CN113745379A - 一种深紫外led外延结构及其制备方法 - Google Patents

一种深紫外led外延结构及其制备方法 Download PDF

Info

Publication number
CN113745379A
CN113745379A CN202111025420.1A CN202111025420A CN113745379A CN 113745379 A CN113745379 A CN 113745379A CN 202111025420 A CN202111025420 A CN 202111025420A CN 113745379 A CN113745379 A CN 113745379A
Authority
CN
China
Prior art keywords
layer
aln
deep ultraviolet
epitaxial structure
ultraviolet led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111025420.1A
Other languages
English (en)
Other versions
CN113745379B (zh
Inventor
丁涛
周飚
郭丽彬
齐胜利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Anxinmei Semiconductor Co ltd
Original Assignee
Ningbo Anxinmei Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Anxinmei Semiconductor Co ltd filed Critical Ningbo Anxinmei Semiconductor Co ltd
Priority to CN202111025420.1A priority Critical patent/CN113745379B/zh
Publication of CN113745379A publication Critical patent/CN113745379A/zh
Application granted granted Critical
Publication of CN113745379B publication Critical patent/CN113745379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明提供一种应用于深紫外发光二极管的外延结构及制备方法,具体步骤如下:提供一平片衬底;生长AlN缓冲层;对AlN缓冲层进行等离子体预处理;生长AlN低温层;生长AlN高温层;生长n型AlGaN层;生长AlxGa1‑xN/AlyGa1‑yN多量子阱有源层;生长Mg掺杂的p型AlGaN层,Mg掺杂的p型AlGaN层和Mg掺杂的p型GaN层。通过等离子体轰击AlN缓冲层表面以在AlN缓冲层铺上一层气体原子,AlN缓冲层所铺上的一层气体原子改变了AlN缓冲层表面的极性,使得后续在AlN缓冲层沉积吸附的AlN的晶体原子排列较为整齐,从而减少了外延层中的晶体缺陷,改善AlN薄膜的晶体质量,减少穿透位错,提升深紫外发光二极管的光电性能。

Description

一种深紫外LED外延结构及其制备方法
技术领域
本发明涉及半导体材料领域,特别是涉及一种深紫外LED外延结构及其制备方法。
背景技术
随着LED应用的发展,紫外LED的市场需求越来越大,发光波长覆盖210-400nm的紫外LED,具有传统的紫外光源无法比拟的优势。紫外LED不仅可以用在照明领域,同时在生物医疗、防伪鉴定、空气,水质净化、生化检测、高密度信息储存等方面都可替代传统含有毒有害物质的紫外汞灯,在目前的LED背景下,紫外光市场前景非常广阔。
目前,紫外LED外延生长技术还不够成熟,生长高性能紫外LED的材料制备困难,并且p层掺杂难度大,发光区域发光效率低下等限制,导致紫外LED芯片的发光效率不高,制备成本高,难度大,成品率低。
为了提高AlGaN基深紫外LED的发光效率,如何改善AlGaN材料的晶体质量是研究重点之一。由于同质衬底的匮乏,III族氮化物材料通常是异质外延在蓝宝石衬底上,为了降低AlGaN材料的位错密度,提高其晶体质量,在生长AlGaN材料前需要首先在蓝宝石上生长一层二元AlN材料。一方面,二元AlN材料不存在三元AlGaN材料中的组分偏析问题,在高温下生长的AlN材料晶体质量更好;另一方面,AlGaN材料的晶格常数较AlN材料的大,在AlN材料上生长的AlGaN材料会受到来自于AlN材料的压应力,这样可以避免AlGaN材料外延过厚而开裂。因此,改善AlN外延层的晶体质量是提高深紫外LED发光效率的前提。
发明内容
本发明要解决的技术问题为克服现有技术中深紫外LED外延结构的AlGaN材料的位错密度高、晶体质量差的不足之处,提供一种深紫外LED外延结构的制备方法。
为了解决本发明的技术问题,所采取的技术方案为,一种深紫外LED外延结构的制备方法,包括如下步骤:
S1、将平片衬底置于MOCVD设备即金属有机物化学气相淀积设备中,在平片衬底上生长AlN缓冲层;
S2、将长有AlN缓冲层的平片衬底从MOCVD设备中取出,放入物理气相沉积设备即PVD设备中,在AlN缓冲层的上表面进行等离子体预处理;
S3、将等离子体预处理后的平片衬底置于MOCVD设备中,依次在AlN缓冲层上生长AlN低温层、AlN高温层、n型AlGaN层、AlxGa1-xN/AlyGa1-yN多量子阱有源层、Mg掺杂的p型AlGaN阻挡层、Mg掺杂的p型AlGaN层和Mg掺杂的p型GaN层,其中x<y;
S4、采用纯氮气氛围退火处理,即制得深紫外LED外延结构。
作为深紫外LED外延结构的制备方法进一步的改进:
优选的,所述平片衬底(1)为蓝宝石、硅或者碳化硅中的一种,厚度为100-1500nm。
优选的,步骤S1中所述AlN缓冲层(2)的厚度为1-100nm,生长温度为1000-1100℃,生长压力10-200mbar,通入氨气和三甲基铝即TMAl作为反应物,反应气源V/III摩尔比为100-300。
优选的,步骤S2中所述等离子体预处理的反应气体为氮气和氧气的混合气体,工艺温度为100-600℃,压强为0.1-5mbar,电场为交变电场,电场功率为10-100W。
优选的,所述混合气体由氮气和氧气共同通入形成,氮气的通入量为50-200sccm,氧气的通入量为1-20sccm;或者,所述混合气体由氮气和氧气脉冲式交替通入形成,氮气的通入量为50-200sccm、通入时间为1-10s,氧气的通入量为1-20sccm、通入时间为1-10s,一次氮气和一次氧气为一个周期,循环周期数为10-50。
优选的,步骤S3中所述AlN低温层(3)的厚度为100-800nm,生长温度为1000-1200℃,生长压力为10-100mbar,偏三维生长模式,通入氨气和三甲基铝作为反应物,V/III摩尔比为3000-4000,工艺时间为100-1000s。
优选的,步骤S4中所述AlN高温层(4)的厚度为1-5μm,生长温度为1200-1400℃,生长压力为10-100mbar,二维生长模式,通入氨气和三甲基铝作为反应物,反应气源V/III摩尔比为200-400,工艺时间为100-10000s。
优选的,步骤S5中所述n型AlGaN层(5)的厚度为100-1000nm,生长压力为10-200mbar,该层中Si掺杂浓度1×1017/cm3-9×1018/cm3,Al组分为40-80wt%。
优选的,步骤S6中所述AlxGa1-xN/AlyGa1-yN多量子阱有源层(6)(x<y)的生长氛围为氮气,生长压力为10-200mbar,生长温度为1000-1100℃,发光波长范围为260-280nm,由AlxGa1-xN量子阱层和AlyGa1-yN量子垒层交替生长而成,其中35%<x<55%、35%<y<55%,x<y;一个量子垒层和一个量子阱层为一个生长周期,周期数为2-10。
为了解决本发明的技术问题,所采取的技术方案为,一种由上述任一制备方法制得的深紫外LED外延结构。
本发明相比现有技术的有益效果在于:
本发明在衬底上用MOCVD生长AlN缓冲层后,再用PVD对AlN薄膜进行等离子体预处理,通过等离子体轰击AlN薄膜表面以在AlN薄膜表面铺上一层气体原子,AlN薄膜表面所铺上的一层气体原子改变了AlN薄膜表面的极性,使得AlN薄膜呈现统一的Al极性,后续在MOCVD中生长AlN薄膜的晶体原子排列较为整齐,从而减少了外延层中的晶体缺陷,改善AlN薄膜的晶体质量,减少穿透位错,提升深紫外发光二极管的光电性能。Mg掺杂的p型AlGaN阻挡层为电子阻挡层,Mg掺杂的p型AlGaN层为空穴传输层,Mg掺杂的p型GaN层为P电极欧姆接触层,各层之间相互配合,最终提高了深紫外LED的发光效率。
附图说明
图1是本发明的结构图;
图2是对比例1和实施1、2制备的深紫外LED外延结构的双晶衍射分析图;其中(a)为对比例1、(b)为实施例1、(c)为实施例2。
附图中标记的含义如下:
1、平片衬底;2、AlN缓冲层;3、AlN低温层;4、AlN高温层;5、n型AlGaN层;6、AlxGa1- xN/AlyGa1-yN多量子阱有源层;7、Mg掺杂的p型AlGaN阻挡层;8、Mg掺杂的p型AlGaN层;9、Mg掺杂的p型GaN层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例以高纯氢气或氮气作为载气,以三甲基镓(TMGa),三乙基镓(TEGa)、三甲基铝(TMAl)和氨气(NH3)分别作为Ga、Al和N源,用硅烷(SiH4)和二茂镁(Cp2Mg)分别作为n、p型掺杂剂。
对比例1
本对比例提供了一种应用于深紫外发光二极管的外延结构及制备方法,包括如下步骤:
S1、将蓝宝石清洗处理后作为生长衬底1;
S2、生长AlN缓冲层2,MOCVD的工艺温度为1050℃,生长压力为50mbar,通入氨气和三甲基铝作为反应物V/III摩尔比为200,工艺时间为50s,生长厚度为50nm;
S3、生长AlN低温层3;MOCVD的工艺温度为1100℃,生长压力为60mbar,通入氨气和三甲基铝作为反应物V/III摩尔比为3500,工艺时间为500s,;
S4、生长AlN高温层4,MOCVD的工艺温度为1300℃,生长压力为50mbar,通入氨气和三甲基铝作为反应物V/III摩尔比为350,工艺时间为5000s;
S5、生长n型AlGaN层5,MOCVD的工艺温度为1060℃,生长压力为100mbar,生长厚度为700nm,该层中Si掺杂浓度5×1018/cm3,Al组分为50wt%;
S6、生长AlxGa1-xN/AlyGa1-yN多量子阱有源层6,MOCVD的工艺温度为1040℃,生长氛围为氮气,生长压力为150mbar,发光波长范围为260-280nm,其中35%<x<55%、35%<y<55%,x<y;一个量子垒层和一个量子阱层为一个生长周期,量子阱层AlxGa1-xN层和垒层AlyGa1-yN层的厚度分别为3nm和11nm,周期数为2-10;
S7、在温度980℃,生长压力为150mbar,生长一层Mg掺杂的p型AlGaN阻挡层7,厚度为10nm;
S8、在温度900℃,生长压力为200mbar,生长一层Mg掺杂的p型AlGaN层8,厚度为25nm;
S9、在温度850℃,生长压力为300mbar,生长一层Mg掺杂的p型GaN层9,厚度为50nm;
S10、在氮气氛围下,退火30分钟,外延生长过程结束,制得普通深紫外LED外延结构。
实施例1
本发明实施例提供了一种应用于深紫外发光二极管的外延结构及制备方法,具体制备步骤参照对比例1,不同之处在于,在步骤S2之后和步骤S3之间增设以下步骤:“将长有AlN缓冲层2的平片衬底1放入物理气相沉积设备即PVD设备中进行等离子体预处理,脉冲式交替通入氮气和氧气,氮气的通入量为150sccm,时间为5s,氧气的通入量为5sccm,时间为5s,一次氮气和一次氧气为一个周期,脉冲周期数为10。腔体施加的交变电场的功率为50W,工艺温度为450℃,压强为4mTorr”;
最终制得深紫外LED外延结构1。
实施例2
本发明实施例提供了一种应用于深紫外发光二极管的外延结构及制备方法,具体制备步骤参照对比例1,不同之处在于,在步骤S2之后和步骤S3之间增设以下步骤:“将长有AlN缓冲层2的平片衬底1放入物理气相沉积设备即PVD设备中进行等离子体预处理,同时通入氮气和氧气,氮气的通入量为100sccm,氧气的通入量为10sccm,腔体施加的交变电场的功率为60W,工艺温度为450℃,压强为4.5mTorr”;
最终制得深紫外LED外延结构2。
将对比例1和实施例1、2制备的深紫外LED外延结构分别进行XRD:002双晶衍射分析和XRD:102双晶衍射分析,分析图如图2所示,其中图2(a)为对比例1、2(b)为实验例1、2(c)为实施例2,上面的曲线为102(XRC),下面的曲线为002(XRC)。由图2可知,与对比例相比,实施例1、2制备的深紫外LED外延结构(002)的半高宽略有增加,但(102)的半高宽下降明显,故AlN材料的晶体质量有所提高。
本领域的技术人员应理解,以上所述仅为本发明的若干个具体实施方式,而不是全部实施例。应当指出,对于本领域的普通技术人员来说,还可以做出许多变形和改进,所有未超出权利要求所述的变形或改进均应视为本发明的保护范围。

Claims (10)

1.一种深紫外LED外延结构的制备方法,其特征在于,包括如下步骤:
S1、将平片衬底(1)置于MOCVD设备即金属有机物化学气相淀积设备中,在平片衬底(1)上生长AlN缓冲层(2);
S2、将长有AlN缓冲层(2)的平片衬底(1)从MOCVD设备中取出,放入物理气相沉积设备即PVD设备中,在AlN缓冲层(2)的上表面进行等离子体预处理;
S3、将等离子体预处理后的平片衬底(1)置于MOCVD设备中,依次在AlN缓冲层(2)上生长AlN低温层(3)、AlN高温层(4)、n型AlGaN层(5)、AlxGa1-xN/AlyGa1-yN多量子阱有源层(6)、Mg掺杂的p型AlGaN阻挡层(7)、Mg掺杂的p型AlGaN层(8)和Mg掺杂的p型GaN层(9),其中x<y;
S4、采用纯氮气氛围退火处理,即制得深紫外LED外延结构。
2.根据权利要求1所述的深紫外LED外延结构的制备方法,其特征在于,所述平片衬底(1)为蓝宝石、硅或者碳化硅中的一种,厚度为100-1500nm。
3.根据权利要求1所述的深紫外LED外延结构的制备方法,其特征在于,步骤S1中所述AlN缓冲层(2)的厚度为1-100nm,生长温度为1000-1100℃,生长压力10-200mbar,通入氨气和三甲基铝即TMAl作为反应物,反应气源V/III摩尔比为100-300。
4.根据权利要求1所述的深紫外LED外延结构的制备方法,其特征在于,步骤S2中所述等离子体预处理的反应气体为氮气和氧气的混合气体,工艺温度为100-600℃,压强为0.1-5mbar,电场为交变电场,电场功率为10-100W。
5.根据权利要求4所述的深紫外LED外延结构的制备方法,其特征在于,所述混合气体由氮气和氧气共同通入形成,氮气的通入量为50-200sccm,氧气的通入量为1-20sccm;或者,所述混合气体由氮气和氧气脉冲式交替通入形成,氮气的通入量为50-200sccm、通入时间为1-10s,氧气的通入量为1-20sccm、通入时间为1-10s,一次氮气和一次氧气为一个周期,循环周期数为10-50。
6.根据权利要求1所述的深紫外LED外延结构的制备方法,其特征在于,步骤S3中所述AlN低温层(3)的厚度为100-800nm,生长温度为1000-1200℃,生长压力为10-100mbar,偏三维生长模式,通入氨气和三甲基铝作为反应物,V/III摩尔比为3000-4000,工艺时间为100-1000s。
7.根据权利要求1所述的深紫外LED外延结构的制备方法,其特征在于,步骤S4中所述AlN高温层(4)的厚度为1-5μm,生长温度为1200-1400℃,生长压力为10-100mbar,二维生长模式,通入氨气和三甲基铝作为反应物,反应气源V/III摩尔比为200-400,工艺时间为100-10000s。
8.根据权利要求1所述的深紫外LED外延结构的制备方法,其特征在于,步骤S5中所述n型AlGaN层(5)的厚度为100-1000nm,生长压力为10-200mbar,该层中Si掺杂浓度1×1017/cm3-9×1018/cm3,Al组分为40-80wt%。
9.根据权利要求1所述的深紫外LED外延结构的制备方法,其特征在于,步骤S6中所述AlxGa1-xN/AlyGa1-yN多量子阱有源层(6)(x<y)的生长氛围为氮气,生长压力为10-200mbar,生长温度为1000-1100℃,发光波长范围为260-280nm,由AlxGa1-xN量子阱层和AlyGa1-yN量子垒层交替生长而成,其中35%<x<55%、35%<y<55%,x<y;一个量子垒层和一个量子阱层为一个生长周期,周期数为2-10。
10.一种由权利要求1-9任意一项的制备方法制得的深紫外LED外延结构。
CN202111025420.1A 2021-09-02 2021-09-02 一种深紫外led外延结构及其制备方法 Active CN113745379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111025420.1A CN113745379B (zh) 2021-09-02 2021-09-02 一种深紫外led外延结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111025420.1A CN113745379B (zh) 2021-09-02 2021-09-02 一种深紫外led外延结构及其制备方法

Publications (2)

Publication Number Publication Date
CN113745379A true CN113745379A (zh) 2021-12-03
CN113745379B CN113745379B (zh) 2024-02-02

Family

ID=78734896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111025420.1A Active CN113745379B (zh) 2021-09-02 2021-09-02 一种深紫外led外延结构及其制备方法

Country Status (1)

Country Link
CN (1) CN113745379B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986022A (zh) * 2023-03-17 2023-04-18 江西兆驰半导体有限公司 深紫外led外延片及其制备方法、深紫外led

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105296948A (zh) * 2015-11-03 2016-02-03 湘能华磊光电股份有限公司 一种提高GaN基LED光电性能的外延生长方法
CN105336830A (zh) * 2015-11-30 2016-02-17 武汉优炜星科技有限公司 一种双面发光深紫外二极管外延片、芯片的制备方法
CN106025025A (zh) * 2016-06-08 2016-10-12 南通同方半导体有限公司 一种提高深紫外led发光性能的外延生长方法
CN107845708A (zh) * 2017-09-27 2018-03-27 华中科技大学鄂州工业技术研究院 一种深紫外发光二极管外延片、芯片及其制备方法
US20190108999A1 (en) * 2016-03-08 2019-04-11 Xidian University Method for growing gallium nitride based on graphene and magnetron sputtered aluminium nitride
CN111341891A (zh) * 2020-03-09 2020-06-26 江西新正耀光学研究院有限公司 紫外led外延结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105296948A (zh) * 2015-11-03 2016-02-03 湘能华磊光电股份有限公司 一种提高GaN基LED光电性能的外延生长方法
CN105336830A (zh) * 2015-11-30 2016-02-17 武汉优炜星科技有限公司 一种双面发光深紫外二极管外延片、芯片的制备方法
US20190108999A1 (en) * 2016-03-08 2019-04-11 Xidian University Method for growing gallium nitride based on graphene and magnetron sputtered aluminium nitride
CN106025025A (zh) * 2016-06-08 2016-10-12 南通同方半导体有限公司 一种提高深紫外led发光性能的外延生长方法
CN107845708A (zh) * 2017-09-27 2018-03-27 华中科技大学鄂州工业技术研究院 一种深紫外发光二极管外延片、芯片及其制备方法
CN111341891A (zh) * 2020-03-09 2020-06-26 江西新正耀光学研究院有限公司 紫外led外延结构及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986022A (zh) * 2023-03-17 2023-04-18 江西兆驰半导体有限公司 深紫外led外延片及其制备方法、深紫外led

Also Published As

Publication number Publication date
CN113745379B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
TW201331987A (zh) 複合基材、其製造方法與發光元件
CN112289900B (zh) 紫外发光二极管外延片及其制备方法
CN108847435B (zh) 一种发光二极管外延片及其制备方法
CN109378373B (zh) 基于h-BN电子阻挡层的高效深紫外发光二极管及制备方法
CN112687773B (zh) 紫外发光二极管的外延片及其制备方法
CN102306691A (zh) 一种提高发光二极管发光效率的方法
CN116314496B (zh) 一种高光效发光二极管外延片及其制备方法、led
CN108878609B (zh) Led的aln缓冲层及其外延生长方法
CN117253950B (zh) 发光二极管外延片及其制备方法、发光二极管
CN109994580B (zh) 发光二极管的外延片及其制作方法
CN109103312B (zh) 一种氮化镓基发光二极管外延片及其制作方法
CN113745379B (zh) 一种深紫外led外延结构及其制备方法
CN112259647B (zh) 发光二极管外延片的制备方法及发光二极管外延片
CN111883623B (zh) 近紫外发光二极管外延片及其制备方法
CN110246943B (zh) 基于石墨烯的led外延生长方法
CN115863503B (zh) 深紫外led外延片及其制备方法、深紫外led
CN116978992A (zh) 发光二极管及其制备方法
CN116565098A (zh) 氮化镓发光二极管外延片及其生长工艺
CN111146318A (zh) 一种基于MoS2的薄层紫外发光二极管及其制作方法
CN114373840A (zh) 一种发光二极管外延片及其制备方法
CN115084329A (zh) 一种应用于Si衬底上的LED外延片及其生长方法
CN210897327U (zh) 硅基应力协变衬底及垂直结构氮化镓led
CN114784150A (zh) 深紫外发光二极管的外延片及其制备方法
CN107910411B (zh) 发光二极管及其制备方法
CN112420888A (zh) 紫外发光二极管外延片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant