000026
式(8)至式(13)中,ucx为桥臂x子模块电容电压;nx为桥臂x导通模块数,x=1,2,3,4,5,6;N为桥臂子模块数,每个桥臂子模块的电容容值均为C。
3.根据权利要求2所述的三相六桥臂模块化多电平换流器的控制方法,其特征在于,所述步骤二中,整理化简步骤一得到的数学模型和桥臂子模块电容电压均值方程,得到如下状态空间模型表达式:
Figure FDA0003262008670000027
式(14)中,
x=[x1,x2]T (15)
x1=[isu,isv,ila,ilb,icir] (16)
x2=[uc1,uc2,uc3,uc4,uc5,uc6] (17)
u=[n1,n2,n3,n4,n5,n6]T (18)
e=[esu,esv,esw]T (19)
D2=diag[CN CN CN CN CN CN] (20)
Figure FDA0003262008670000028
Figure FDA0003262008670000031
Figure FDA0003262008670000032
Figure FDA0003262008670000033
Figure FDA0003262008670000034
4.根据权利要求1所述的一种三相六桥臂模块化多电平换流器的控制方法,其特征在于,所述的步骤三中:
根据输出电流参考值
Figure FDA0003262008670000035
得到输出侧电压参考值为:
Figure FDA0003262008670000036
在αβ坐标系下,输出侧有功功率参考值和无功功率参考值分别为:
Figure FDA0003262008670000037
Figure FDA0003262008670000038
式(27)和式(28)中,
Figure FDA0003262008670000041
分别为输出侧电压参考值
Figure FDA0003262008670000042
变换到αβ坐标系下α轴和β轴分量,
Figure FDA0003262008670000043
Figure FDA0003262008670000044
分别为
Figure FDA0003262008670000045
变换到αβ坐标系下α轴和β轴分量,i=a,b,c;
Figure FDA0003262008670000046
分别为输出侧有功功率参考值和无功功率参考值;
忽略换流器内部损耗,当换流器稳定运行时,输入有功功率参考值
Figure FDA0003262008670000047
与输出有功功率参考值
Figure FDA0003262008670000048
相等,即
Figure FDA0003262008670000049
输入侧电流参考值
Figure FDA00032620086700000410
在αβ坐标系下α轴分量
Figure FDA00032620086700000411
和β轴分量
Figure FDA00032620086700000412
为:
Figure FDA00032620086700000413
Figure FDA00032620086700000414
式(29)和式(30)中,e,e分别为输入侧电源电压esj变换到αβ坐标系下α轴和β轴分量,j=u,v,w;
Figure FDA00032620086700000415
分别为输入侧有功功率参考值和无功功率参考值;
Figure FDA00032620086700000416
进行2/3变换,得到输入侧三相电流参考值
Figure FDA00032620086700000417
基于基尔霍夫定律可得,输入侧电压参考值为:
Figure FDA00032620086700000418
为抵消因两侧系统无功功率
Figure FDA00032620086700000419
因此的相邻支路之间的转移功率,需注入共模电压和环流;共模电压参考值和环流参考值为:
Figure FDA00032620086700000420
Figure FDA00032620086700000421
式(32和式(33)中,Us和Is为输入侧电压参考值
Figure FDA00032620086700000422
和电流参考值
Figure FDA00032620086700000423
的幅值,Ul和Il为输入侧电压参考值
Figure FDA00032620086700000424
和电流参考值
Figure FDA00032620086700000425
的幅值;
将输入侧三相电流参考值
Figure FDA00032620086700000426
输出电流参考值
Figure FDA00032620086700000427
和环流参考值
Figure FDA00032620086700000428
进行代数运算得到桥臂电流参考值
Figure FDA00032620086700000429
忽略桥臂电阻Rb和电感Lb桥臂电阻和电感上的压降,将输入侧电压参考值
Figure FDA00032620086700000430
输出侧电压参考值
Figure FDA00032620086700000431
和共模电压参考值
Figure FDA00032620086700000432
进行代数运算得到桥臂电压参考值
Figure FDA00032620086700000433
x=1,2,3,4,5,6;
桥臂子模块电容电压均值参考值为:
Figure FDA00032620086700000434
式(34)中,ucN为桥臂子模块电容电压直流平均值;
桥臂导通模块数的参考值为:
Figure FDA0003262008670000051
5.根据权利要求1所述的三相六桥臂模块化多电平换流器的控制方法,其特征在于,所述的步骤四的具体步骤如下:
在如式(14)所示的状态空间模型的基础上,如果其中的参数为理想参数,则得到如是(36)所示的参考状态空间模型:如果其中的参数为实际测量参数,则得到如式(37)所示的实际状态空间模型,
Figure FDA0003262008670000052
Figure FDA0003262008670000053
参考状态空间模型与实际状态空间模型相减,可得误差状态空间模型:
Figure FDA0003262008670000054
式(38)中,
Figure FDA0003262008670000055
Figure FDA0003262008670000056
令控制量增量:
Figure FDA0003262008670000057
则构成一个闭环系统;其中,K∈R6×6为控制器增益,是对角矩阵,
Figure FDA0003262008670000058
各桥臂导通模块数的实际值为:
Figure FDA0003262008670000059
由公式(40)得到各桥臂导通模块数的实际值,选择载波移相调制算法,最终实现对三相六桥臂模块化多电平换流器进行调制。
CN202111075543.6A 2021-09-14 2021-09-14 一种三相六桥臂模块化多电平换流器的控制方法 Pending CN113746349A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111075543.6A CN113746349A (zh) 2021-09-14 2021-09-14 一种三相六桥臂模块化多电平换流器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111075543.6A CN113746349A (zh) 2021-09-14 2021-09-14 一种三相六桥臂模块化多电平换流器的控制方法

Publications (1)

Publication Number Publication Date
CN113746349A true CN113746349A (zh) 2021-12-03

Family

ID=78738791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111075543.6A Pending CN113746349A (zh) 2021-09-14 2021-09-14 一种三相六桥臂模块化多电平换流器的控制方法

Country Status (1)

Country Link
CN (1) CN113746349A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396136A (zh) * 2012-07-06 2015-03-04 Abb技术有限公司 控制模块化转换器
CN106357123A (zh) * 2016-11-25 2017-01-25 南方电网科学研究院有限责任公司 模块化多电平背靠背换流器及其控制方法
CN110601201A (zh) * 2019-08-23 2019-12-20 国网福建省电力有限公司经济技术研究院 一种基于直接交-交换流器h-mmc的upfc系统及其无源化控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396136A (zh) * 2012-07-06 2015-03-04 Abb技术有限公司 控制模块化转换器
CN106357123A (zh) * 2016-11-25 2017-01-25 南方电网科学研究院有限责任公司 模块化多电平背靠背换流器及其控制方法
CN110601201A (zh) * 2019-08-23 2019-12-20 国网福建省电力有限公司经济技术研究院 一种基于直接交-交换流器h-mmc的upfc系统及其无源化控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENNIS KARWATZKI∗ 等: "Survey on the Hexverter Topology – A Modular Multilevel AC/AC Converter", 《INTERNATIONAL CONFERENCE ON POWER ELECTRONICS-ECCE》, pages 1075 - 1082 *
夏超英 等: "模块化多电平矩阵变换器一致渐近稳定控制器设计", 《电网技术》, vol. 45, no. 7, pages 2693 - 2696 *

Similar Documents

Publication Publication Date Title
US9413260B1 (en) Method of current control of three-phase modular multilevel converter with inductance changes allowed
CN110212798B (zh) 一种模块化多电平变换器的环流抑制方法
Verdelho et al. DC voltage control and stability analysis of PWM-voltage-type reversible rectifiers
CN110601201B (zh) 一种基于直接交-交换流器h-mmc的upfc系统及其无源化控制方法
Zhao et al. Neutral point voltage ripple suppression for a three-phase four-wire inverter with an independently controlled neutral module
CN111262465B (zh) 一种用于模块化多电平矩阵变换器的无源控制方法
Gnanavadivel et al. Comparative study of PI, Fuzzy and Fuzzy tuned PI controllers for single-phase AC-DC three-level converter
Bayhan et al. A sliding-mode controlled single-phase grid-connected quasi-Z-source NPC inverter with double-line frequency ripple suppression
CN111293894B (zh) 一种模块化多电平矩阵变换器电容电压平衡控制方法
Alskran et al. Multilevel current source converter-based STATCOM suitable for medium-voltage applications
CN110336472B (zh) 一种带不平衡负载的h3imc拓扑结构及其升压控制方法
Sánchez-Sánchez et al. Multi-terminal HVDC voltage droop control design considering DC grid, AC grid and MMC dynamics
CN113746349A (zh) 一种三相六桥臂模块化多电平换流器的控制方法
Chen et al. A new stability enhancement method using KF estimation for the PWM-SMC-based grid-tied inverter under weak grid condition
Lazar et al. Design of STATCOM for reactive power control using multilevel inverter
Ajami et al. Power flow controlling using SSSC based on matrix converter via SA-PSO algorithm
Lagier et al. Analysis of voltage and current unbalance in a multi-converter topology for a DC-based offshore wind farm
Hisar et al. Sliding mode control in natural reference frame for three-phase LCL filtered active front-end converter
Yacoubi et al. Input/output feedback linearization control of a three-phase three-level neutral point clamped boost rectifier
Jayasundara et al. Simulation performance of grid connected Z-source solar inverter with incremental conductance MPPT
Shen et al. Research on control of three-phase grid-connection inverter under conditions of voltage distortion
Han et al. A new scheme for power factor correction and active filtering for six-pulse converters loads
CN113890032B (zh) 用于台区电能质量治理的电力电子变压器控制方法及系统
CN116599329B (zh) 一种大功率三电平电流注入整流器实用功率解耦控制方法
CN113572382B (zh) 模块化多电平矩阵变换器的电容电压波动抑制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination