CN113745422A - 有机发光装置 - Google Patents

有机发光装置 Download PDF

Info

Publication number
CN113745422A
CN113745422A CN202110592780.3A CN202110592780A CN113745422A CN 113745422 A CN113745422 A CN 113745422A CN 202110592780 A CN202110592780 A CN 202110592780A CN 113745422 A CN113745422 A CN 113745422A
Authority
CN
China
Prior art keywords
light emitting
host
layer
organic light
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110592780.3A
Other languages
English (en)
Inventor
宋寅范
尹丞希
枝连一志
笹田康幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210063692A external-priority patent/KR20210147900A/ko
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Publication of CN113745422A publication Critical patent/CN113745422A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开涉及有机发光装置,所述有机发光装置包括基板和有机发光二极管,所述有机发光二极管定位在基板上并且包括第一电极;面向第一电极的第二电极;以及包含蒽衍生物的第一主体和硼衍生物的第一掺杂剂并且定位在第一电极与第二电极之间的第一发光材料层,其中第一主体的蒽核是氘化的。

Description

有机发光装置
相关申请的交叉引用
本申请要求于2020年5月29日在大韩民国提交的韩国专利申请第10-2020-0065147号和于2021年5月17日在大韩民国提交的韩国专利申请第10-2021-0063692号的权益,其全部通过引用整体并入本文。
技术领域
本公开涉及有机发光装置,更具体地,涉及具有提高的发光效率和寿命的有机发光二极管(OLED)以及包括其的有机发光装置。
背景技术
随着对占用面积小的平板显示装置的需求增加,包括OLED的有机发光显示装置已成为近来研究和开发的主题。
OLED通过将来自作为电子注入电极的阴极的电子和来自作为空穴注入电极的阳极的空穴注入到发光材料层(emitting material layer,EML)中,使电子与空穴结合,产生激子,并使激子从激发态转换成基态来发光。可以使用柔性基板例如塑料基板作为其中形成元件的基础基板。此外,有机发光显示装置可以在比使其他显示装置运行所需的电压更低的电压(例如10V或更低)下运行。此外,有机发光显示装置在功耗和色感方面具有优势。
OLED包括在基板上的作为阳极的第一电极、与第一电极间隔开并且面向第一电极的第二电极、和介于其间的有机发光层。
例如,有机发光显示装置可以包括红色像素区域、绿色像素区域和蓝色像素区域,并且可以在红色像素区域、绿色像素区域和蓝色像素区域中的每一者中形成OLED。
然而,蓝色像素中的OLED无法提供足够的发光效率和寿命,使得有机发光显示装置在发光效率和寿命方面具有局限性。
发明内容
本公开涉及基本上消除了与相关常规技术的局限性和缺点相关的问题中的一者或更多者的OLED和包括所述OLED的有机发光装置。
本公开的另外的特征和优点在下面的描述中阐述,并且将从描述中显而易见,或者通过本公开的实践显而易见。本公开的目的和其他优点通过本文以及附图中描述的特征来实现并获得。
为了实现根据本公开的实施方案的目的的这些和其他优点,如本文所述,本公开的一个方面是有机发光装置,所述有机发光装置包括基板和有机发光二极管,所述有机发光二极管定位在基板上并且包括:第一电极;面向第一电极的第二电极;以及包含蒽衍生物的第一主体和硼衍生物的第一掺杂剂并且定位在第一电极与第二电极之间的第一发光材料层,其中第一主体的蒽核是氘化的,以及第一掺杂剂由式3表示:
[式3]
Figure BDA0003089849860000021
其中,R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者选自氢、氘(D)、C1至C10烷基、未经取代或经C1至C10烷基取代的C6至C30芳基、C6至C30芳基氨基和C5至C30杂芳基,以及其中R51选自氢、氘(D)、C1至C10烷基和C3至C30环烷基。
应理解,前述的一般性描述和以下的详细描述二者都是示例性和说明性的,并且旨在进一步说明所要求保护的本公开。
附图说明
被包括用于提供对本公开的进一步理解并且被并入本说明书中且构成本说明书的一部分的附图示出了本公开的实施方案,并且与说明书一起用于说明本公开的原理。
图1是示出本公开的有机发光显示装置的示意性电路图。
图2是示出根据本公开的第一实施方案的有机发光显示装置的示意性截面图。
图3是示出根据本公开的第一实施方案的用于有机发光显示装置的具有单个发光部的OLED的示意性截面图。
图4是示出根据本公开的第一实施方案的具有两个发光部的串联结构的OLED的示意性截面图。
图5是示出根据本公开的第二实施方案的有机发光显示装置的示意性截面图。
图6是示出根据本公开的第二实施方案的具有两个发光部的串联结构的OLED的示意性截面图。
图7是示出根据本公开的第二实施方案的具有三个发光部的串联结构的OLED的示意性截面图。
图8是示出根据本公开的第三实施方案的有机发光显示装置的示意性截面图。
具体实施方式
现在将详细参照在附图中示出的实例和优选实施方案中的一些。
图1是示出本公开的有机发光显示装置的示意性电路图。
如图1所示,在有机发光显示装置中形成有彼此交叉以限定像素(像素区域)P的栅极线GL和数据线DL、以及电力线PL。在像素区域P中形成有切换薄膜晶体管(thin filmtransistor,TFT)Ts、驱动TFT Td、存储电容器Cst和OLED D。像素区域P可以包括红色像素、绿色像素和蓝色像素。
切换薄膜晶体管Ts连接至栅极线GL和数据线DL,以及驱动薄膜晶体管Td和存储电容器Cst连接在切换薄膜晶体管Ts与电力线PL之间。OLED D连接至驱动薄膜晶体管Td。当通过经由栅极线GL施加的栅极信号使切换薄膜晶体管Ts导通时,经由数据线DL施加的数据信号经由切换薄膜晶体管Ts被施加至驱动薄膜晶体管Td的栅电极和存储电容器Cst的一个电极。
通过施加到栅电极中的数据信号使驱动薄膜晶体管Td导通,使得经由驱动薄膜晶体管Td从电力线PL向OLED D供应与数据信号成比例的电流。OLED D发射亮度与流过驱动薄膜晶体管Td的电流成比例的光。在这种情况下,利用与数据信号成比例的电压对存储电容器Cst进行充电,使得驱动薄膜晶体管Td中的栅电极的电压在一帧期间保持恒定。因此,有机发光显示装置可以显示期望的图像。
图2是示出根据本公开的第一实施方案的有机发光显示装置的示意性截面图。
如图2所示,有机发光显示装置100包括基板110、TFT Tr和连接至TFT Tr的OLEDD。例如,有机发光显示装置100可以包括红色像素、绿色像素和蓝色像素,并且可以在红色像素、绿色像素和蓝色像素中的每一者中形成OLED D。即,可以在红色像素、绿色像素和蓝色像素中分别设置发射红色光、绿色光和蓝色光的OLED D。
基板110可以是玻璃基板或塑料基板。例如,基板110可以是聚酰亚胺基板。
在基板上形成有缓冲层120,并且TFT Tr形成在缓冲层120上。可以省略缓冲层120。
在缓冲层120上形成有半导体层122。半导体层122可以包含氧化物半导体材料或多晶硅。
当半导体层122包含氧化物半导体材料时,可以在半导体层122下方形成遮光图案(未示出)。到达半导体层122的光被遮光图案遮挡或阻挡,使得可以防止半导体层122的热降解。另一方面,当半导体层122包含多晶硅时,可以向半导体层122的两侧中掺杂杂质。
在半导体层122上形成有栅极绝缘层124。栅极绝缘层124可以由诸如硅氧化物或硅氮化物的无机绝缘材料形成。
在栅极绝缘层124上对应于半导体层122的中心形成有由导电材料(例如金属)形成的栅电极130。
在图2中,栅极绝缘层124形成在基板110的整个表面上。或者,栅极绝缘层124可以被图案化成具有与栅电极130相同的形状。
在栅电极130上形成有由绝缘材料形成的层间绝缘层132。层间绝缘层132可以由无机绝缘材料(例如硅氧化物或硅氮化物)或有机绝缘材料(例如苯并环丁烯或光压克力(photo-acryl))形成。
层间绝缘层132包括使半导体层122的两侧露出的第一接触孔134和第二接触孔136。第一接触孔134和第二接触孔136定位在栅电极130的两侧以与栅电极130间隔开。
第一接触孔134和第二接触孔136形成为穿过栅极绝缘层124。或者,当栅极绝缘层124被图案化成具有与栅电极130相同的形状时,第一接触孔134和第二接触孔136形成为仅穿过层间绝缘层132。
在层间绝缘层132上形成有由导电材料(例如金属)形成的源电极140和漏电极142。
源电极140和漏电极142相对于栅电极130彼此间隔开并且分别通过第一接触孔134和第二接触孔136接触半导体层122的两侧。
半导体层122、栅电极130、源电极140和漏电极142构成TFT Tr。TFT Tr用作驱动元件。即,TFT Tr可以对应于(图1的)驱动TFT Td。
在TFT Tr中,栅电极130、源电极140和漏电极142定位在半导体层122上方。即,TFTTr具有共面结构。
或者,在TFT Tr中,栅电极可以定位在半导体层下方,并且源电极和漏电极可以定位在半导体层上方,使得TFT Tr可以具有倒置错列结构。在这种情况下,半导体层可以包含非晶硅。
尽管未示出,但是栅极线和数据线彼此交叉以限定像素,并且切换TFT形成为连接至栅极线和数据线。切换TFT连接至作为驱动元件的TFT Tr。
此外,还可以形成电力线和用于在一帧中保持TFT Tr的栅电极的电压的存储电容器,所述电力线可以形成为与栅极线和数据线中的一者平行并且间隔开。
形成有钝化层150以覆盖TFT Tr,所述钝化层150包括使TFT Tr的漏电极142露出的漏极接触孔152。
在各像素中单独形成有第一电极160,所述第一电极160通过漏极接触孔152连接至TFT Tr的漏电极142。第一电极160可以是阳极并且可以由具有相对高的功函数的导电材料形成。例如,第一电极160可以由透明导电材料例如氧化铟锡(ITO)或氧化铟锌(IZO)形成。
当OLED装置100以顶部发射型运行时,可以在第一电极160下方形成反射电极或反射层。例如,反射电极或反射层可以由铝-钯-铜(APC)合金形成。
在钝化层150上形成有堤层166以覆盖第一电极160的边缘。即,堤层166定位在像素的边界处并且使像素中的第一电极160的中心露出。
在第一电极160上形成有有机发光层162。有机发光层162可以具有包含发光材料的发光材料层的单层结构。为了提高OLED D和/或有机发光显示装置100的发光效率,有机发光层162可以具有多层结构。
有机发光层162在红色像素、绿色像素和蓝色像素中的每一者中分离。如下所示,蓝色像素中的有机发光层162包含其核为氘化的蒽衍生物(蒽化合物)的主体和硼衍生物的掺杂剂,使得蓝色像素中的OLED D的发光效率和寿命得到提高。
在形成有有机发光层162的基板110上方形成有第二电极164。第二电极164覆盖显示区域的整个表面,并且可以由具有相对低的功函数的导电材料形成以用作阴极。例如,第二电极164可以由铝(Al)、镁(Mg)或Al-Mg合金形成。
第一电极160、有机发光层162和第二电极164构成OLED D。
在第二电极164上形成有封装膜170以防止水分渗透到OLED D中。封装膜170包括顺序堆叠的第一无机绝缘层172、有机绝缘层174和第二无机绝缘层176,但不限于此。可以省略封装膜170。
可以在顶部发射型OLED D上方布置用于减少环境光反射的偏光板(未示出)。例如,偏光板可以是圆偏光板。
此外,可以向封装膜170或偏光板附接覆盖窗(未示出)。在这种情况下,基板110和覆盖窗具有柔性特性,使得可以提供柔性显示装置。
图3是示出根据本公开的第一实施方案的用于有机发光显示装置的具有单个发光部的OLED的示意性截面图。
如图3所示,OLED D包括彼此面对的第一电极160和第二电极164以及介于其间的有机发光层162。有机发光层162包括在第一电极160与第二电极164之间的发光材料层(EML)240。
第一电极160可以由具有相对高的功函数的导电材料形成以用作阳极。第二电极164可以由具有相对低的功函数的导电材料形成以用作阴极。
有机发光层162还可以包括在第一电极160与EML 240之间的电子阻挡层(electron blocking layer,EBL)230和在EML 240与第二电极164之间的空穴阻挡层(holeblocking layer,HBL)250。
此外,有机发光层162还可以包括在第一电极160与EBL 230之间的空穴传输层(hole transporting layer,HTL)220。
此外,有机发光层162还可以包括在第一电极160与HTL 220之间的空穴注入层(hole injection layer,HIL)210和在第二电极164与HBL 250之间的电子注入层(electron injection layer,EIL)260。
在本公开的OLED D中,HBL 250可以包含吡啶衍生物的空穴阻挡材料。空穴阻挡材料具有电子传输特性,使得可以省略电子传输层。HBL 250直接接触EIL 260。或者,HBL可以在没有EIL 260的情况下直接接触第二电极。然而,可以在HBL 250与EIL 260之间形成电子传输层。
有机发光层162例如EML 240包含蒽衍生物的主体242和硼衍生物的掺杂剂244,并提供蓝色发光。在这种情况下,蒽衍生物的核是氘化的。此外,硼衍生物中的部分或全部氢可以是氘化的。
即,在EML 240中,主体242的蒽核是氘化的。掺杂剂244可以不是氘化的,或者可以是部分或全部氘化的。
氘化蒽衍生物的主体242可以由式1表示:
[式1]
Figure BDA0003089849860000071
在式1中,R1和R2各自可以独立地为C6至C30芳基或C5至C30杂芳基,并且R1和R2可以相同或不同。L1和L2各自可以独立地为C6至C30亚芳基,并且L1和L2可以相同或不同。此外,x为1至8的整数,以及y1和y2各自为0或1的整数。
即,作为主体242的核的蒽部分经氘(D)取代,并且除蒽部分之外的取代基不是氘化的。
例如,R1和R2可以选自苯基、萘基、芴基、吡啶基、喹啉基、二苯并呋喃基、二苯并噻吩基、菲基、咔唑基和咔啉基,以及L1和L2可以选自亚苯基和亚萘基。此外,x可以为8。
在一个示例性实施方案中,主体242可以是作为以下式2中的一者的化合物:
[式2]
Figure BDA0003089849860000081
硼衍生物的掺杂剂244可以由式3表示:
[式3]
Figure BDA0003089849860000091
在式3中,R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者可以选自氢、氘(D)、C1至C10烷基、未经取代或经C1至C10烷基取代的C6至C30芳基、C6至C30芳基氨基和C5至C30杂芳基,并且R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者可以相同或不同。R51可以选自氢、氘(D)、C1至C10烷基和C3至C30环烷基。
当可以是R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者的芳基为经取代的时,取代基可以为C1至C10烷基,例如叔丁基。
在作为掺杂剂244的硼衍生物中,与硼原子和两个氮原子结合的苯环经氘(D)、C1至C10烷基和C3至C30环烷基中的一者取代,使得包含掺杂剂244的OLED D的发光特性得到改善。
例如,可以是R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者的芳基氨基可以为二苯基氨基或苯基-萘基氨基,以及可以是R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者的芳基可以为苯基或萘基。可以是R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者的烷基可以为甲基、乙基、丙基、丁基和戊基中的一者,以及可以是R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者的杂芳基可以为吡啶基、喹啉基、咔唑基、二苯并呋喃基和二苯并噻吩基中的一者。在这种情况下,芳基氨基、芳基、烷基和杂芳基可以是氘化的。
此外,R51可以为氢、氘、甲基、乙基、丙基、丁基、戊基和金刚烷基中的一者。
在一个实施方案中,R11至R14中的一者、R21至R24中的一者、R31至R35中的一者和R41至R45中的一者可以为叔丁基,以及R31至R35中的另一者可以为叔丁基苯基。R11至R14中的余者、R21至R24中的余者、R31至R35中的余者和R41至R45中的余者可以为氢或氘,以及R51可以为氢、氘或甲基。
式3的掺杂剂244可以是作为以下式4中的一者的化合物:
[式4]
Figure BDA0003089849860000111
Figure BDA0003089849860000121
Figure BDA0003089849860000131
Figure BDA0003089849860000141
Figure BDA0003089849860000151
Figure BDA0003089849860000161
在本公开的OLED D中,主体242的重量%可以为约70至99.9,掺杂剂244的重量%可以为约0.1至30。为了给OLED D和有机发光显示装置提供足够的发光效率和寿命,掺杂剂244的重量%可以为约0.1至10,优选为约1至5。
如上所述,在本公开的OLED D中,由于EML 240包含其核为氘化的蒽衍生物的主体242和硼衍生物的掺杂剂244,OLED D和有机发光显示装置在发光效率和寿命方面具有优势。
[主体的合成]
1.化合物主体1的合成
(1)中间体H-1
[反应式1-1]
Figure BDA0003089849860000162
将无水溴化铜(45g,0.202mol)添加到蒽-D10(18.8g,0.10mol)CCl4溶液中。在氮气气氛下将混合物加热并搅拌12小时。反应完成之后,过滤掉白色CuBr(I)化合物,并通过使用35nm氧化铝柱对剩余液体进行精制。在真空条件下,从反应溶液中除去溶剂,通过使用柱进行精制,以获得包含中间体H-1(9-溴蒽-D9)的混合物。
混合物包含中间体H-1、起始材料(蒽-D10)和二溴副产物。将混合物精制以获得用作反应式1-2中的起始原料的中间体H-1。
(2)中间体H-2
[反应式1-2]
Figure BDA0003089849860000171
将中间体H-1(2.66g,0.01mol)和萘-1硼酸(1.72g,0.01mol)添加到圆底烧瓶中,并进一步添加甲苯(30ml)以形成混合物溶液。在氮气气氛下,搅拌混合物溶液,并添加通过将Na2CO3(2.12g)溶解到蒸馏水(10ml)中而形成的Na2CO3水溶液。进一步添加Pd(PPh3)4(0.25g,0.025mmol)作为催化剂并搅拌。反应完成之后,将反应溶液添加到甲醇溶液中以使产物沉淀,并将沉淀的产物过滤。在减压过滤器中,顺序使用水、氯化氢水溶液(10%浓度)、水和甲醇洗涤沉淀的产物。对沉淀的产物进行精制以获得白色粉末的中间体H-2(2.6g)。
(3)中间体H-3
[反应式1-3]
Figure BDA0003089849860000172
在将中间体H-2(2.8g,8.75mmol)溶解到二氯甲烷(50mL)中之后,添加Br2(1.4g,8.75mmol),并在室温(room temperature,RT)下搅拌。反应完成之后,向反应物中添加2MNa2S2O3水溶液(10mL)并搅拌。分离有机层,并使用Na2S2O3水溶液(10%浓度,10mL)和蒸馏水进行洗涤。再次分离有机层,并通过使用MgSO4除去有机层中的水。在将有机层浓缩之后,添加过量的甲醇以获得产物。将产物过滤以获得中间体H-3(3.3g)。
(4)主体1
[反应式1-4]
Figure BDA0003089849860000181
将中间体H-3(1.96g,0.05mol)和萘-2-硼酸(1.02g,0.06mol)添加并溶解到甲苯(30ml)中。在氮气气氛下搅拌混合物溶液。向混合物溶液中添加通过将Na2CO3(1.90g)溶解到蒸馏水(8ml)中而形成的Na2CO3水溶液(1ml)。进一步添加Pd(PPh3)4(0.125g,0.0125mmol)。在氮气气氛下将混合物加热并搅拌。反应完成之后,分离有机层,并向有机层中添加甲醇以使白色固体混合物沉淀。使用氯仿和己烷(体积比=1:3)的洗脱液通过硅胶柱色谱法对白色固体混合物进行精制以获得化合物主体1(2.30g)。
2.化合物主体2的合成
[反应式2]
Figure BDA0003089849860000191
将中间体H-3(1.96g,0.05mol)和4-(萘-2-基)苯基硼酸(1.49g,0.06mol)添加并溶解到甲苯(30ml)中。在氮气气氛下搅拌混合物溶液。向混合物溶液中添加通过将Na2CO3(1.90g)溶解到蒸馏水(8ml)中而形成的Na2CO3水溶液(1ml)。进一步添加Pd(PPh3)4(0.125g,0.0125mmol)。在氮气气氛下将混合物加热并搅拌。反应完成之后,分离有机层,并向有机层中添加甲醇以使白色固体混合物沉淀。使用氯仿和己烷(体积比=1:3)的洗脱液通过硅胶柱色谱法对白色固体混合物进行精制以获得化合物主体2(2.30g)。
3.化合物主体3的合成
(1)中间体H-4
[反应式3-1]
Figure BDA0003089849860000192
将中间体H-1(2.66g,0.01mol)和苯基硼酸(1.22g,0.01mol)添加到圆底烧瓶中,并进一步添加甲苯(30ml)以形成混合物溶液。在氮气气氛下,搅拌混合物溶液,并添加通过将Na2CO3(2.12g)溶解到蒸馏水(10ml)中而形成的Na2CO3水溶液。进一步添加Pd(PPh3)4(0.25g,0.025mmol)作为催化剂并搅拌。反应完成之后,将反应溶液添加到甲醇溶液中以使产物沉淀,并将沉淀的产物过滤。在减压过滤器中,顺序使用水、氯化氢水溶液(10%浓度)、水和甲醇洗涤沉淀的产物。对沉淀的产物进行精制以获得白色粉末的中间体H-4(2.4g)。
(2)中间体H-5
[反应式3-2]
Figure BDA0003089849860000201
在将中间体H-4(2.3g,8.75mmol)溶解到二氯甲烷(50mL)中之后,添加Br2(1.4g,8.75mmol),并在室温(RT)下搅拌。反应完成之后,向反应物中添加2M Na2S2O3水溶液(10mL)并搅拌。分离有机层,并使用Na2S2O3水溶液(10%浓度,10mL)和蒸馏水进行洗涤。再次分离有机层,并通过使用MgSO4除去有机层中的水。在将有机层浓缩之后,添加过量的甲醇以获得产物。将产物过滤以获得中间体H-5(2.7g)。
(3)主体3
[反应式3-3]
Figure BDA0003089849860000211
将中间体H-5(1.3g,0.05mol)和二苯并呋喃-2-基硼酸(1.26g,0.06mol)添加并溶解到甲苯(30ml)中。在氮气气氛下搅拌混合物溶液。向混合物溶液中添加通过将Na2CO3(1.90g)溶解到蒸馏水(8ml)中而形成的Na2CO3水溶液(1ml)。进一步添加Pd(PPh3)4(0.125g,0.0125mmol)。在氮气气氛下将混合物加热并搅拌。反应完成之后,分离有机层,并向有机层中添加甲醇以使白色固体混合物沉淀。使用氯仿和己烷(体积比=1:3)的洗脱液通过硅胶柱色谱法对白色固体混合物进行精制以获得化合物主体3(2.30g)。
4.化合物主体4的合成
[反应式4]
Figure BDA0003089849860000221
将中间体H-5(1.3g,0.05mol)和4-(2-二苯并呋喃基)苯基硼酸(1.74g,0.06mol)添加并溶解到甲苯(30ml)中。在氮气气氛下搅拌混合物溶液。向混合物溶液中添加通过将Na2CO3(1.90g)溶解到蒸馏水(8ml)中而形成的Na2CO3水溶液(1ml)。进一步添加Pd(PPh3)4(0.125g,0.0125mmol)。在氮气气氛下将混合物加热并搅拌。反应完成之后,分离有机层,并向有机层中添加甲醇以使白色固体混合物沉淀。使用氯仿和己烷(体积比=1:3)的洗脱液通过硅胶柱色谱法对白色固体混合物进行精制以获得化合物主体4(2.30g)。
[掺杂剂的合成]
1.化合物掺杂剂11-2的合成
(1)中间体(I-P)
[反应式5-1]
Figure BDA0003089849860000222
在氮气气氛下,将2,3-二氯溴苯-D(22.0g)、化合物(I-E)(26.6g)、双(二亚苄基丙酮)钯(0)(Pd(dba)2,2.68g)、NaOtBu(16.8g)、三叔丁基磷四氟硼酸盐(tBu3PHBF4,2.70g)和二甲苯(300ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短柱(洗脱液:甲苯/庚烷=1/1(体积比))进行纯化,以获得中间体(I-P)(35.0g)。
(2)中间体(I-Q)
[反应式5-2]
Figure BDA0003089849860000231
在氮气气氛下,将中间体(I-P)(15.0g)、中间体(I-E)(8.4g)、作为钯催化剂的Pd-132(0.21g)、NaOtBu(4.3g)和二甲苯(60ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短程柱(洗脱液:甲苯)进行纯化,以获得中间体(I-Q)(14.6g)。
(3)掺杂剂11-2
[反应式5-3]
Figure BDA0003089849860000232
在氮气气氛下,在0℃下向容纳中间体(I-Q)(14.6g)和叔丁基苯(120ml)的烧瓶中逐滴添加1.56M叔丁基锂戊烷溶液(27.5ml)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至70℃,将混合物搅拌0.5小时。将剩余物冷却至-50℃,向其中添加三溴化硼(10.7g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(EtNiPr2,5.5g),并将混合物在室温下搅拌直至生热消除。随后,将混合物的温度升高至100℃,并搅拌和加热1小时。将反应溶液冷却至室温,并向其中添加经冷却的乙酸钠水溶液,然后添加乙酸乙酯,并将混合物进行分配。将有机层浓缩,然后用硅胶短程柱(洗脱液:甲苯)进行纯化。使获得的粗产物从庚烷中再沉淀。由此,获得化合物掺杂剂11-2(0.5g)。
2.化合物掺杂剂11-3的合成
(1)中间体(I-F)
[反应式6-1]
Figure BDA0003089849860000241
在氮气气氛下,将2,3-二氯溴苯(22.0g)、化合物(I-E)(26.6g)、Pd(dba)2(2.68g)、NaOtBu(16.8g)、三叔丁基磷四氟硼酸盐(tBu3PHBF4,2.70g)和二甲苯(300ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短程柱(洗脱液:甲苯/庚烷=1/1(体积比))进行纯化,以获得中间体(I-F)(38.0g)。
(2)中间体I-G
[反应式6-2]
Figure BDA0003089849860000242
在氮气气氛下,将中间体(I-F)(15.0g)、中间体(I-E)(8.4g)、作为钯催化剂的Pd-132(0.21g)、NaOtBu(4.3g)和二甲苯(60ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短程柱(洗脱液:甲苯)进行纯化,以获得中间体(I-G)(15.0g)。
(3)掺杂剂11-3
[反应式6-3]
Figure BDA0003089849860000251
在氮气气氛下,在0℃下向容纳中间体(I-G)(15.0g)和叔丁基苯(120ml)的烧瓶中逐滴添加1.56M叔丁基锂戊烷溶液(27.5ml)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至70℃,将混合物搅拌0.5小时。将剩余物冷却至-50℃,向其中添加三溴化硼(10.7g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(EtNiPr2,5.5g),并将混合物在室温下搅拌直至生热消除。随后,将混合物的温度升高至100℃,并搅拌和加热1小时。将反应溶液冷却至室温,并向其中添加经冷却的乙酸钠水溶液,然后添加乙酸乙酯,并将混合物进行分配。将有机层浓缩,然后用硅胶短程柱(洗脱液:甲苯)进行纯化。使获得的粗产物从庚烷中再沉淀。由此,获得化合物掺杂剂11-3(6.5g)。
3.化合物掺杂剂11-4的合成
(1)中间体(I-S)
[反应式7-1]
Figure BDA0003089849860000261
在氮气气氛下,将2,3-二氯溴苯-D(22.0g)、化合物(I-R)(26.6g)、Pd(dba)2(2.68g)、NaOtBu(16.8g)、三叔丁基磷四氟硼酸盐(tBu3PHBF4,2.70g)和二甲苯(300ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短程柱(洗脱液:甲苯/庚烷=1/1(体积比))进行纯化,以获得中间体(I-S)(38.0g)。
(2)中间体(I-T)
[反应式7-2]
Figure BDA0003089849860000262
在氮气气氛下,将中间体(I-S)(15.0g)、中间体(I-R)(8.4g)、作为钯催化剂的Pd-132(0.21g)、NaOtBu(4.3g)和二甲苯(60ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短程柱(洗脱液:甲苯)进行纯化,以获得中间体(I-T)(15.0g)。
(3)掺杂剂11-4
[反应式7-3]
Figure BDA0003089849860000271
在氮气气氛下,在0℃下向容纳中间体(I-T)(15.0g)和叔丁基苯(120ml)的烧瓶中逐滴添加1.56M叔丁基锂戊烷溶液(27.5ml)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至70℃,将混合物搅拌0.5小时。将剩余物冷却至-50℃,向其中添加三溴化硼(10.7g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(EtNiPr2,5.5g),并将混合物在室温下搅拌直至生热消除。随后,将混合物的温度升高至100℃,并搅拌和加热1小时。将反应溶液冷却至室温,并向其中添加经冷却的乙酸钠水溶液,然后添加乙酸乙酯,并将混合物进行分配。将有机层浓缩,然后用硅胶短程柱(洗脱液:甲苯)进行纯化。使获得的粗产物从庚烷中再沉淀。由此,获得化合物掺杂剂11-4(8.0g)。
4.化合物掺杂剂11-1的合成
(1)中间体(I-5)
[反应式8-1]
Figure BDA0003089849860000272
在氮气气氛下,将2,3-二氯溴苯(22.0g)、双(4-叔丁基苯基)胺(26.6g)、Pd(dba)2(2.68g)、NaOtBu(16.8g)、三叔丁基磷四氟硼酸盐(tBu3PHBF4,2.70g)和二甲苯(300ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短程柱(洗脱液:甲苯/庚烷=1/1(体积比))进行纯化,以获得中间体(I-5)(38.0g)。
(2)中间体(I-6)
[反应式8-2]
Figure BDA0003089849860000281
在氮气气氛下,将中间体(I-5)(15.0g)、双(4-叔丁基苯基)胺(8.4g)、作为钯催化剂的Pd-132(0.21g)、NaOtBu(4.3g)和二甲苯(60ml)放入烧瓶中,并在120℃下加热1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤。之后,将有机层浓缩以获得粗产物。将粗产物用硅胶短程柱(洗脱液:甲苯)进行纯化,以获得中间体(I-6)(15.0g)。
(3)掺杂剂11-1
[反应式8-3]
Figure BDA0003089849860000282
在氮气气氛下,在0℃下向容纳中间体(I-6)(15.0g)和叔丁基苯(120ml)的烧瓶中逐滴添加1.56M叔丁基锂戊烷溶液(27.5ml)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至70℃,将混合物搅拌0.5小时。将剩余物冷却至-50℃,向其中添加三溴化硼(10.7g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(EtNiPr2,5.5g),并将混合物在室温下搅拌直至生热消除。随后,将混合物的温度升高至100℃,并搅拌和加热1小时。将反应溶液冷却至室温,并向其中添加经冷却的乙酸钠水溶液,然后添加乙酸乙酯,并将混合物进行分配。将有机层浓缩,然后用硅胶短程柱(洗脱液:甲苯)进行纯化。使获得的粗产物从庚烷中再沉淀。由此,获得化合物掺杂剂11-1(6.5g)。
5.化合物掺杂剂21-2的合成
(1)中间体(I-N)
[反应式9-1]
Figure BDA0003089849860000291
在氮气气氛下,将中间体(I-M)(22.5g)、4-溴-叔丁基苯-D4(17.0g)、Pd-132(0.57g)、NaOtBu(11.5g)和二甲苯(150mL)放入烧瓶中,并加热和搅拌2小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱色谱法(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-N)(30.0g)。
(2)中间体(I-O)
[反应式9-2]
Figure BDA0003089849860000292
在氮气气氛下,将中间体(I-C)(12.0g)、中间体(1-N)(10.7g)、Pd-132(0.19g)、NaOtBu(3.9g)和二甲苯(60mL)放入烧瓶中,并在120℃下搅拌1.5小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,将有机层用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-O)(18.0g)。
(2)掺杂剂21-2
[反应式9-3]
Figure BDA0003089849860000301
在氮气气氛下,在0℃下向容纳中间体(I-O)(18.0g)和叔丁基苯(90mL)的烧瓶中逐滴添加1.62M叔丁基锂戊烷溶液(40.0mL)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至60℃,将混合物搅拌1小时,然后在减压下蒸馏出沸点低于叔丁基苯的沸点的组分。将剩余物冷却至-50℃,并向其中添加三溴化硼(16.5g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(5.7g),并将混合物在100℃下搅拌1小时。在反应之后,向反应溶液添加乙酸钠水溶液,接着搅拌。之后,添加乙酸乙酯并搅拌,然后分离有机层。通过硅胶柱(洗脱液:甲苯/庚烷=3/7(体积比))对粗产物进行纯化,以获得化合物掺杂剂21-2(0.6g)。
6.化合物掺杂剂21-3的合成
(1)中间体(I-B)
[反应式10-1]
Figure BDA0003089849860000302
在氮气气氛下,将中间体(I-A)(22.5g)、4-溴-叔丁基苯(17.0g)、Pd-132(0.57g)、NaOtBu(11.5g)和二甲苯(150mL)放入烧瓶中,并加热和搅拌1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱色谱法(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-B)(31.0g)。
(2)中间体(I-D)
[反应式10-2]
Figure BDA0003089849860000311
在氮气气氛下,将中间体(I-C)(12.0g)、中间体(I-B)(10.7g)、Pd-132(0.19g)、NaOtBu(3.9g)和二甲苯(60mL)放入烧瓶中,并在120℃下搅拌1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,将有机层用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-D)(19.9g)。
(3)掺杂剂21-3
[反应式10-3]
Figure BDA0003089849860000312
在氮气气氛下,在0℃下向容纳中间体(I-D)(18.0g)和叔丁基苯(90mL)的烧瓶中逐滴添加1.62M叔丁基锂戊烷溶液(40.0mL)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至60℃,将混合物搅拌1小时,然后在减压下蒸馏出沸点低于叔丁基苯的沸点的组分。将剩余物冷却至-50℃,并向其中添加三溴化硼(16.5g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(5.7g),并将混合物在100℃下搅拌1小时。在反应之后,向反应溶液添加乙酸钠水溶液,接着搅拌。之后,添加乙酸乙酯并搅拌,然后分离有机层。通过硅胶柱(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得化合物掺杂剂21-3(4.0g)。
7.化合物掺杂剂21-4的合成
(1)中间体(I-J)
[反应式11-1]
Figure BDA0003089849860000321
在氮气气氛下,将中间体(I-A)(22.5g)、4-溴-叔丁基苯-D4(17.0g)、Pd-132(0.57g)、NaOtBu(11.5g)和二甲苯(150mL)放入烧瓶中,并加热和搅拌1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱色谱法(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-J)(31.0g)。
(2)中间体(I-L)
[反应式11-2]
Figure BDA0003089849860000331
在氮气气氛下,将中间体(I-K)(12.0g)、中间体(1-J)(10.7g)、Pd-132(0.19g)、NaOtBu(3.9g)和二甲苯(60mL)放入烧瓶中,并在120℃下搅拌1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,将有机层用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-L)(19.9g)。
(3)掺杂剂21-4
[反应式11-3]
Figure BDA0003089849860000332
在氮气气氛下,在0℃下向容纳中间体(I-L)(18.0g)和叔丁基苯(90mL)的烧瓶中逐滴添加1.62M叔丁基锂戊烷溶液(40.0mL)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至60℃,将混合物搅拌1小时,然后在减压下蒸馏出沸点低于叔丁基苯的沸点的组分。将剩余物冷却至-50℃,并向其中添加三溴化硼(16.5g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(5.7g),并将混合物在100℃下搅拌1小时。在反应之后,向反应溶液添加乙酸钠水溶液,接着搅拌。之后,添加乙酸乙酯并搅拌,然后分离有机层。通过硅胶柱(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得化合物掺杂剂21-4(4.0g)。
8.化合物掺杂剂21-1的合成
(1)中间体(I-2)
[反应式12-1]
Figure BDA0003089849860000341
在氮气气氛下,将中间体(I-1)(22.5g)、4-溴-叔丁基苯(17.0g)、Pd-132(0.57g)、NaOtBu(11.5g)和二甲苯(150mL)放入烧瓶中,并加热和搅拌1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,分离有机层,并用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱色谱法(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-2)(31.0g)。
(2)中间体(I-4)
[反应式12-2]
Figure BDA0003089849860000342
在氮气气氛下,将中间体(I-3)(12.0g)、中间体(1-2)(10.7g)、Pd-132(0.19g)、NaOtBu(3.9g)和二甲苯(60mL)放入烧瓶中,并在120℃下搅拌1小时。在反应之后,向反应溶液添加水和乙酸乙酯,接着搅拌。之后,将有机层用水洗涤两次。之后,将有机层浓缩以获得粗产物。通过硅胶柱(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得中间体(I-4)(19.9g)。
(3)掺杂剂21-1
[反应式12-3]
Figure BDA0003089849860000351
在氮气气氛下,在0℃下向容纳中间体(I-4)(18.0g)和叔丁基苯(90mL)的烧瓶中逐滴添加1.62M叔丁基锂戊烷溶液(40.0mL)。在叔丁基锂戊烷溶液的逐滴添加完成之后,将混合物的温度升高至60℃,将混合物搅拌1小时,然后在减压下蒸馏出沸点低于叔丁基苯的沸点的组分。将剩余物冷却至-50℃,并向其中添加三溴化硼(16.5g),将混合物的温度升高至室温,并将混合物搅拌0.5小时。之后,将混合物再次冷却至0℃,向其中添加N,N-二异丙基乙胺(5.7g),并将混合物在100℃下搅拌1小时。在反应之后,向反应溶液添加乙酸钠水溶液,接着搅拌。之后,添加乙酸乙酯并搅拌,然后分离有机层。通过硅胶柱(洗脱液:甲苯/庚烷=2/8(体积比))对粗产物进行纯化,以获得化合物掺杂剂21-1(4.0g)。
[有机发光二极管]
将阳极(ITO,0.5mm)、HIL(式5(97重量%)和式6(3重量%),
Figure BDA0003089849860000352
)、HTL(式5,
Figure BDA0003089849860000353
)、EBL(式7,
Figure BDA0003089849860000354
)、EML(主体(98重量%)和掺杂剂(2重量%),
Figure BDA0003089849860000355
)、HBL(式8,
Figure BDA0003089849860000356
)、EIL(式9(98重量%)和Li(2重量%),
Figure BDA0003089849860000357
)以及阴极(Al,
Figure BDA0003089849860000358
)顺序地沉积。通过使用可UV固化环氧化合物和吸湿剂形成封装膜,以形成OLED。
[式5]
Figure BDA0003089849860000359
[式6]
Figure BDA0003089849860000361
[式7]
Figure BDA0003089849860000362
[式8]
Figure BDA0003089849860000363
[式9]
Figure BDA0003089849860000364
1.比较例
(1)比较例1至4(Ref1至Ref4)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
(2)比较例5至8(Ref5至Ref8)
将式4中的化合物“掺杂剂11-2”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
(3)比较例9至12(Ref9至Ref12)
将式4中的化合物“掺杂剂11-3”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
(4)比较例13至16(Ref13至Ref16)
将式4中的化合物“掺杂剂11-4”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
[式10]
Figure BDA0003089849860000371
2.实施例
(1)实施例1(Ex1)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并将式2中的化合物“主体1”用作主体以形成EML。
(2)实施例2至4(Ex2至Ex4)
分别将式4中的化合物“掺杂剂11-2”、“掺杂剂11-3”和“掺杂剂11-4”用作掺杂剂,并将式2中的化合物“主体1”用作主体以形成EML。
测量在比较例1至16和实施例1至4中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表1。
表1
Figure BDA0003089849860000381
如表1所示,使用其核经氘取代的主体的比较例4、8、12和16以及实施例1至4中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例4、8、12和16中的OLED相比,使用仅其核经氘取代的主体的实施例1至4中的OLED的寿命短一些。然而,实施例1至4中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。即,在使由氘原子引起的生产成本的增加最小化的情况下,OLED提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂11-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
3.比较例
(1)比较例17至20(Ref17至Ref20)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
(2)比较例21至24(Ref21至Ref24)
将式4中的化合物“掺杂剂11-2”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
(3)比较例25至28(Ref25至Ref28)
将式4中的化合物“掺杂剂11-3”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
(4)比较例29至32(Ref29至Ref32)
将式4中的化合物“掺杂剂11-4”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
[式11]
Figure BDA0003089849860000391
4.实施例
(1)实施例5(Ex5)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并将式2中的化合物“主体2”用作主体以形成EML。
(2)实施例6至8(Ex6至Ex8)
分别将式4中的化合物“掺杂剂11-2”、“掺杂剂11-3”和“掺杂剂11-4”用作掺杂剂,并将式2中的化合物“主体2”用作主体以形成EML。
测量在比较例17至32和实施例5至8中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表2。
表2
Figure BDA0003089849860000401
如表2所示,使用其核经氘取代的主体的比较例20、24、28和32以及实施例5至8中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例20、24、28和32中的OLED相比,使用仅其核经氘取代的主体的实施例5至8中的OLED的寿命短一些。然而,实施例5至8中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂11-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
5.比较例
(1)比较例33至36(Ref33至Ref36)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
(2)比较例37至40(Ref37至Ref40)
将式4中的化合物“掺杂剂11-2”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
(3)比较例41至44(Ref41至Ref44)
将式4中的化合物“掺杂剂11-3”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
(4)比较例45至48(Ref45至Ref48)
将式4中的化合物“掺杂剂11-4”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
[式12]
Figure BDA0003089849860000411
6.实施例
(1)实施例9(Ex9)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并将式2中的化合物“主体3”用作主体以形成EML。
(2)实施例10至12(Ex10至Ex12)
分别将式4中的化合物“掺杂剂11-2”、“掺杂剂11-3”和“掺杂剂11-4”用作掺杂剂,并将式2中的化合物“主体3”用作主体以形成EML。
测量在比较例33至48和实施例9至12中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表3。
表3
Figure BDA0003089849860000421
如表3所示,使用其核经氘取代的主体的比较例36、40、44和48以及实施例9至12中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例36、40、44和48中的OLED相比,使用仅其核经氘取代的主体的实施例9至12中的OLED的寿命短一些。然而,实施例9至12中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂11-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
7.比较例
(1)比较例49至52(Ref49至Ref52)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
(2)比较例53至56(Ref53至Ref56)
将式4中的化合物“掺杂剂11-2”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
(3)比较例57至60(Ref57至Ref60)
将式4中的化合物“掺杂剂11-3”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
(4)比较例61至64(Ref61至Ref64)
将式4中的化合物“掺杂剂11-4”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
[式13]
Figure BDA0003089849860000431
8.实施例
(1)实施例13(Ex13)
将式4中的化合物“掺杂剂11-1”用作掺杂剂,并将式2中的化合物“主体4”用作主体以形成EML。
(2)实施例14至16(Ex14至Ex16)
分别将式4中的化合物“掺杂剂11-2”、“掺杂剂11-3”和“掺杂剂11-4”用作掺杂剂,并将式2中的化合物“主体4”用作主体以形成EML。
测量在比较例49至64和实施例13至16中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表4。
表4
Figure BDA0003089849860000441
如表4所示,使用其核经氘取代的主体的比较例52、56、60和64以及实施例13至16中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例52、56、60和64中的OLED相比,使用仅其核经氘取代的主体的实施例13至16中的OLED的寿命短一些。然而,实施例13至16中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂11-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
9.比较例
(1)比较例65至68(Ref65至Ref68)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
(2)比较例69至72(Ref67至Ref72)
将式4中的化合物“掺杂剂21-2”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
(3)比较例73至76(Ref73至Ref76)
将式4中的化合物“掺杂剂21-3”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
(4)比较例77至80(Ref77至Ref80)
将式4中的化合物“掺杂剂21-4”用作掺杂剂,并分别将式10中的化合物“主体1-1”、“主体1-2”、“主体1-3”和“主体1-4”用作主体以形成EML。
10.实施例
(1)实施例17(Ex17)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并将式2中的化合物“主体1”用作主体以形成EML。
(2)实施例18至20(Ex18至Ex20)
分别将式4中的化合物“掺杂剂21-2”、“掺杂剂21-3”和“掺杂剂21-4”用作掺杂剂,并将式2中的化合物“主体1”用作主体以形成EML。
测量在比较例65至80和实施例17至20中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表5。
表5
Figure BDA0003089849860000461
如表5所示,使用其核经氘取代的主体的比较例68、72、76和80以及实施例17至20中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例68、72、76和80中的OLED相比,使用仅其核经氘取代的主体的实施例17至20中的OLED的寿命短一些。然而,实施例17至20中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂21-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
11.比较例
(1)比较例81至84(Ref81至Ref84)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
(2)比较例85至88(Ref85至Ref88)
将式4中的化合物“掺杂剂21-2”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
(3)比较例89至92(Ref89至Ref92)
将式4中的化合物“掺杂剂21-3”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
(4)比较例93至96(Ref93至Ref96)
将式4中的化合物“掺杂剂21-4”用作掺杂剂,并分别将式11中的化合物“主体2-1”、“主体2-2”、“主体2-3”和“主体2-4”用作主体以形成EML。
12.实施例
(1)实施例21(Ex21)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并将式2中的化合物“主体2”用作主体以形成EML。
(2)实施例22至24(Ex22至Ex24)
分别将式4中的化合物“掺杂剂21-2”、“掺杂剂21-3”和“掺杂剂21-4”用作掺杂剂,并将式2中的化合物“主体2”用作主体以形成EML。
测量在比较例81至96和实施例21至24中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表6。
表6
Figure BDA0003089849860000471
如表6所示,使用其核经氘取代的主体的比较例84、88、92和96以及实施例21至24中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例84、88、92和96中的OLED相比,使用仅其核经氘取代的主体的实施例21至24中的OLED的寿命短一些。然而,实施例21至24中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂21-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
13.比较例
(1)比较例97至100(Ref97至Ref100)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
(2)比较例101至104(Ref101至Ref104)
将式4中的化合物“掺杂剂21-2”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
(3)比较例105至108(Ref105至Ref108)
将式4中的化合物“掺杂剂21-3”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
(4)比较例109至112(Ref109至Ref112)
将式4中的化合物“掺杂剂21-4”用作掺杂剂,并分别将式12中的化合物“主体3-1”、“主体3-2”、“主体3-3”和“主体3-4”用作主体以形成EML。
14.实施例
(1)实施例25(Ex25)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并将式2中的化合物“主体3”用作主体以形成EML。
(2)实施例26至28(Ex26至Ex28)
分别将式4中的化合物“掺杂剂21-2”、“掺杂剂21-3”和“掺杂剂21-4”用作掺杂剂,并将式2中的化合物“主体3”用作主体以形成EML。
测量在比较例97至112和实施例25至28中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表7。
表7
Figure BDA0003089849860000491
如表7所示,使用其核经氘取代的主体的比较例100、104、108和112以及实施例25至28中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例100、104、108和112中的OLED相比,使用仅其核经氘取代的主体的实施例25至28中的OLED的寿命短一些。然而,实施例25至28中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂21-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
15.比较例
(1)比较例113至116(Ref113至Ref116)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
(2)比较例117至120(Ref117至Ref120)
将式4中的化合物“掺杂剂21-2”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
(3)比较例121至124(Ref121至Ref124)
将式4中的化合物“掺杂剂21-3”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
(4)比较例125至128(Ref125至Ref128)
将式4中的化合物“掺杂剂21-4”用作掺杂剂,并分别将式13中的化合物“主体4-1”、“主体4-2”、“主体4-3”和“主体4-4”用作主体以形成EML。
16.实施例
(1)实施例29(Ex29)
将式4中的化合物“掺杂剂21-1”用作掺杂剂,并将式2中的化合物“主体4”用作主体以形成EML。
(2)实施例30至32(Ex30至Ex32)
分别将式4中的化合物“掺杂剂21-2”、“掺杂剂21-3”和“掺杂剂21-4”用作掺杂剂,并将式2中的化合物“主体4”用作主体以形成EML。
测量在比较例113至128和实施例29至32中制造的OLED的特性,即,电压(V)、效率(Cd/A)、色坐标(CIE)和寿命(T95)并列于表8。
表8
Figure BDA0003089849860000511
如表8所示,使用其核经氘取代的主体的比较例116、120、124和128以及实施例29至32中的OLED的寿命显著增加。
另一方面,与使用其核和取代基经氘取代的主体的比较例116、120、124和128中的OLED相比,使用仅其核经氘取代的主体的实施例29至32中的OLED的寿命短一些。然而,实施例29至32中的OLED在较少的氘原子(其非常昂贵)的情况下提供了足够的寿命。
此外,当EML包含其基本上所有氢原子被氘取代的掺杂剂例如化合物掺杂剂21-4时,OLED的寿命显著增加(由于硼衍生物的化学结构,一部分氢不能被氘取代)。
此外,当HIL和HTL各自包含式5的化合物并且EBL包含式7的化合物时,OLED的特性得到改善。
在本公开的OLED D中,由于EML 240包含其核为氘化的蒽衍生物的主体242和硼衍生物的掺杂剂244,OLED D和有机发光显示装置100在发光效率、寿命和生产成本方面具有优势。此外,在EML 240中作为掺杂剂244的硼衍生物是氘化的,OLED D和有机发光显示装置100的寿命进一步增加。
图4是示出根据本公开的第一实施方案的具有两个发光单元的串联结构的OLED的示意性截面图。
如图4所示,OLED D包括彼此面对的第一电极160和第二电极164以及在第一电极160与第二电极164之间的有机发光层162。有机发光层162包括第一发光部310,其包括第一EML 320;第二发光部330,其包括第二EML 340;和在第一发光部310与第二发光部330之间的电荷生成层(charge generation layer,CGL)350。
第一电极160可以由具有相对高的功函数的导电材料形成,以用作用于将空穴注入到有机发光层162的阳极。第二电极164可以由具有相对低的功函数的导电材料形成,以用作用于将电子注入到有机发光层162的阴极。
CGL 350定位在第一发光部310与第二发光部330之间,第一发光部310、CGL 350和第二发光部330顺序地堆叠在第一电极160上。即,第一发光部310定位在第一电极160与CGL350之间,并且第二发光部330定位在第二电极164与CGL 350之间。
第一发光部310包括第一EML 320。此外,第一发光部310还可以包括在第一电极160与第一EML 320之间的第一EBL 316以及在第一EML320与CGL 350之间的第一HBL 318。
此外,第一发光部310还可以包括在第一电极160与第一EBL 316之间的第一HTL314以及在第一电极160与第一HTL 314之间的HIL 312。
第一EML 320包含蒽衍生物的主体322和硼衍生物的掺杂剂324,并且蒽衍生物的蒽核是氘化的。第一EML 320发射蓝色光。
例如,在第一EML 320中,主体322的蒽核是氘化的,以及掺杂剂324可以不是氘化的,或者可以是部分或全部氘化的。
在第一EML 320中,主体322的重量%可以为约70至99.9,掺杂剂324的重量%可以为约0.1至30。为了提供足够的发光效率,掺杂剂324的重量%可以为约0.1至10,优选约1至5。
第二发光部330包括第二EML 340。此外,第二发光部330还可以包括在CGL 350与第二EML 340之间的第二EBL 334以及在第二EML 340与第二电极164之间的第二HBL 336。
此外,第二发光部330还可以包括在CGL 350与第二EBL 334之间的第二HTL 332以及在第二HBL 336与第二电极164之间的EIL 338。
第二EML 340包含蒽衍生物的主体342和硼衍生物的掺杂剂344,并且蒽衍生物的蒽核是氘化的。第二EML 340发射蓝色光。
例如,在第二EML 340中,主体342的蒽核是氘化的,以及掺杂剂344可以不是氘化的,或者可以是部分或全部氘化的。
在第二EML 340中,主体342的重量%可以为约70至99.9,掺杂剂344的重量%可以为约0.1至30。为了提供足够的发光效率,掺杂剂344的重量%可以为约0.1至10,优选约1至5。
第二EML 340的主体342可以与第一EML 320的主体322相同或不同,以及第二EML340的掺杂剂344可以与第一EML 320的掺杂剂324相同或不同。
CGL 350定位在第一发光部310与第二发光部330之间。即,第一发光部310与第二发光部330通过CGL 350连接。CGL 350可以是N型CGL352和P型CGL 354的P-N结CGL。
N型CGL 352定位在第一HBL 318与第二HTL 332之间,P型CGL354定位在N型CGL352与第二HTL 332之间。
在OLED D中,由于第一EML 320和第二EML 340各自包含各自为蒽衍生物的主体322和主体342以及各自为硼衍生物的掺杂剂324和掺杂剂344,并且蒽衍生物的蒽核是氘化的,因此,OLED D和有机发光显示装置100在发光效率、寿命、和生产成本方面具有优点。
此外,由于堆叠有用于发射蓝色光的第一发光部310和第二发光部330,因此有机发光显示装置100提供具有高色温的图像。
图5是示出根据本公开的第二实施方案的有机发光显示装置的示意性截面图,以及图6是示出根据本公开的第二实施方案的具有两个发光部的串联结构的OLED的示意性截面图。图7是示出根据本公开的第二实施方案的具有三个发光部的串联结构的OLED的示意性截面图。
如图5所示,有机发光显示装置400包括:第一基板410,其中限定有红色像素RP、绿色像素GP和蓝色像素BP;面对第一基板410的第二基板470;定位在第一基板410与第二基板470之间并且提供白色发光的OLED D;以及在OLED D与第二基板470之间的滤色器层480。
第一基板410和第二基板470各自可以是玻璃基板或塑料基板。例如,第一基板410和第二基板470各自可以是聚酰亚胺基板。
在基板上形成有缓冲层420,在缓冲层420上形成有与红色像素RP、绿色像素GP和蓝色像素BP中的每一者对应的TFT Tr。可以省略缓冲层420。
在缓冲层420上形成有半导体层422。半导体层422可以包含氧化物半导体材料或多晶硅。
在半导体层422上形成有栅极绝缘层424。栅极绝缘层424可以由诸如硅氧化物或硅氮化物的无机绝缘材料形成。
在栅极绝缘层424上对应于半导体层422的中心形成有由导电材料(例如金属)形成的栅电极430。
在栅电极430上形成有由绝缘材料形成的层间绝缘层432。层间绝缘层432可以由无机绝缘材料(例如硅氧化物或硅氮化物)或有机绝缘材料(例如苯并环丁烯或光压克力)形成。
层间绝缘层432包括使半导体层422的两侧露出的第一接触孔434和第二接触孔436。第一接触孔434和第二接触孔436定位在栅电极430的两侧以与栅电极430间隔开。
在层间绝缘层432上形成有由导电材料(例如金属)形成的源电极440和漏电极442。
源电极440和漏电极442相对于栅电极430彼此间隔开并且分别通过第一接触孔434和第二接触孔436接触半导体层422的两侧。
半导体层422、栅电极430、源电极440和漏电极442构成TFT Tr。TFT Tr用作驱动元件。即,TFT Tr可以对应于(图1的)驱动TFT Td。
尽管未示出,但是栅极线和数据线彼此交叉以限定像素,并且切换TFT形成为连接至栅极线和数据线。切换TFT连接至作为驱动元件的TFT Tr。
此外,还可以形成电力线和用于在一帧中保持TFT Tr的栅电极的电压的存储电容器,所述电力线可以形成为与栅极线和数据线中的一者平行并且间隔开。
形成有钝化层450以覆盖TFT Tr,所述钝化层450包括使TFT Tr的漏电极442露出的漏极接触孔452。
在各像素中单独形成有第一电极460,第一电极460通过漏极接触孔452连接至TFTTr的漏电极442。第一电极460可以是阳极,并且可以由具有相对高的功函数的导电材料形成。例如,第一电极460可以由透明导电材料例如氧化铟锡(ITO)或氧化铟锌(IZO)形成。
可以在第一电极460下方形成反射电极或反射层。例如,反射电极或反射层可以由铝-钯-铜(APC)合金形成。
在钝化层450上形成有堤层466以覆盖第一电极460的边缘。即,堤层466定位在像素的边界处并且使红色像素RP、绿色像素GP和蓝色像素BP中的第一电极460的中心露出。可以省略堤层466。
在第一电极460上形成有有机发光层462。
参考图6,OLED D包括彼此面对的第一电极460和第二电极464以及在第一电极460与第二电极464之间的有机发光层462。有机发光层462包括第一发光部710,其包括第一EML720;第二发光部730,其包括第二EML 740;和在第一发光部710与第二发光部730之间的电荷生成层(CGL)750。
第一电极460可以由具有相对高的功函数的导电材料形成,以用作用于将空穴注入到有机发光层462的阳极。第二电极464可以由具有相对低的功函数的导电材料形成,以用作用于将电子注入到有机发光层462的阴极。
CGL 750定位在第一发光部710与第二发光部730之间,第一发光部710、CGL 750和第二发光部730顺序地堆叠在第一电极460上。即,第一发光部710定位在第一电极460与CGL750之间,并且第二发光部730定位在第二电极460与CGL 750之间。
第一发光部710包括第一EML 720。此外,第一发光部710还可以包括在第一电极460与第一EML 720之间的第一EBL 716以及在第一EML720与CGL 750之间的第一HBL 718。
此外,第一发光部710还可以包括在第一电极460与第一EBL 716之间的第一HTL714以及在第一电极460与第一HTL 714之间的HIL 712。
第一EML 720包含蒽衍生物的主体722和硼衍生物的掺杂剂724,并且蒽衍生物的蒽核是氘化的。第一EML 720发射蓝色光。
例如,在第一EML 720中,主体722的蒽核是氘化的,以及掺杂剂724可以不是氘化的,或者可以是部分或全部氘化的。
在第一EML 720中,主体722的重量%可以为约70至99.9,掺杂剂724的重量%可以为约0.1至30。为了提供足够的发光效率,掺杂剂724的重量%可以为约0.1至10,优选约1至5。
第二发光部730包括第二EML 740。此外,第二发光部730还可以包括在CGL 750与第二EML 740之间的第二EBL 734以及在第二EML 740与第二电极464之间的第二HBL 736。
此外,第二发光部730还可以包括在CGL 750与第二EBL 734之间的第二HTL 732以及在第二HBL 736与第二电极464之间的EIL 738。
第二EML 740可以是黄绿色EML。例如,第二EML 740可以包含主体742和黄绿色掺杂剂744。黄绿色掺杂剂744可以为荧光化合物、磷光化合物和延迟荧光化合物中的一者。
在第二EML 740中,主体742的重量%可以为约70至99.9,黄绿色掺杂剂744的重量%可以为约0.1至30。为了提供足够的发光效率,黄绿色掺杂剂744的重量%可以为约0.1至10,优选约1至5。
CGL 750定位在第一发光部710与第二发光部730之间。即,第一发光部710与第二发光部730通过CGL 750连接。CGL 750可以是N型CGL752和P型CGL 754的P-N结CGL。
N型CGL 752定位在第一HBL 718与第二HTL 732之间,P型CGL754定位在N型CGL752与第二HTL 732之间。
在图6中,定位在第一电极460与CGL 750之间的第一EML 720包含蒽衍生物的主体722和硼衍生物的掺杂剂724,以及定位在第二电极464与CGL 750之间的第二EML 740为黄绿色EML。或者,定位在第一电极460与CGL 750之间的第一EML 720可以为黄绿色EML,以及定位在第二电极464与CGL 750之间的第二EML 740可以包含蒽衍生物的主体和硼衍生物的掺杂剂以成为蓝色EML。
在OLED D中,由于第一EML 720包含为蒽衍生物的主体722和为硼衍生物的掺杂剂724,并且蒽衍生物的蒽核是氘化的,因此OLED D和有机发光显示装置400在发光效率、寿命、和生产成本方面具有优点。
包括第一发光部710和提供黄绿色发光的第二发光部730的OLED D发射白色光。
参考图7,有机发光层462包括:第一发光部530,其包括第一EML520;第二发光部550,其包括第二EML 540;第三发光部570,其包括第三EML 560;在第一发光部530与第二发光部550之间的第一CGL 580;以及在第二发光部550与第三发光部570之间的第二CGL 590。
第一电极460可以由具有相对高的功函数的导电材料形成,以用作用于将空穴注入到有机发光层462的阳极。第二电极464可以由具有相对低的功函数的导电材料形成,以用作用于将电子注入到有机发光层462的阴极。
第一CGL 580定位在第一发光部530与第二发光部550之间,第二CGL 590定位在第二发光部550与第三发光部570之间。即,第一发光部分530、第一CGL 580、第二发光部分550、第二CGL 590和第三发光部分570顺序堆叠在第一电极460上。换言之,第一发光部530定位在第一电极460与第一CGL 580之间,第二发光部550定位在第一CGL 580与第二CGL590之间,以及第三发光部570定位在第二电极464与第二CGL590之间。
第一发光部530可以包括顺序地堆叠在第一电极460上的HIL 532、第一HTL 534、第一EBL 536、第一EML 520和第一HBL 538。即,HIL 532、第一HTL 534和第一EBL 536定位在第一电极460与第一EML 520之间,第一HBL 538定位在第一EML 520与第一CGL 580之间。
第一EML 520包含蒽衍生物的主体522和硼衍生物的掺杂剂542,并且蒽衍生物的蒽核是氘化的。第一EML 520发射蓝色光。
例如,在第一EML 520中,主体522的蒽核是氘化的,以及掺杂剂542可以不是氘化的,或者可以是部分或全部氘化的。
在第一EML 520中,主体522的重量%可以为约70至99.9,掺杂剂542的重量%可以为约0.1至30。为了提供足够的发光效率,掺杂剂542的重量%可以为约0.1至10,优选约1至5。
第二EML 550可以包括第二HTL 552、第二EML 540以及电子传输层(electrontransporting layer,ETL)554。第二HTL 552定位在第一CGL580与第二EML 540之间,ETL554定位在第二EML 540与第二CGL 590之间。
第二EML 540可以是黄绿色EML。例如,第二EML 540可以包含主体和黄绿色掺杂剂。或者,第二EML 540可以包含主体、红色掺杂剂和绿色掺杂剂。在该情况下,第二EML 540可以包括包含主体和红色掺杂剂(或绿色掺杂剂)的下层和包含主体和绿色掺杂剂(或红色掺杂剂)的上层。
第二EML 540可以具有包含主体和红色掺杂剂的第一层和包含主体和黄绿色掺杂剂的第二层的双层结构,或者包含主体和红色掺杂剂的第一层、包含主体和黄绿色掺杂剂的第二层和包含主体和绿色掺杂剂的第三层的三层结构。
第三发光部570可以包括第三HTL 572、第二EBL 574、第三EML560、第二HBL 576和EIL 578。
第三EML 560包含蒽衍生物的主体562和硼衍生物的掺杂剂564,并且蒽衍生物的蒽核是氘化的。第三EML 560发射蓝色光。
例如,在第三EML 560中,主体562的蒽核是氘化的,以及掺杂剂564可以不是氘化的,或者可以是部分或全部氘化的。
在第三EML 560中,主体562的重量%可以为约70至99.9,掺杂剂564的重量%可以为约0.1至30。为了提供足够的发光效率,掺杂剂564的重量%可以为约0.1至10,优选约1至5。
第三EML 560的主体562可以与第一EML 520的主体522相同或不同,以及第三EML560的掺杂剂564可以与第一EML 520的掺杂剂542相同或不同。
第一CGL 580定位在第一发光部530与第二发光部550之间,第二CGL 590定位在第二发光部550与第三发光部570之间。即,第一发光部530和第二发光部550通过第一CGL 580连接,第二发光部550和第三发光部570通过第二CGL 590连接。第一CGL 580可以为第一N型CGL 582和第一P型CGL 584的P-N结CGL,第二CGL 590可以为第二N型CGL592和第二P型CGL594的P-N结CGL。
在第一CGL 580中,第一N型CGL 582定位在第一HBL 538与第二HTL 552之间,第一P型CGL 584定位在第一N型CGL 582与第二HTL552之间。
在第二CGL 590中,第二N型CGL 592定位在ETL 554与第三HTL572之间,第二P型CGL 594定位在第二N型CGL 592与第三HTL 572之间。
在OLED D中,第一EML 520和第三EML 560各自包含各自为蒽衍生物的主体522和主体562以及各自为硼衍生物的掺杂剂542和掺杂剂564,并且蒽衍生物的蒽核是氘化的。
因此,包括第一发光部530和第三发光部570以及发射黄绿色光或红色/绿色光的第二发光部550的OLED D可以发射白色光。
在图7中,OLED D具有第一发光部530、第二发光部550和第三发光部570的三堆叠体结构。或者,OLED D还可以包括另外的发光部和CGL。
再次参考图5,在形成有有机发光层462的基板410上方形成有第二电极464。
在有机发光显示装置400中,由于从有机发光层462发射的光通过第二电极464入射到滤色器层480,因此第二电极464具有使光透射的薄轮廓。
第一电极460、有机发光层462和第二电极464构成OLED D。
滤色器层480定位在OLED D上方,并且包括分别与红色像素RP、绿色像素GP和蓝色像素BP对应的红色滤色器482、绿色滤色器484和蓝色滤色器486。
尽管未示出,滤色器层480可以通过使用粘合层附接至OLED D。或者,滤色器层480可以直接形成在OLED D上。
可以形成封装膜(未示出)以防止水分渗透到OLED D中。例如,封装膜可以包括顺序地堆叠的第一无机绝缘层、有机绝缘层和第二无机绝缘层,但不限于此。可以省略封装膜。
可以在顶部发射型OLED D上方布置用于减少环境光反射的偏光板(未示出)。例如,偏光板可以是圆偏光板。
在图5中,来自OLED D的光通过第二电极464,并且滤色器层480布置在OLED D上或上方。或者,当来自OLED D的光通过第一电极460时,滤色器层480可以布置在OLED D与第一基板410之间。
可以在OLED D与滤色器层480之间形成颜色转换层(未示出)。颜色转换层可以包括分别与红色像素RP、绿色像素GP和蓝色像素BP对应的红色颜色转换层、绿色颜色转换层和蓝色颜色转换层。来自OLED D的白色光分别通过红色颜色转换层、绿色颜色转换层和蓝色颜色转换层被转换成红色光、绿色光和蓝色光。
如上所述,来自有机发光二极管D的白色光通过红色像素RP、绿色像素GP和蓝色像素BP中的红色滤色器482、绿色滤色器484和蓝色滤色器486,使得分别从红色像素RP、绿色像素GP和蓝色像素BP提供红色光、绿色光和蓝色光。
在图5至图7中,发射白色光的OLED D用于显示装置。或者,为了用于照明装置,OLED D可以形成在基板的整个表面上而没有驱动元件和滤色器层中的至少一者。各自包括本公开的OLED D的显示装置和照明装置可以被称为有机发光装置。
图8是示出根据本公开的第三实施方案的有机发光显示装置的示意性截面图。
如图8所示,有机发光显示装置600包括:第一基板610,其中限定有红色像素RP、绿色像素GP和蓝色像素BP;面对第一基板610的第二基板670;定位在第一基板610与第二基板670之间并且提供白色发光的OLED D;以及在OLED D与第二基板670之间的颜色转换层680。
尽管未示出,可以在第二基板670与各颜色转换层680之间形成滤色器。
在第一基板610上形成有与红色像素RP、绿色像素GP和蓝色像素BP中的每一者对应的TFT Tr,并且形成有具有使TFT Tr的电极例如漏极电极露出的漏极接触孔652的钝化层650以覆盖TFT Tr。
在钝化层650上形成有包括第一电极660、有机发光层662和第二电极664的OLEDD。在这种情况下,第一电极660可以通过漏极接触孔652连接至TFT Tr的漏电极。
在红色像素区域RP、绿色像素区域GP和蓝色像素区域BP的边界处形成有覆盖第一电极660的边缘的堤层666。
OLED D发射蓝色光并且可以具有图3或图4中示出的结构。即,OLED D形成在红色像素RP、绿色像素GP和蓝色像素BP中的每一者中并提供蓝色光。
颜色转换层680包括与红色像素RP对应的第一颜色转换层682和与绿色像素GP对应的第二颜色转换层684。例如,颜色转换层680可以包含无机颜色转换材料例如量子点。
来自OLED D的蓝色光通过红色像素RP中的第一颜色转换层682转换成红色光,以及来自OLED D的蓝色光通过绿色像素GP中的第二颜色转换层684转换成绿色光。
因此,有机发光显示装置600可以显示全色图像。
另一方面,当来自OLED D的光通过第一基板610时,将颜色转换层680布置在OLEDD与第一基板610之间。
对于本领域技术人员显而易见的是,在不脱离本公开的精神或范围的情况下,可以对本公开的实施方案进行各种修改和改变。因此,旨在使修改和改变覆盖本公开,只要它们落入所附权利要求书及其等同内容的范围内。

Claims (16)

1.一种有机发光装置,包括:
基板;以及
有机发光二极管,所述有机发光二极管定位在所述基板上并且包括第一电极、面向所述第一电极的第二电极、以及包含蒽衍生物的第一主体和硼衍生物的第一掺杂剂并且定位在所述第一电极与所述第二电极之间的第一发光材料层,
其中所述第一主体的蒽核是氘化的,以及所述第一掺杂剂由式3表示:
[式3]
Figure FDA0003089849850000011
其中,R11至R14中的每一者、R21至R24中的每一者、R31至R35中的每一者和R41至R45中的每一者选自氢、氘、C1至C10烷基、未经取代或经C1至C10烷基取代的C6至C30芳基、C6至C30芳基氨基和C5至C30杂芳基,以及
其中R51选自氢、氘、C1至C10烷基和C3至C30环烷基。
2.根据权利要求1所述的有机发光装置,其中所述第一掺杂剂是作为以下式4中的一者的化合物:
[式4]
Figure FDA0003089849850000021
Figure FDA0003089849850000031
Figure FDA0003089849850000041
Figure FDA0003089849850000051
Figure FDA0003089849850000061
Figure FDA0003089849850000071
3.根据权利要求1所述的有机发光装置,其中所述第一主体由式1表示:
[式1]
Figure FDA0003089849850000072
其中R1和R2各自独立地为C6至C30芳基或C5至C30杂芳基,
其中L1和L2各自独立地为C6至C30亚芳基,以及
其中x为1至8的整数,以及y1和y2各自为0或1的整数。
4.根据权利要求3所述的有机发光装置,其中所述第一主体是作为以下式2中的一者的化合物:
[式2]
Figure FDA0003089849850000081
5.根据权利要求1所述的有机发光装置,其中所述有机发光二极管还包括:
第二发光材料层,所述第二发光材料层包含蒽衍生物的第二主体和硼衍生物的第二掺杂剂并且定位在所述第一发光材料层与所述第二电极之间;以及
第一电荷生成层,所述第一电荷生成层在所述第一发光材料层与所述第二发光材料层之间。
6.根据权利要求5所述的有机发光装置,其中所述第二主体的蒽核是氘化的。
7.根据权利要求1所述的有机发光装置,其中所述有机发光二极管还包括:
第二发光材料层,所述第二发光材料层发射蓝色光并且定位在所述第一发光材料层与所述第二电极之间;以及
第一电荷生成层,所述第一电荷生成层在所述第一发光材料层与所述第二发光材料层之间。
8.根据权利要求1所述的有机发光装置,其中在所述基板上限定有红色像素、绿色像素和蓝色像素,以及所述有机发光二极管与所述红色像素、所述绿色像素和所述蓝色像素中的每一者对应,以及
其中所述有机发光装置还包括:
颜色转换层,所述颜色转换层布置在所述基板与所述有机发光二极管之间或者布置在所述有机发光二极管上并且与所述红色像素和所述绿色像素对应。
9.根据权利要求5所述的有机发光装置,其中所述有机发光二极管还包括:
第三发光材料层,所述第三发光材料层发射黄绿色光并且定位在所述第一电荷生成层与所述第二发光材料层之间;以及
第二电荷生成层,所述第二电荷生成层在所述第二发光材料层与所述第三发光材料层之间。
10.根据权利要求5所述的有机发光装置,其中所述有机发光二极管还包括:
第三发光材料层,所述第三发光材料层发射红色光和绿色光并且定位在所述第一电荷生成层与所述第二发光材料层之间;以及
第二电荷生成层,所述第二电荷生成层在所述第二发光材料层与所述第三发光材料层之间。
11.根据权利要求5所述的有机发光装置,其中所述有机发光二极管还包括:
第三发光材料层,所述第三发光材料层包括第一层和第二层并且定位在所述第一电荷生成层与所述第二发光材料层之间,其中所述第一层发射红色光,以及所述第二层发射黄绿色光;以及
第二电荷生成层,所述第二电荷生成层在所述第二发光材料层与所述第三发光材料层之间。
12.根据权利要求11所述的有机发光装置,其中所述第三发光材料层还包括发射绿色光的第三层。
13.根据权利要求1所述的有机发光装置,其中所述有机发光二极管还包括:
第二发光材料层,所述第二发光材料层发射黄绿色光并且定位在所述第一发光材料层与所述第二电极之间;以及
第一电荷生成层,所述第一电荷生成层在所述第一发光材料层与所述第二发光材料层之间。
14.根据权利要求9所述的有机发光装置,其中在所述基板上限定有红色像素、绿色像素和蓝色像素,以及所述有机发光二极管与所述红色像素、所述绿色像素和所述蓝色像素中的每一者对应,以及
其中所述有机发光装置还包括:
滤色器层,所述滤色器层布置在所述基板与所述有机发光二极管之间或者布置在所述有机发光二极管上并且与所述红色像素、所述绿色像素和所述蓝色像素对应。
15.根据权利要求1所述的有机发光装置,其中所述第一主体的除蒽核之外的剩余部分是未氘化的。
16.根据权利要求6所述的有机发光装置,其中所述第二主体的除蒽核之外的剩余部分是未氘化的。
CN202110592780.3A 2020-05-29 2021-05-28 有机发光装置 Pending CN113745422A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200065147 2020-05-29
KR10-2020-0065147 2020-05-29
KR1020210063692A KR20210147900A (ko) 2020-05-29 2021-05-17 유기발광장치
KR10-2021-0063692 2021-05-17

Publications (1)

Publication Number Publication Date
CN113745422A true CN113745422A (zh) 2021-12-03

Family

ID=78705495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110592780.3A Pending CN113745422A (zh) 2020-05-29 2021-05-28 有机发光装置

Country Status (2)

Country Link
US (1) US20210376246A1 (zh)
CN (1) CN113745422A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482570A (zh) * 2009-09-03 2012-05-30 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
US20180301629A1 (en) * 2015-03-24 2018-10-18 Kwansei Gakuin Educational Foundation Organic electroluminescent element
CN109155368A (zh) * 2016-04-26 2019-01-04 学校法人关西学院 有机电场发光元件
US20190305227A1 (en) * 2018-03-28 2019-10-03 Lg Display Co., Ltd. Novel organic compounds and organic electroluminescent device including the same
WO2020022751A1 (ko) * 2018-07-24 2020-01-30 머티어리얼사이언스 주식회사 유기 전계 발광 소자
CN110776392A (zh) * 2018-07-24 2020-02-11 材料科学有限公司 有机化合物及包含其的有机电致发光元件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102157756B1 (ko) * 2016-12-12 2020-09-18 엘지디스플레이 주식회사 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482570A (zh) * 2009-09-03 2012-05-30 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
US20180301629A1 (en) * 2015-03-24 2018-10-18 Kwansei Gakuin Educational Foundation Organic electroluminescent element
CN109155368A (zh) * 2016-04-26 2019-01-04 学校法人关西学院 有机电场发光元件
US20190305227A1 (en) * 2018-03-28 2019-10-03 Lg Display Co., Ltd. Novel organic compounds and organic electroluminescent device including the same
WO2020022751A1 (ko) * 2018-07-24 2020-01-30 머티어리얼사이언스 주식회사 유기 전계 발광 소자
CN110776392A (zh) * 2018-07-24 2020-02-11 材料科学有限公司 有机化合物及包含其的有机电致发光元件

Also Published As

Publication number Publication date
US20210376246A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6278894B2 (ja) 有機エレクトロルミネッセンス素子
KR101375360B1 (ko) 유기발광 화합물 및 이를 이용한 유기 광소자
EP2799515A1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode
JP2016094418A (ja) 遅延蛍光化合物、これを含む有機発光ダイオード素子及び表示装置
CN112514095A (zh) 有机发光二极管和包括该有机发光二极管的有机发光装置
WO2011021520A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20120011445A (ko) 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2010140617A1 (ja) アミン誘導体及び有機エレクトロルミネッセンス素子
JP6446362B2 (ja) アミン化合物及び有機エレクトロルミネッセンス素子
CN112514094A (zh) 有机发光二极管和包括该有机发光二极管的有机发光装置
CN112514096A (zh) 有机发光二极管和包括该有机发光二极管的有机发光装置
KR101501239B1 (ko) 유기 광소자 및 이를 위한 유기 광합물
CN114695764A (zh) 有机发光二极管和包括其的有机发光装置
KR20210147901A (ko) 유기발광장치
CN114008811A (zh) 有机发光二极管和包括其的有机发光装置
CN117164535A (zh) 一种含有芴基团的化合物及其有机电致发光器件
CN113745421B (zh) 有机发光装置
CN109836421B (zh) 一种通式化合物及其应用
CN113745422A (zh) 有机发光装置
CN113745419B (zh) 有机发光装置
CN113745435B (zh) 有机发光装置
KR20210147900A (ko) 유기발광장치
CN113745418B (zh) 有机发光装置
KR20210147897A (ko) 유기발광장치
CN113745420B (zh) 有机发光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination