CN113739782A - 一种光纤陀螺闭环控制方法、系统、电子设备及存储介质 - Google Patents

一种光纤陀螺闭环控制方法、系统、电子设备及存储介质 Download PDF

Info

Publication number
CN113739782A
CN113739782A CN202111296084.4A CN202111296084A CN113739782A CN 113739782 A CN113739782 A CN 113739782A CN 202111296084 A CN202111296084 A CN 202111296084A CN 113739782 A CN113739782 A CN 113739782A
Authority
CN
China
Prior art keywords
feedback
wave
signal
fiber
optic gyroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111296084.4A
Other languages
English (en)
Other versions
CN113739782B (zh
Inventor
杜石鹏
张琛
凌卫伟
段威
刘金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
717th Research Institute of CSIC
Original Assignee
717th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 717th Research Institute of CSIC filed Critical 717th Research Institute of CSIC
Priority to CN202111296084.4A priority Critical patent/CN113739782B/zh
Publication of CN113739782A publication Critical patent/CN113739782A/zh
Application granted granted Critical
Publication of CN113739782B publication Critical patent/CN113739782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

本发明涉及一种光纤陀螺闭环控制方法及系统,在光纤陀螺的光路中施加频率为本征频率奇数倍的正负交替的方波调制信号;分别确定方波调制信号在正半周期和负半周期调制时,相位调制器中的两路光形成的干涉信号的光强
Figure RE-489234DEST_PATH_IMAGE001
Figure RE-482597DEST_PATH_IMAGE002
,计算解调信号为光强
Figure RE-299244DEST_PATH_IMAGE001
Figure RE-36256DEST_PATH_IMAGE002
差值
Figure RE-559641DEST_PATH_IMAGE003
;根据
Figure RE-51802DEST_PATH_IMAGE003
修正闭环反馈相移
Figure RE-293428DEST_PATH_IMAGE004
;以闭环反馈相移
Figure RE-568551DEST_PATH_IMAGE004
为阶梯波高度,以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于反馈阶梯波控制相位调制器;采用本征频率奇数倍的方波作为调制信号,通过提高调制解调与闭环反馈的频率提高载体对于外界角速率输入的响应速度,有效提升了光纤陀螺的响应带宽并提升光纤陀螺的动态性能。

Description

一种光纤陀螺闭环控制方法、系统、电子设备及存储介质
技术领域
本发明涉及光纤陀螺技术领域,尤其涉及一种光纤陀螺闭环控制方法、系统、电子设备及存储介质。
背景技术
光纤陀螺是一种以Sagnac效应为理论基础的全固态角速度传感器,具有可靠性高、设计灵活、精度高、动态范围大、无中心工作点等方面的优势,已经成为当今核心惯性器件中不可或缺的一份子。
如图1所示为一种干涉式数字闭环光纤陀螺的结构示意图,由图1可知,数字闭环光纤陀螺的组成包括光源1、耦合器2、相位调制器3、光纤环4、光电转换组件5、放大滤波模块6、A/D转换模块7、数字信号处理模块8、D/A转换模块9和驱动电路10。
光纤陀螺对转速的测量通过测量光纤环4中两束相向传播的光因转速产生的非互易性相位差(即Sagnac相移)来实现。数字闭环光纤陀螺通过闭环反馈的方式在光路中施加与Sagnac相移大小相等、方向相反的反馈相位将两束光的相位差控制在零附近。反馈相位通过对干涉信号进行信号调制和数字解调获得,调制和解调信号由数字信号处理模块8产生。反馈相位通过对相位调制器3施加控制电压来实现,相位调制器3对光信号产生的相位调制与控制电压成正比。
一般情况下,光纤陀螺采用本征频率方波或者“四态”方波的调制解调方案,即在 光路中施加与本征频率同频的方波/“四态”方波产生偏置,并对正负偏置信号的采样值作 差得出解调信号,解调信号累加后产生与转速成正比的反馈信号,反馈信号以阶梯波累加 的方式作用于相位调制器3,反馈频率与解调频率相同。如图2所示为本征频率方波调制过 程示意图。图中
Figure 743673DEST_PATH_IMAGE001
表示在相位调制器3中产生的干涉光信号受到的调制信号,
Figure 585858DEST_PATH_IMAGE002
表示 在相位调制器3中进行干涉的逆时针传播的一路光受到的调制信号,
Figure 154242DEST_PATH_IMAGE003
表示在相位调制 器3中进行干涉的顺时针传播的一路光受到的调制信号,这种调制解调方案在环境动态特 性要求不高的情况下可以满足要求,但是在高动态的环境下,要求光纤陀螺能够快速响应 外界变化,就可能难以满足需求,甚至在瞬态冲击环境下会引起跨条纹现象。
发明内容
本发明针对现有技术中存在的技术问题,提供一种光纤陀螺闭环控制方法、系统、电子设备及存储介质,采用本征频率奇数倍的方波作为调制信号,通过提高调制解调与闭环反馈的频率提高载体对于外界角速率输入的响应速度,有效提升了光纤陀螺的响应带宽,在保证精度不变的情况下通过软件算法的优化有效提升光纤陀螺的动态性能。
根据本发明的第一方面,提供了一种光纤陀螺闭环控制方法,光纤陀螺包括:数字信号处理模块和相位调制器,所述控制方法包括:
步骤1,在所述光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大于1的奇数;
步骤2,分别确定所述方波调制信号在正半周期和负半周期调制时,所述相位调制 器中的两路光形成的干涉信号的光强
Figure 183509DEST_PATH_IMAGE004
Figure 659490DEST_PATH_IMAGE005
,计算解调信号为所述光强
Figure 166301DEST_PATH_IMAGE004
Figure 905587DEST_PATH_IMAGE005
差值
Figure 422150DEST_PATH_IMAGE006
步骤3,根据所述解调信号
Figure 373926DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 112075DEST_PATH_IMAGE007
;以所述闭环反馈相移
Figure 304153DEST_PATH_IMAGE007
为阶 梯波高度,以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于所述反馈阶梯波 控制所述相位调制器。
在上述技术方案的基础上,本发明还可以作出如下改进。
可选的,所述步骤2中确定所述光强
Figure 291700DEST_PATH_IMAGE004
Figure 781588DEST_PATH_IMAGE005
的过程包括:设置使能信号对所述干 涉信号进行采样并保存,所述方波调制信号在正半周期时对应的采样值为
Figure 921713DEST_PATH_IMAGE004
,所述方波调 制信号在负半周期调制时对应的采样值为
Figure 471643DEST_PATH_IMAGE005
所述方波调制信号完成正半周期采样时更新所述采样值
Figure 415328DEST_PATH_IMAGE004
,所述方波调制信号完 成负半周期采样时更新所述采样值
Figure 253447DEST_PATH_IMAGE005
可选的,所述步骤3中根据所述解调信号
Figure 762926DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 765648DEST_PATH_IMAGE007
的公式为:
Figure 462208DEST_PATH_IMAGE008
其中,
Figure 106947DEST_PATH_IMAGE009
为闭环反馈系数。
可选的,所述步骤3中进行阶梯波累加得到反馈阶梯波的公式为:
Figure 674195DEST_PATH_IMAGE010
其中,
Figure 113398DEST_PATH_IMAGE011
Figure 766096DEST_PATH_IMAGE012
为当前时刻以及当前时刻之前一个度越时间的反馈阶梯波值。
可选的,所述步骤3包括:
在所述数字信号处理模块中生成k个寄存器保存当前时刻之前一个渡越时间内的 反馈阶梯波值,第i个寄存器中保存的值为反馈阶梯波
Figure 198214DEST_PATH_IMAGE013
在完成所述方波调制信号在正半周期采样或者负半周期的反馈相移更新运算后, 将当前的反馈阶梯波值
Figure 898930DEST_PATH_IMAGE014
保存至第一个寄存器使
Figure 758301DEST_PATH_IMAGE015
=
Figure 180186DEST_PATH_IMAGE016
,并依次将第i个寄存器中 保存的反馈阶梯波
Figure 681575DEST_PATH_IMAGE013
传递给第i+1个寄存器使
Figure 708568DEST_PATH_IMAGE017
=
Figure 738841DEST_PATH_IMAGE013
所述步骤3中进行阶梯波累加得到反馈阶梯波的公式为:
Figure 913601DEST_PATH_IMAGE018
其中,
Figure 890785DEST_PATH_IMAGE019
为当前反馈阶梯波。
可选的,所述步骤3中基于所述反馈阶梯波控制所述相位调制器的过程包括:
将所述反馈阶梯波与所述方波调制信号相加后,经驱动电路转换为施加在所述相位调制器的控制电压。
根据本发明的第二方面,提供一种光纤陀螺闭环控制系统,光纤陀螺包括:数字信号处理模块、光电转换组件和相位调制器;
所述数字信号处理模块在所述光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大于1的奇数;
所述数字信号处理模块对所述光电转换组件转换后的信号进行采样,分别确定所 述方波调制信号在正半周期和负半周期调制时,所述相位调制器中的两路光形成的干涉信 号的光强
Figure 83868DEST_PATH_IMAGE004
Figure 767266DEST_PATH_IMAGE005
,计算解调信号为所述光强
Figure 678590DEST_PATH_IMAGE004
Figure 741355DEST_PATH_IMAGE005
差值
Figure 992208DEST_PATH_IMAGE006
所述数字信号处理模块根据所述解调信号
Figure 380595DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 716899DEST_PATH_IMAGE007
;以所述闭环 反馈相移
Figure 832622DEST_PATH_IMAGE007
为阶梯波高度,以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于 所述反馈阶梯波控制所述相位调制器,完成闭环控制。
根据本发明的第三方面,提供了一种电子设备,包括存储器、处理器,所述处理器用于执行存储器中存储的计算机管理类程序时实现光纤陀螺闭环控制方法的步骤。
根据本发明的第四方面,提供了一种计算机可读存储介质,其上存储有计算机管理类程序,所述计算机管理类程序被处理器执行时实现光纤陀螺闭环控制方法的步骤。
本发明提供的一种光纤陀螺闭环控制方法、系统、电子设备及存储介质,在不改变硬件的基础上,通过软件算法的优化,有效提升了光纤陀螺的动态性能;有效解决了高精度光纤陀螺由于光纤环长度增加引起的带宽降低问题;通过对调制频率的设计,可有效抑制光纤陀螺在大量级瞬态冲击下的跨条纹现象。
附图说明
图1为一种干涉式数字闭环光纤陀螺的结构示意图;
图2为本征频率方波调制过程示意图;
图3为本发明实施例提供的3倍本征频率方波调制信号示意图;
图4为本发明实施例提供的3倍本征频率方波调制过程示意图;
图5为本发明实施例提供的3倍本征频率方波调制阶梯波曲线示意图;
图6为本发明实施例提供的奇数倍本征频率方波调制解调时序图;
图7本发明提供的当前时刻之前一个渡越时间内的反馈阶梯波值的更新过程示意图;
图8为本发明实施例提供的四态波调制过程示意图;
图9为本发明提供的一种可能的电子设备的硬件结构示意图;
图10为本发明提供的一种可能的计算机可读存储介质的硬件结构示意图。
附图中,各标号所代表的部件列表如下:
1、光源,2、耦合器,3、相位调制器,4、光纤环,5、光电转换组件,6、放大滤波模块,7、A/D转换模块,8、数字信号处理模块,9、D/A转换模块,10、驱动电路。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
一方面,光纤陀螺快速响应高动态角速率变化的要求越来越高,需要提升光纤陀螺的带宽;另一方面,为了提高精度普遍采用增加光纤环长的方案,这样会降低光纤陀螺的本征频率,降低了光纤陀螺的带宽。本发明针对光纤陀螺高动态环境下的应用的需求以及高精度光纤陀螺带宽下降的问题,在保证精度不变的情况下通过软件算法的优化有效提升光纤陀螺的动态性能。
结合图1,光纤陀螺光源1输出的光进入相位调制器3后分成2束分别沿顺时针和逆 时针在光纤环4中传播,驱动电路10施加的控制电压在相位调制器3的一路分支上。这样,顺 时针和逆时针传播的光在光纤环4中传播一周后在相位调制器3汇合,两者所受到的调制相 位在时间上相差一个渡越时间
Figure 751031DEST_PATH_IMAGE020
(光在光纤环4中传播一周所用的时间)。
光纤陀螺的数字信号处理模块8输出数字量
Figure 497270DEST_PATH_IMAGE021
Figure 320870DEST_PATH_IMAGE022
,n为D/A转换模块9 中D/A转换器的位数),经过D/A转换模块9和驱动电路10在相位调制器3的一路分支上产生 一个与
Figure 988087DEST_PATH_IMAGE021
成正比的电压信号
Figure 744690DEST_PATH_IMAGE023
,此电压信号对相位调制器3的一路分支进行调制使其光 路中产生一个幅值为
Figure 474880DEST_PATH_IMAGE024
的调制相位。调制相位
Figure 785775DEST_PATH_IMAGE024
与信号处理模块8输出的调制信号数字量
Figure 259613DEST_PATH_IMAGE021
成正比,通过在数字信号处理模块8内部的软件程序设计就可以实现对调制信号的幅值 和频率的设计。
具体的,本发明提供的一种光纤陀螺闭环控制方法包括:
步骤1,在光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大于1的奇数。
具体实施中,根据需求生成光纤陀螺的方波调制信号,该方波调制信号的频率为 光纤环本征频率k(k=3,5,…)倍,幅值为
Figure 73986DEST_PATH_IMAGE021
,占空比为50/50。奇数倍本征频率的方波调制 信号的调制下,光路受到的调制信号为一系列频率为本征频率的k倍、正负交替的方波信 号,一个调制周期的信号可进行一次调制解调和闭环反馈。
生成方波调制信号的方法可以为:数字信号处理模块8内部根据所需频率通过对 时钟计数的方式产生时序控制信号,时序控制信号为高电平时数字信号处理模块8控制D/A 转换模块9输出调制信号
Figure 489923DEST_PATH_IMAGE024
,控制信号为低电平时数字信号处理模块8控制D/A转换模块9 输出调制信号0。
步骤2,分别确定方波调制信号在正半周期和负半周期调制时,相位调制器中的两 路光形成的干涉信号的光强
Figure 773268DEST_PATH_IMAGE004
Figure 300065DEST_PATH_IMAGE005
,计算解调信号为光强
Figure 968943DEST_PATH_IMAGE004
Figure 61443DEST_PATH_IMAGE005
差值
Figure 143669DEST_PATH_IMAGE006
可以理解的是,干涉信号采样为数字信号处理模块8控制A/D转换模块7对光电转换组件5转换后的信号进行采样。
方波调制信号调制正半周期(+
Figure 693730DEST_PATH_IMAGE025
)在相位调制器3中进行干涉的两路光形成的干 涉信号的光强可以表示为:
Figure 482695DEST_PATH_IMAGE026
(1)
方波调制信号调制负半周期在相位调制器3中进行干涉的两路光形成的干涉信号的光强可以表示为:
Figure 991167DEST_PATH_IMAGE027
(2)
其中,
Figure 232793DEST_PATH_IMAGE028
为顺时针或者逆时针单路光信号的光强;
Figure 101392DEST_PATH_IMAGE029
为光路中的sagnac相移;
Figure 557912DEST_PATH_IMAGE007
为闭环反馈相移,由运算得到;
Figure 158658DEST_PATH_IMAGE025
为调制相位。
则解调信号
Figure 963278DEST_PATH_IMAGE030
(3)
其中,
Figure 307672DEST_PATH_IMAGE031
可以理解的是,纤陀螺闭环稳定状态下
Figure 867966DEST_PATH_IMAGE032
,解调信号
Figure 187083DEST_PATH_IMAGE033
,此时,
Figure 731197DEST_PATH_IMAGE034
,通过光 电转换组件5转换后的信号为有效部分为一条直线;陀螺旋转时,偏置点发生偏移,
Figure 630014DEST_PATH_IMAGE035
, 探测器接收到的光信号为与调制信号同频的方波信号。
在一种可能的实施例方式中,步骤2中确定光强
Figure 310394DEST_PATH_IMAGE004
Figure 518521DEST_PATH_IMAGE005
的过程包括:设置使能信 号对干涉信号进行采样并保存,方波调制信号在正半周期时对应的采样值为
Figure 35085DEST_PATH_IMAGE004
,方波调制 信号在负半周期调制时对应的采样值为
Figure 721281DEST_PATH_IMAGE005
方波调制信号完成正半周期采样时更新采样值
Figure 269549DEST_PATH_IMAGE004
,方波调制信号完成负半周期采 样时更新采样值
Figure 179736DEST_PATH_IMAGE005
步骤3,根据解调信号
Figure 636126DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 876745DEST_PATH_IMAGE007
;以闭环反馈相移
Figure 266138DEST_PATH_IMAGE007
为阶梯波高度, 以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于反馈阶梯波控制相位调制 器,完成闭环控制。
在一种可能的实施例方式中,步骤3中根据解调信号
Figure 629118DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 307224DEST_PATH_IMAGE007
的公 式为:
Figure 397539DEST_PATH_IMAGE008
(4)
其中,
Figure 595434DEST_PATH_IMAGE009
为闭环反馈系数。
根据公式(4)对解调信号进行运算生成当前时刻的反馈相移
Figure 378582DEST_PATH_IMAGE007
,反馈相移
Figure 543984DEST_PATH_IMAGE007
与解 调信号
Figure 920214DEST_PATH_IMAGE006
的积分值成正比。
在一种可能的实施例方式中,步骤3中进行阶梯波累加得到反馈阶梯波的公式为:
Figure 284199DEST_PATH_IMAGE010
(5)
其中,
Figure 723402DEST_PATH_IMAGE011
Figure 376100DEST_PATH_IMAGE012
为当前时刻以及当前时刻之前一个度越时间的反馈阶梯波值。
在一种可能的实施例方式中,在数字信号处理模块8中生成k个寄存器保存当前时 刻之前一个渡越时间内的反馈阶梯波值,第i个寄存器中保存的值为反馈阶梯波
Figure 558951DEST_PATH_IMAGE013
,i =1,2,…,k。
在完成方波调制信号在正半周期采样或者负半周期的反馈相移更新运算后,将当 前的反馈阶梯波值
Figure 980705DEST_PATH_IMAGE036
保存至第一个寄存器使
Figure 105656DEST_PATH_IMAGE015
=
Figure 730804DEST_PATH_IMAGE037
,并依次将第i个寄存器中保存 的反馈阶梯波
Figure 966613DEST_PATH_IMAGE013
传递给第i+1个寄存器使
Figure 787414DEST_PATH_IMAGE017
=
Figure 817687DEST_PATH_IMAGE013
具体实施中,在方波调制正半周期采样完成后,将当前的反馈阶梯波值
Figure 992447DEST_PATH_IMAGE036
保存 至
Figure 704051DEST_PATH_IMAGE015
,之前的
Figure 897135DEST_PATH_IMAGE038
传递至
Figure 114621DEST_PATH_IMAGE039
,…依次传递,并丢去更早时刻的
Figure 760366DEST_PATH_IMAGE040
;更新采样值
Figure 26393DEST_PATH_IMAGE004
。或者方波调制负半周期的反馈相移更新运算完成后,保存当前的反馈阶梯波值
Figure 339563DEST_PATH_IMAGE038
, 之前的
Figure 914901DEST_PATH_IMAGE038
传递至
Figure 61324DEST_PATH_IMAGE039
,…依次传递,并丢去更早时刻的
Figure 380310DEST_PATH_IMAGE040
;更新采样值
Figure 298718DEST_PATH_IMAGE005
步骤3中进行阶梯波累加得到反馈阶梯波的公式为:
Figure 44958DEST_PATH_IMAGE018
(6)
其中,
Figure 399715DEST_PATH_IMAGE019
为当前反馈阶梯波;
Figure 69862DEST_PATH_IMAGE040
表示第k个寄存器保存的反馈阶梯波,即 当前时刻一个渡越时间前的反馈阶梯波。
在一种可能的实施例方式中,步骤3中基于反馈阶梯波控制相位调制器的过程包括:
将反馈阶梯波与方波调制信号相加后,经驱动电路10转换为施加在相位调制器3的控制电压。
本发明提供的一种光纤陀螺闭环控制方法,采用本征频率奇数倍的方波作为调制信号,通过提高调制解调与闭环反馈的频率提高载体对于外界角速率输入的响应速度,有效提升了光纤陀螺的响应带宽,在保证精度不变的情况下通过软件算法的优化有效提升光纤陀螺的动态性能。
实施例1
本发明提供的实施例1为本发明提供的一种光纤陀螺闭环控制方法的实施例,本实施例以光纤环本征频率3倍(k=3)的方波调制信号为例进行说明本发明信号解调原理,如图3和图4所示分别为本发明实施例提供的3倍本征频率方波调制信号示意图和3倍本征频率方波调制过程示意图,图5为本发明实施例提供的3倍本征频率方波调制阶梯波曲线示意图,图6为本发明实施例提供的奇数倍本征频率方波调制解调时序图。
该实施例包括:
步骤1,在光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大于1的奇数。
数字信号处理模块8中生成幅值为
Figure 92045DEST_PATH_IMAGE021
,周期为
Figure 759918DEST_PATH_IMAGE041
,占空比为50/50的方波信号, 该信号经过D/A转换模块9和驱动电路10施加在相位调制器3上,使其一路分支的光路中产 生了一个相位幅值为
Figure 133130DEST_PATH_IMAGE024
,周期为
Figure 338459DEST_PATH_IMAGE041
,占空比为50/50的方波信号。由于顺时针和逆时针传 播的光在光纤环4中传播一周后在相位调制器3汇合,两者所受到的调制相位在时间上相差 一个渡越时间
Figure 683990DEST_PATH_IMAGE042
,光纤陀螺敏感的干涉信号所收到的调制相位实际等于当前时刻的调制相 位与上一个渡越时间调制相位之差,光路实际收到的调制信号为相位幅值为±
Figure 850660DEST_PATH_IMAGE024
,周期为
Figure 180010DEST_PATH_IMAGE041
,占空比为50/50的方波信号。
生成方波调制信号的方法可以为:数字信号处理模块8内部根据所需频率通过对 时钟计数的方式产生时序控制信号,时序控制信号为高电平时数字信号处理模块8控制D/A 转换模块9输出调制信号
Figure 378911DEST_PATH_IMAGE024
,控制信号为低电平时数字信号处理模块8控制D/A转换模块9 输出调制信号0。图6中a为3倍本征频率调制时的时序控制信号的波形图。
步骤2,分别确定方波调制信号在正半周期和负半周期调制时,相位调制器中的两 路光形成的干涉信号的光强
Figure 126418DEST_PATH_IMAGE004
Figure 447678DEST_PATH_IMAGE005
,计算解调信号为光强
Figure 952740DEST_PATH_IMAGE004
Figure 283227DEST_PATH_IMAGE005
差值
Figure 72191DEST_PATH_IMAGE006
图6中b为3倍本征频率调制时使能信号(高有效)的波形图,使能信号有效则控制 A/D转换模块7在采样时钟驱动下对干涉信号进行采样并保存,图6中c为3倍本征频率调制 时的解调信号的控制时序(高有效)。图6中时序控制信号a为高电平对应的采样值记为
Figure 312155DEST_PATH_IMAGE043
(公 式(1)描述),时序控制信号a为低电平对应的采样值记为
Figure 819360DEST_PATH_IMAGE044
(公式(2)描述),其它奇数倍本征 频率调制(k为大于1的奇数,且k≠3)与3倍本征频率调制相同,即解调过程每个方波周期进 行一次。
步骤3,根据解调信号
Figure 173112DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 613321DEST_PATH_IMAGE007
;以闭环反馈相移
Figure 292695DEST_PATH_IMAGE007
为阶梯波高度, 以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于反馈阶梯波控制相位调制 器,完成闭环控制。
在一种可能的实施例中,步骤3中利用公式(4)根据解调信号
Figure 818354DEST_PATH_IMAGE006
修正闭环反馈相 移
Figure 428327DEST_PATH_IMAGE007
图6中d为3倍本征频率调制时的反馈相移更新运算的控制时序(高有效),其它奇数倍本征频率调制(k为大于1的奇数,且k≠3)与3倍本征频率调制相同,即每次信号解调完成后用解调信号更新反馈相移。
在一种可能的实施例中,步骤3包括:
在数字信号处理模块8中生成k个寄存器保存当前时刻之前一个渡越时间内的反 馈阶梯波值,第i个寄存器中保存的值为反馈阶梯波
Figure 4933DEST_PATH_IMAGE013
,i=1,2,…,k。
在完成方波调制信号在正半周期采样或者负半周期的反馈相移更新运算后,将当 前的反馈阶梯波值
Figure 776580DEST_PATH_IMAGE037
保存至第一个寄存器使
Figure 904434DEST_PATH_IMAGE015
=
Figure 849256DEST_PATH_IMAGE037
,并依次将第i个寄存器中保存 的反馈阶梯波
Figure 467319DEST_PATH_IMAGE013
传递给第i+1个寄存器使
Figure 222917DEST_PATH_IMAGE017
=
Figure 926431DEST_PATH_IMAGE013
具体实施中,在方波调制正半周期采样完成后,将当前的反馈阶梯波值
Figure 691255DEST_PATH_IMAGE045
保存 至
Figure 163825DEST_PATH_IMAGE015
,之前的
Figure 605171DEST_PATH_IMAGE038
传递至
Figure 343451DEST_PATH_IMAGE039
,…依次传递,并丢去更早时刻的
Figure 833338DEST_PATH_IMAGE040
;更新采样值
Figure 970534DEST_PATH_IMAGE004
。或者方波调制负半周期的反馈相移更新运算完成后,保存当前的反馈阶梯波值
Figure 317201DEST_PATH_IMAGE038
, 之前的
Figure 542777DEST_PATH_IMAGE038
传递至
Figure 836355DEST_PATH_IMAGE039
,…依次传递,并丢去更早时刻的
Figure 345834DEST_PATH_IMAGE040
;更新采样值
Figure 817398DEST_PATH_IMAGE005
图6中e为3倍本征频率调制时的阶梯波动态保存控制时序(高有效),该信号高电 平时进行阶梯波信号的动态保存,其它奇数倍本征频率调制(k为大于1的奇数,且k≠3)与3 倍本征频率调制基本相同,仅生成的寄存器个数有所不同。图7本发明提供的当前时刻之前 一个渡越时间内的反馈阶梯波值
Figure 45117DEST_PATH_IMAGE013
的更新过程示意图。
以公式(6)计算反馈阶梯波的更新值。
在一种可能的实施例中,步骤3中基于反馈阶梯波控制相位调制器的过程包括:
将反馈阶梯波与方波调制信号相加后,经驱动电路10转换为施加在相位调制器3的控制电压。
其他奇数倍本征频率方波调制的调制解调原理与上述基本相同,仅在调制与解调的频率及保存的上一个度越时间的阶梯波信号数量不同。
本发明同样适用于四态方波调制的方案,如图8所示为本发明实施例提供的四态波调制过程示意图,调制频率同样可以提升为本征频率的奇数倍,解调公式与本征频率四态方波的方案相同,其实施方式与上述奇数倍本征频率方波调制的方案相同。
实施例2
本发明提供的实施例2为本发明提供的一种光纤陀螺闭环控制系统的实施例,所述光纤陀螺包括:数字信号处理模块、光电转换组件和相位调制器。
所述数字信号处理模块在所述光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大于1的奇数。
所述数字信号处理模块对所述光电转换组件转换后的信号进行采样,分别确定所 述方波调制信号在正半周期和负半周期调制时,所述相位调制器中的两路光形成的干涉信 号的光强
Figure 876807DEST_PATH_IMAGE004
Figure 725945DEST_PATH_IMAGE005
,计算解调信号为所述光强
Figure 679995DEST_PATH_IMAGE004
Figure 814916DEST_PATH_IMAGE005
差值
Figure 247035DEST_PATH_IMAGE006
所述数字信号处理模块根据所述解调信号
Figure 481838DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 544472DEST_PATH_IMAGE007
;以所述闭环 反馈相移
Figure 481204DEST_PATH_IMAGE007
为阶梯波高度,以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于 所述反馈阶梯波控制所述相位调制器,完成闭环控制。
可以理解的是,本发明提供的一种光纤陀螺闭环控制系统与前述各实施例提供的光纤陀螺闭环控制方法相对应,光纤陀螺闭环控制系统的相关技术特征可参考光纤陀螺闭环控制方法的相关技术特征,在此不再赘述。
请参阅图9,图9为本发明实施例提供的电子设备的实施例示意图。如图9所示,本 发明实施例提了一种电子设备,包括存储器1310、处理器1320及存储在存储器1320上并可 在处理器1320上运行的计算机程序1311,处理器1320执行计算机程序1311时实现以下步 骤:在所述光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大 于1的奇数;分别确定所述方波调制信号在正半周期和负半周期调制时,所述相位调制器中 的两路光形成的干涉信号的光强
Figure 202167DEST_PATH_IMAGE004
Figure 478427DEST_PATH_IMAGE005
,计算解调信号为所述光强
Figure 525012DEST_PATH_IMAGE004
Figure 886723DEST_PATH_IMAGE005
差值
Figure 926223DEST_PATH_IMAGE006
;根据 所述解调信号
Figure 70372DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 537125DEST_PATH_IMAGE007
;以所述闭环反馈相移
Figure 120554DEST_PATH_IMAGE007
为阶梯波高度,以一个渡越 时间为周期,进行阶梯波累加得到反馈阶梯波,基于所述反馈阶梯波控制所述相位调制器, 完成闭环控制。
请参阅图10,图10为本发明提供的一种计算机可读存储介质的实施例示意图。如 图10所示,本实施例提供了一种计算机可读存储介质1400,其上存储有计算机程序1411,该 计算机程序1411被处理器执行时实现如下步骤:在所述光纤陀螺的光路中施加频率为本征 频率k倍的正负交替的方波调制信号,k为大于1的奇数;分别确定所述方波调制信号在正半 周期和负半周期调制时,所述相位调制器中的两路光形成的干涉信号的光强
Figure 714477DEST_PATH_IMAGE004
Figure 965330DEST_PATH_IMAGE005
,计算 解调信号为所述光强
Figure 353717DEST_PATH_IMAGE004
Figure 424441DEST_PATH_IMAGE005
差值
Figure 540165DEST_PATH_IMAGE006
;根据所述解调信号
Figure 458573DEST_PATH_IMAGE006
修正闭环反馈相移
Figure 204812DEST_PATH_IMAGE007
;以所述 闭环反馈相移
Figure 838532DEST_PATH_IMAGE007
为阶梯波高度,以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波, 基于所述反馈阶梯波控制所述相位调制器,完成闭环控制。
本发明实施例提供的一种光纤陀螺闭环控制方法、系统及存储介质,在不改变硬件的基础上,通过软件算法的优化,有效提升了光纤陀螺的动态性能;有效解决了高精度光纤陀螺由于光纤环长度增加引起的带宽降低问题;通过对调制频率的设计,可有效抑制光纤陀螺在大量级瞬态冲击下的跨条纹现象。
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式计算机或者其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (9)

1.一种光纤陀螺闭环控制方法,所述光纤陀螺包括:数字信号处理模块和相位调制器,其特征在于,所述控制方法包括:
步骤1,在所述光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大于1的奇数;
步骤2,分别确定所述方波调制信号在正半周期和负半周期调制时,所述相位调制器中 的两路光形成的干涉信号的光强
Figure 227868DEST_PATH_IMAGE001
Figure 826340DEST_PATH_IMAGE002
,计算解调信号为所述光强
Figure 827663DEST_PATH_IMAGE001
Figure 853388DEST_PATH_IMAGE002
差值
Figure 323683DEST_PATH_IMAGE003
步骤3,根据所述解调信号
Figure 497086DEST_PATH_IMAGE003
修正闭环反馈相移
Figure 103648DEST_PATH_IMAGE004
;以所述闭环反馈相移
Figure 815121DEST_PATH_IMAGE004
为阶梯波 高度,以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于所述反馈阶梯波控制 所述相位调制器。
2.根据权利要求1所述的控制方法,其特征在于,所述步骤2中确定所述光强
Figure 507133DEST_PATH_IMAGE001
Figure 447407DEST_PATH_IMAGE002
的 过程包括:设置使能信号对所述干涉信号进行采样并保存,所述方波调制信号在正半周期 时对应的采样值为
Figure 924787DEST_PATH_IMAGE001
,所述方波调制信号在负半周期调制时对应的采样值为
Figure 557894DEST_PATH_IMAGE002
所述方波调制信号完成正半周期采样时更新所述采样值
Figure 986470DEST_PATH_IMAGE001
,所述方波调制信号完成负 半周期采样时更新所述采样值
Figure 730435DEST_PATH_IMAGE002
3.根据权利要求1所述的控制方法,其特征在于,所述步骤3中根据所述解调信号
Figure 577169DEST_PATH_IMAGE003
修 正闭环反馈相移
Figure 863400DEST_PATH_IMAGE004
的公式为:
Figure 795584DEST_PATH_IMAGE005
其中,
Figure 77661DEST_PATH_IMAGE006
为闭环反馈系数。
4.根据权利要求1所述的控制方法,其特征在于,所述步骤3中进行阶梯波累加得到反馈阶梯波的公式为:
Figure 28168DEST_PATH_IMAGE007
其中,
Figure 737498DEST_PATH_IMAGE008
Figure 907711DEST_PATH_IMAGE009
为当前时刻以及当前时刻之前一个度越时间的反馈阶梯波值。
5.根据权利要求1所述的控制方法,其特征在于,所述步骤3包括:
在所述数字信号处理模块中生成k个寄存器保存当前时刻之前一个渡越时间内的反馈 阶梯波值,第i个寄存器中保存的值为反馈阶梯波
Figure 993478DEST_PATH_IMAGE010
在完成所述方波调制信号在正半周期采样或者负半周期的反馈相移更新运算后,将当 前的反馈阶梯波值
Figure 549225DEST_PATH_IMAGE011
保存至第一个寄存器使
Figure 678723DEST_PATH_IMAGE012
=
Figure 319920DEST_PATH_IMAGE011
,并依次将第i个寄存器中保存 的反馈阶梯波
Figure 691602DEST_PATH_IMAGE010
传递给第i+1个寄存器使
Figure 367434DEST_PATH_IMAGE013
=
Figure 418567DEST_PATH_IMAGE010
所述步骤3中进行阶梯波累加得到反馈阶梯波的公式为:
Figure 796328DEST_PATH_IMAGE014
其中,
Figure 958319DEST_PATH_IMAGE015
为当前反馈阶梯波。
6.根据权利要求1所述的控制方法,其特征在于,所述步骤3中基于所述反馈阶梯波控制所述相位调制器的过程包括:
将所述反馈阶梯波与所述方波调制信号相加后,经驱动电路转换为施加在所述相位调制器的控制电压。
7.一种光纤陀螺闭环控制系统,所述光纤陀螺包括:数字信号处理模块、光电转换组件和相位调制器,其特征在于,
所述数字信号处理模块在所述光纤陀螺的光路中施加频率为本征频率k倍的正负交替的方波调制信号,k为大于1的奇数;
所述数字信号处理模块对所述光电转换组件转换后的信号进行采样,分别确定所述方 波调制信号在正半周期和负半周期调制时,所述相位调制器中的两路光形成的干涉信号的 光强
Figure 239390DEST_PATH_IMAGE001
Figure 992582DEST_PATH_IMAGE002
,计算解调信号为所述光强
Figure 342792DEST_PATH_IMAGE001
Figure 557741DEST_PATH_IMAGE002
差值
Figure 942586DEST_PATH_IMAGE003
所述数字信号处理模块根据所述解调信号
Figure 817745DEST_PATH_IMAGE003
修正闭环反馈相移
Figure 655251DEST_PATH_IMAGE004
;以所述闭环反馈 相移
Figure 408312DEST_PATH_IMAGE004
为阶梯波高度,以一个渡越时间为周期,进行阶梯波累加得到反馈阶梯波,基于所述 反馈阶梯波控制所述相位调制器。
8.一种电子设备,其特征在于,包括存储器、处理器,所述处理器用于执行存储器中存储的计算机管理类程序时实现如权利要求1-6任一项所述的光纤陀螺闭环控制方法的步骤。
9.一种计算机可读存储介质,其特征在于,其上存储有计算机管理类程序,所述计算机管理类程序被处理器执行时实现如权利要求1-6任一项所述的光纤陀螺闭环控制方法的步骤。
CN202111296084.4A 2021-11-03 2021-11-03 一种光纤陀螺闭环控制方法、系统、电子设备及存储介质 Active CN113739782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111296084.4A CN113739782B (zh) 2021-11-03 2021-11-03 一种光纤陀螺闭环控制方法、系统、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111296084.4A CN113739782B (zh) 2021-11-03 2021-11-03 一种光纤陀螺闭环控制方法、系统、电子设备及存储介质

Publications (2)

Publication Number Publication Date
CN113739782A true CN113739782A (zh) 2021-12-03
CN113739782B CN113739782B (zh) 2022-03-01

Family

ID=78727201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111296084.4A Active CN113739782B (zh) 2021-11-03 2021-11-03 一种光纤陀螺闭环控制方法、系统、电子设备及存储介质

Country Status (1)

Country Link
CN (1) CN113739782B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295115A (zh) * 2022-01-07 2022-04-08 北京思卓博瑞科技有限公司 一种提高光纤陀螺动态范围的方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058168A1 (en) * 2002-01-08 2003-07-17 Honeywell International Inc. Relative intensity noise controller for fiber light sources
US20030169428A1 (en) * 2002-02-19 2003-09-11 Honeywell International Inc. Saw tooth bias modulation and loop closure for an interferometric fiber optic gyroscope
CN1844854A (zh) * 2006-05-19 2006-10-11 北京航空航天大学 一种采用三倍频调制提高光纤陀螺闭环带宽的装置
CN105164495A (zh) * 2013-03-11 2015-12-16 埃艾克斯布鲁公司 包括环形谐振器的光纤干涉式测量装置以及包括该装置的陀螺仪和惯性姿态或导航单元
US20160363446A1 (en) * 2014-02-26 2016-12-15 Ixblue Interferometric measurement device
CN110375727A (zh) * 2019-07-31 2019-10-25 湖南航天机电设备与特种材料研究所 一种闭环光纤陀螺信号调制方法
CN112066971A (zh) * 2020-09-10 2020-12-11 北京大学 一种光纤陀螺的角速度测量方法
CN112815935A (zh) * 2020-12-31 2021-05-18 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 光纤陀螺动态特性评估装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058168A1 (en) * 2002-01-08 2003-07-17 Honeywell International Inc. Relative intensity noise controller for fiber light sources
US20030169428A1 (en) * 2002-02-19 2003-09-11 Honeywell International Inc. Saw tooth bias modulation and loop closure for an interferometric fiber optic gyroscope
CN1844854A (zh) * 2006-05-19 2006-10-11 北京航空航天大学 一种采用三倍频调制提高光纤陀螺闭环带宽的装置
CN105164495A (zh) * 2013-03-11 2015-12-16 埃艾克斯布鲁公司 包括环形谐振器的光纤干涉式测量装置以及包括该装置的陀螺仪和惯性姿态或导航单元
US20160363446A1 (en) * 2014-02-26 2016-12-15 Ixblue Interferometric measurement device
CN110375727A (zh) * 2019-07-31 2019-10-25 湖南航天机电设备与特种材料研究所 一种闭环光纤陀螺信号调制方法
CN112066971A (zh) * 2020-09-10 2020-12-11 北京大学 一种光纤陀螺的角速度测量方法
CN112815935A (zh) * 2020-12-31 2021-05-18 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 光纤陀螺动态特性评估装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI XUYOU 等: "Five points modulation in closed loop fiber optic gyroscope", 《2009 5TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING (WICOM)》 *
徐晓丽: "光纤陀螺数字信号滤波及动态误差补偿研究", 《中国优秀硕士学位论文全文数据库(信息科技辑)》 *
王巍: "《干涉型光纤陀螺仪技术》", 31 October 2010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295115A (zh) * 2022-01-07 2022-04-08 北京思卓博瑞科技有限公司 一种提高光纤陀螺动态范围的方法及装置

Also Published As

Publication number Publication date
CN113739782B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN111174773B (zh) 一种多相调制解调的光纤陀螺多闭环算法
CN112697125B (zh) 一种光纤陀螺本征频率的在线跟踪方法及系统
CN102269590B (zh) 对光信号中的强度噪声进行抑制的装置和方法
JP2013019915A (ja) 共振器ファイバ光ジャイロスコープ強度変調コントロールのためのシステムと方法
CN109990773A (zh) 一种干涉型光纤陀螺环路增益的检测与闭环控制系统及控制方法
CN110375727B (zh) 一种闭环光纤陀螺信号调制方法
CN102997933A (zh) 一种确定陀螺仪零偏误差的方法、装置及包括该装置的系统
CN113739782B (zh) 一种光纤陀螺闭环控制方法、系统、电子设备及存储介质
CN101183003B (zh) 光纤陀螺系统的闭环控制方法及装置
CN115077567B (zh) 一种基于波导复位误差的标度因数补偿系统及方法
CN111220142B (zh) 一种新型超高精度光纤陀螺仪的信号处理方法及装置
CN116086485A (zh) 半球谐振陀螺误差力补偿方法和装置
CN105258689A (zh) 一种数字陀螺仪信号控制处理系统
US5684589A (en) Loop controller for fiber optic gyro with distributed data processing
CN110906920B (zh) 一种抑制数字闭环光纤陀螺复位误差的方法
CN102359782B (zh) 挠性陀螺数字变换放大与再平衡装置
JP2000502800A (ja) コヒーレントピックアップエラー相殺装置
CN114111754B (zh) 消除复位误差的光纤陀螺闭环控制方法、系统及存储介质
CN115077510B (zh) 一种基于交替振幅方波的干涉式光纤陀螺调制方法
CN113916212B (zh) 一种适用于轻小型光纤陀螺的第二闭环控制方法
EP3760972B1 (en) Fiber optic gyroscope control system using sub-tau modulation
CN111006690B (zh) 一种基于振动陀螺零位自校准的控制电路系统
CN114719837B (zh) 用于数字闭环光纤陀螺仪的六状态调制解调方法和系统
JP2021081334A (ja) 光ファイバジャイロ並びにその制御方法及び制御装置
WO2000003202A1 (fr) Gyroscope a fibre optique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant