CN113736742A - Prtn3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用 - Google Patents

Prtn3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用 Download PDF

Info

Publication number
CN113736742A
CN113736742A CN202111051722.6A CN202111051722A CN113736742A CN 113736742 A CN113736742 A CN 113736742A CN 202111051722 A CN202111051722 A CN 202111051722A CN 113736742 A CN113736742 A CN 113736742A
Authority
CN
China
Prior art keywords
prtn3
cells
mouse
tumor
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111051722.6A
Other languages
English (en)
Other versions
CN113736742B (zh
Inventor
杜仁乐
刘艺
罗云萍
向荣
史毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Academy of Medical and Pharmaceutical Sciences
Original Assignee
Henan Academy of Medical and Pharmaceutical Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Academy of Medical and Pharmaceutical Sciences filed Critical Henan Academy of Medical and Pharmaceutical Sciences
Priority to CN202111051722.6A priority Critical patent/CN113736742B/zh
Publication of CN113736742A publication Critical patent/CN113736742A/zh
Application granted granted Critical
Publication of CN113736742B publication Critical patent/CN113736742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21106Hepsin (3.4.21.106)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用,可通过敲除和/或敲低该靶点PRTN3基因、和/或酶活性位点失活的PRTN3促进细胞毒性免疫细胞的激活,从而有效抑制肿瘤的发展,特别是肺腺癌引发肿瘤的发展。为临床抗肺腺癌免疫治疗提供了新思路,从而打破肺腺癌免疫抑制。

Description

PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点 的应用
技术领域
本发明属于生物医药技术领域,涉及PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用。
背景技术
每年的11月是“全球肺癌关注月”。据了解,自1985年以来,肺癌已成为全世界死亡率最高的恶性肿瘤。肺癌主要分为两大类:非小细胞肺癌(Non-small-cell lungcarcinoma,NSCLC)和小细胞肺癌(Small-cell lung carcinoma,SCLC),其中NSCLC占所有肺癌病例的85%。NSCLC又可分为腺癌(Lung adenocarcinoma,LUAD)、鳞状细胞癌(Squamous-cell carcinoma)、大细胞癌(Large cell carcinoma)三种亚型,其中腺癌是最常见的NSCLC亚型,占比50%以上。肺癌晚期患者的5年生存率极低,约为5%,因此亟需探究有效的治疗肺癌策略。
随着肿瘤免疫疗法的出现,肺癌患者的预后得到了一定的改善。其中,针对PD-1和PD-L1的免疫检查点抑制剂在NSCLC患者中显示了良好的效果,部分病人的生存期得到了延长。然而,仍然存在部分病人对此疗法反应不佳。临床试验显示,22%-28%的肺癌病人在接受免疫治疗后PD-L1的表达水平明显增多,这种异质性的反应表明不是所有肺癌病人都能获得抗肿瘤的效果,表明开发新的免疫治疗的靶点对于进一步提高肺癌病人预后具有重要的意义。
NK细胞和CD8+T细胞是细胞毒性免疫细胞,通过直接杀伤肿瘤细胞发挥抗肿瘤免疫的作用。研究表明,实体肿瘤中T细胞和NK细胞的浸润不仅与病人的预后正相关,更是影响肿瘤免疫治疗效果的关键因素。而肿瘤细胞通过内源性的调控作用使得浸润的NK细胞和CD8+T细胞减少,并抑制它们的激活,从而破坏NK细胞和CD8+T细胞发挥有效的抗肿瘤免疫防御。因此,探寻肺癌中调节NK细胞和CD8+T细胞激活的新基因,将会为肺癌的免疫治疗提供新的靶点。
PRTN3(Proteinase 3)是由中性粒细胞分泌的丝氨酸蛋白酶之一。PRTN3含有256个氨基酸残基,其中第1到25个氨基酸是信号肽(Signal peptide),可以引导其穿过细胞膜分泌到胞外;第26及27个氨基酸和羧基端第250至256个氨基酸是前导肽(Propeptide),在翻译的过程中,初级结构中的信号肽被剪切被信号肽酶水解,然后在内质网加工时前导肽被剪切,最终形成其成熟形式。相应地,PRTN3前体蛋白的分子量为35kDa,成熟形式的蛋白分子量为29kDa。PRTN3的催化活性位点由组氨酸(His57)、丝氨酸(Ser195)、天冬氨酸(Asp102)组成。
PRTN3具有广泛的生物学功能,通过水解组织蛋白,调控免疫反应参与相关疾病的进展。它能够对细胞因子进行加工,如裂解CXCL8的前体从而活化CXCL8,趋化中性粒细胞迁移到炎症部位,加重组织损伤,参与慢性阻塞性肺疾病。PRTN3还可加工细胞受体调控信号传导,从而在炎症反应中发挥一定的作用,如PRTN3可以裂解蛋白酶激活受体1(PAR-1)致其失活,来解除凝血酶激活的钙信号,从而破坏内皮细胞屏障的完整性。此外,PRTN3还可以间接地调控炎症反应,例如水解NF-κB和p21导致其失活,加速内皮细胞凋亡,参与血管炎、克罗恩病。然而,关于肿瘤中PRTN3的功能研究并不多,据报道,PRTN3是急性髓细胞白血病相关抗原,三阴乳腺癌早期转移的预测指标,而且与肿瘤的骨转移密切相关。综上所述,PRTN3在炎症反应中发挥重要的作用,并与多种肺部炎症疾病密切相关,然而PRTN3在肺癌中的作用尚未清楚。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用,可通过敲除和/或敲低该靶点PRTN3基因、和/或酶活性位点失活的PRTN3促进具有细胞毒性免疫细胞的激活,从而有效抑制肺癌的发展。
本发明的目的之一采用如下技术方案实现:
PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用
进一步地,通过敲除PRTN3、和/或敲低PRTN3、和/或PRTN3酶活性位点失活激活肿瘤浸润的细胞毒性免疫细胞。
进一步地,所述细胞毒性免疫细胞为NK细胞、CD8+T细胞。
进一步地,所述肿瘤为肺癌。
进一步地,所述肿瘤为肺腺癌。
相比现有技术,本发明的有益效果在于:
本发明提供了PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用,可通过敲除和/或敲低该靶点PRTN3基因、和/或酶活性位点失活的PRTN3促进细胞毒性免疫细胞的激活,从而有效抑制肿瘤的发展,特别是肺腺癌引起的肿瘤的发展。为临床抗肺腺癌免疫治疗提供了新思路,从而打破肺腺癌免疫抑制。
附图说明
图1为本发明PCR扩增所得PRTN3S205A基因的前半段和后半段的琼脂糖凝胶电泳结果,其中1泳道为PRTN3S205A的前半段,2泳道为PRTN3S205A的后半段;
图2为本发明PCR扩增所得PRTN3WT和PRTN3S205A产物片段的琼脂糖凝胶电泳结果,其中1-2泳道为PRTN3WT扩增产物,PRTN3S205A扩增产物;
图3为本发明PRTN3WT和PRTN3S205A片段及PLV-EF1α-IRES-bsd载体双酶切后的琼脂糖凝胶电泳结果,其中1泳道为PRTN3WT片段,2泳道为PRTN3S205A片段,3泳道为PLV-EF1α-IRES-bsd载体双酶切后片段;
图4为本发明PLV-RNAi重组质粒酶切后的琼脂糖凝胶电泳结果,其中1-4泳道为shPRTN3#2,5-9泳道为shPRTN3#3;
图5为本发明PCR检测转基因鼠Kras-Wt基因和Kras-G12D基因的琼脂糖凝胶电泳结果,其中1-5泳道为Kras-Wt基因的检测产物,6-10泳道为Kras-G12D基因的检测产物;
图6为本发明PCR检测转基因鼠PRTN3-Wt基因和PRTN3-loxp基因的琼脂糖凝胶电泳结果,其中1-5泳道为PRTN3-Wt基因的检测产物,6-10泳道为PRTN3-loxp基因的检测产物;
图7为本发明PRTN3敲除后转基因小鼠肺部成瘤情况和生存期的检测,其中图7A为AAV6-CMV-Cre诱导KrasG12D/+小鼠和KrasG12D/+;Prtn3flox/flox小鼠7周后肺组织的HE染色结果,图7B为小鼠肺部成瘤面积的统计结果;图7C为小鼠肺部成瘤率的统计结果,图7D为AAV6-CMV-Cre诱导KrasG12D/+小鼠和KrasG12D/+;Prtn3flox/flox小鼠后的生存期统计结果,图7E为AAV6-CMV-Cre诱导KrasG12D/+小鼠和KrasG12D/+;Prtn3flox/flox小鼠7周后,Western blot检测小鼠肺组织中PRTN3表达的结果,图7F为AAV6-CMV-Cre诱导KrasG12D/+小鼠和KrasG12D/+;Prtn3flox/flox小鼠7周后,免疫组化检测小鼠肺组织中PRTN3表达的结果;
图8为本发明转基因小鼠肺组织中CD8+T细胞和NK细胞激活比例的流式检测结果;
图9为本发明敲低PRTN3对小鼠皮下肿瘤增殖及肿瘤浸润的CD8+T细胞和NK细胞激活情况的检测结果,其中图9A为Western blot检测PRTN3在LLC细胞以及培养上清中的敲低效率,图9B为敲低PRTN3的LLC细胞系注射到小鼠皮下后肿瘤的生长曲线,每组5只小鼠,图9C为流式细胞术检测CD8+T细胞和NK细胞激活相关分子的表达情况;
图10为本发明CD8+T细胞和NK细胞分别与敲低PRTN3的细胞体外共培养后激活情况的检测,图10A为分选小鼠脾脏中CD8+T细胞和NK细胞的流式图,图10B为流式细胞术检测CD8+T细胞和NK细胞分别与LLC细胞体外共培养后GZMB阳性的比例;
图11为本发明PRTN3酶活性位点失活后CD8+T细胞及NK细胞在体外激活情况的检测,其中图11A为鼠源PRTN3基因结构及酶活性位点失活突变的示意图,图11B为Westernblot检测外源过表达PRTN3酶活性位点失活突变体(PRTN3S205A)和PRTN3野生型(PRTN3WT)后LLC细胞及相应细胞培养上清中PRTN3的蛋白水平,图11C为流式细胞术检测过表达PRTN3S205A和PRTN3WT的LLC细胞系分别与CD8+T细胞及NK细胞共培养后GZMB表达的情况。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
实施例1
过表达PRTN3S205A和PRTN3WT稳定细胞系的构建
1.1PRTN3S205A和PRTN3WT过表达载体的构建
1.1.1RNA提取
(1)以6孔板为例,用预冷的PBS洗细胞2次,每孔各加500μL Trizol,室温放置5min,充分裂解细胞,转移到1.5mL离心管中;
(2)向步骤(1)的离心管中加入100μL氯仿,轻轻震荡混匀(不能太剧烈),室温静置10min;
(3)然后4℃下12000rpm离心10min,转移上层水相至到新的离心管中;
(4)向步骤(3)新的离心管中加入与水相等体积的异丙醇,上下翻转混匀,静置10min;
(5)4℃下12000rpm离心10min,弃上清,RNA沉于管底;
(6)向步骤(5)的离心管中加入0.5mL 75%乙醇,温和震荡;
(7)4℃下7500rpm离心5min,弃上清,室温晾干;
(8)向步骤(7)的离心管中加入20-50μL无RNA酶水溶解RNA。55℃10min促溶,-80℃环境中保存备用。
1.1.2.mRNA反转录为cDNA
第一链cDNA的合成,按照Transgen公司的说明进行反转。反应体系如表1所示:
表1
Components Volume
Total RNA 1μL(1μg)
Anchored Oligo-dT<sub>18</sub>(0.5μg/μL) 1μL
2×Ts Reaction Mix 10μL
TransScript RT/RI Enzyme Mix 1μL
RNase-free water to 20μL
反应条件为:①42℃温浴30min;②85℃热失活5min;③4℃保持。
1.1.3 PCR扩增PRTN3WT和PRTN3S205A序列
针对野生型鼠源PRTN3基因的CDS序列及引物设计原则得到扩增PRTN3WT的前引物(F1)和后引物(R1)序列(表2),根据将PRTN3第205位苏氨酸(TCG)突变为丙氨酸(GCG)的目的,我们设计了突变位点前后约20bp的前引物(F2)和后引物(R2)序列,如表2所示。野生型鼠源PRTN3基因的CDS序列(PRTN3WT序列)为SEQ.NO.1。
表2
引物名称 引物序列(5’-3’)
PRTN3<sup>WT</sup>-F1 GCTCTAGAATGGCTGGAAGCTACCCATC
PRTN3<sup>WT</sup>-R1 CGACGCGTTCAGGGCTCTGCGCCC
PRTN3<sup>S205A</sup>-F2 GCAGGCATATGCTTCGGAGACGCGGGCGGCCCCTTGATCTG
PRTN3<sup>S205A</sup>-R2 CAGATCAAGGGGCCGCCCGCGTCTCCGAAGCATATGCCTGC
根据TransGen公司TransStart FastPfu DNA Polymerase试剂盒的操作步骤进行PCR扩增,按照表3所示体系配制PCR反应混合液。并根据表4扩增程序进行。其中PRTN3S205A的扩增需要进行两次PCR,第一次PCR分别使用引物组合F1+R2及F2+R1,扩增得到目的PRTN3S205A片段的前半段和后半段,其余体系均按照表3进行;第二次PCR使用引物F1+R1,模板是第一次的PCR产物各1μL,其余体系不变,扩增得到全长的PRTN3S205A片段。
表3
Components Volume
cDNA 1μg
Primer Mix(10μM total) 2μL
dNTP Mix(2.5mM) 2μL
FastPfu DNA Polymerase 1μL
5×FastPfu Buffer 5μL
ddH<sub>2</sub>O to 25μL
PCR扩增程序如表4所示:
表4
Figure BDA0003253193330000051
Figure BDA0003253193330000061
1.1.4琼脂糖凝胶电泳鉴定
对步骤1.1.3得到的PCR产物进行琼脂糖凝胶电泳鉴定。结果如图1所示,1泳道为PRTN3S205A片段的前半段,2泳道为PRTN3S205A片段的后半段,表明成功扩增出PRTN3S205A片段的前半段和后半段。图2为PCR扩增所得PRTN3WT和PRTN3S205A产物片段的琼脂糖凝胶电泳结果,其中1-2泳道为PRTN3WT扩增产物,3-4泳道为PRTN3S205A扩增产物。图2显示750bp处显示单一明亮条带,根据PRTN3WT和PRTN3S205A序列大小为765bp,判定所获产物为目的片段。接下来,在紫外照射下快速切取图2中PRTN3WT和PRTN3S205A的单一目的条带,根据琼脂糖凝胶回收试剂盒的操作步骤进行胶回收。
1.1.5目的片段与载体PLV-EF1α-IRES-bsd的双酶切反应
目的片段双酶切体系:将步骤1.1.4胶回收目的片段纯化后进行双酶切过程,根据表5建立的酶切反应体系,将配制好的酶切混合物于37℃孵箱中2h。
表5
Components Volume
Gel purification product 20μL
内切酶1/XbaI 1μL
内切酶2/Mlu I-HF 1μL
10×NEB Cutsmart Buffer 3μL
RNase-free H<sub>2</sub>O 5μL
Total 30μL
将PLV-EF1αMCS-IRES-bsd质粒进行双酶切过程,根据表6建立的酶切反应体系,将配制好的酶切混合物于37℃孵箱中2h。
表6
Figure BDA0003253193330000062
Figure BDA0003253193330000071
1.1.6电泳鉴定及胶回收
对步骤1.1.5得到的产物进行琼脂糖凝胶电泳鉴定,结果如下图3所示,在750bp处及2000bp以上均出现单一条带,表明PRTN3WT和PRTN3S205A片段及载体在操作过程中是稳定的。然后根据琼脂糖凝胶回收试剂盒的操作步骤进行胶回收。
1.1.7目的片段与载体的连接
切胶回收后,将步骤1.1.6纯化后得到的空载体PLV-EF1α-IRES-bsd载体与PRTN3WT和PRTN3S205A基因片段分别通过T4连接酶在4℃过夜连接。连接体系如表7所示。
表7
Components Volume
PLV-EF1α-IRES-bsd 2μL
Gene fragment 6.5μL
T4 DNA Ligase 0.5μL
10×Ligation buffer 1μL
Total 10μL
1.1.8过表达重组质粒的扩增
(1)重组质粒的转化
①取出Trans-T1感受态细胞,冰上解冻10min。
②把连接产物加入50μL感受态细胞中,放冰上半个小时。
③42℃热激30-40s,立即移至冰上放置2min。
④移至超净台中操作,用1mL枪吸取500μL LB。
⑤37℃,200rpm/min,震荡培养1h,拿出存放于4℃的LB板(含100mg/mL的Amp),放置37℃预热。
⑥4,000rpm离心1min,倾倒上清但是不倒完,残留用来重悬细菌,然后滴加在LB板上,加灭菌的珠子将菌液均匀涂布,标记清楚质粒的名字。
⑦过夜倒置在37℃培养箱中培养。
(2)挑菌
①提前把需要使用的工具和液体LB等放于超净台中紫外杀菌。
②准备50mL离心管,在管壁上标记质粒名字,每管加入15mL LB培养基(含千分之一的Amp),挑取单一克隆菌落,然后在LB中来回吹打几次,枪头直接打入其中。
③使离心管盖处于松弛的状态,倾斜放置于震荡器中,37℃,200rpm震荡培养16-20h。
(3)质粒提取
①柱平衡:向放在收集管中的吸附柱CP4中加入500μL的平衡液BL,12,000rpm离心1min,只弃掉废液。
②将菌液离心,4,000rpm,15min,倒掉上清,尽量倒干。准备2mL管,标记质粒的名字;
③用500μL P1溶解菌液,来回吹打溶解完全后转移至准备好的2mLtube中;
④加入裂解液P2 500μL,立即上下翻转8次左右,注意不能太剧烈。
⑤加入700μL中和液P3,温和混匀,然后离心,12,000rpm,10min;
⑥分次将上清转移到过滤柱CS中,最多800μL,12,000rpm离心2min,再将所得液体加入吸附柱CP4中,12,000rpm离心1min,弃掉废液;
⑦加入去蛋白液PD500μL,12,000rpm离心1min,弃掉废液;
⑧加入漂洗液PW600μL,放置2min左右后,12,000rpm离心1min,弃掉废液;
⑨重复上一步骤;
⑩12,000rpm离心2min;
Figure BDA0003253193330000085
室温晾干乙醇;
Figure BDA0003253193330000084
准备1.5mL离心管,标记质粒名称,把吸附柱对应放入其中,加入洗脱缓冲液TB100μL,放置2min左右,12,000rpm离心2min,收集质粒溶液,存放于-20℃环境中。
(4)测序鉴定及结果
重组质粒中PRTN3WT、PRTN3S205A序列测序结果分别如SEQ.NO.2、SEQ.NO.3所示,通过序列比对证明本发明所构建的重组质粒正确。
1.2慢病毒包装
当6孔板中的HEK293T细胞密度达到约90%时进行转染,具体步骤如下:
(1)根据每孔细胞需要转染试剂的量,取7.5μL Lipo 2000和250μL Opti-MEM至离心管A中,温和混匀,室温静置5min;
(2)将1.5μg构建的质粒(步骤1.1.8得到)及1.5μg包装质粒(其中Gag-Pol、Rev、VSV-G各0.5μg)与250μL Opti-MEM在离心管B中震荡混匀;
(3)取步骤(1)中250μL混合组分加到步骤(2)质粒组分中,震荡混匀后放置20min;
(4)弃去HEK293T细胞的旧培养基,每孔加入1mL新鲜培养基;
(5)取步骤(3)混合组分500μL沿孔壁缓慢加入至孔内,然后将细胞放入37℃孵箱,继续培养;
(6)转染12-16h后,弃掉旧培养基,慢慢加入3mL新鲜培养基,继续培养;
(7)换液24h之后,收取病毒,每管分装1mL,测病毒滴度后,放置-80℃冰箱保存。
1.3慢病毒感染LLC细胞
将实施例1.2得到的包装后的慢病毒感染LLC(Lewis lung cancer)细胞,步骤如下:
(1)把待感染的细胞接种在六孔板中,密度为1×105-2×105个细胞/孔,置于37℃孵箱中培养;
(2)把实施例1.2得到的慢病毒放室温解冻,弃去细胞的旧培养基,每孔首先加入2mL新鲜培养基及3μL polybrene(8μg/μL),然后加入慢病毒1mL。于37℃下1600rpm离心1h;
(3)弃去病毒液,更换2mL新鲜培养基,于37℃孵箱中继续培养;
(4)病毒感染48h后,每孔加入10μg/mL blasticidin,筛选稳定表达blasticidin抗性的细胞,当未感染病毒的细胞全部死亡后,感染病毒的细胞继续使用10μg/mLblasticidin处理1-2天,确保获得稳定表达PRTN3WT或PRTN3S205A的细胞系。
实施例2
敲低PRTN3的LLC稳定细胞系的构建
2.1PLV-RNAi重组质粒的构建
2.1.1shRNA的设计
通过Invitrogen在线设计针对鼠源PRTN3 CDS序列的shRNA,引物序列如表8所示,其中shCtrl为对照组。
表8
Figure BDA0003253193330000091
2.1.2 shRNA的克隆
根据biosettia公司PLV-PNAi载体的使用说明书,按照表9所示体系和条件进行单链shRNA的退火。退火后形成互补的shRNA,并带有黏性末端。
表9
Figure BDA0003253193330000092
Figure BDA0003253193330000101
退火完成后,取1μL退火产物到499μL dd H2O中将退火产物稀释500倍。随后取20-50μL稀释产物进行4%琼脂糖凝胶电泳。
2.1.3连接
将退火成功的shRNA产物分别与pLV-H1-EF1α-puro载体进行连接,连接体系如表10所示。连接的反应温度为4℃,过夜连接。
表10
Components Volume
shRNA 6.5μL
pLV-RNAi vector 2μL
Ligation buffer(10×) 1μL
T4 DNA Ligase 0.5μL
Total 10μL
2.1.4 PLV-RNAi重组质粒的扩增
实验步骤同1.1.8。
2.1.5双酶切鉴定
将2.1.4得到的质粒进行双酶切鉴定,根据表11建立酶切体系,将配制好的酶切混合物于37℃酶切2h。将酶切产物进行琼脂糖凝胶电泳,通过与biosettia公司PLV-PNAi载体的说明书中所提供的鉴定图比对,确认构建成功,结果如下图4所示。
表11
Components Volume
PLV-RNAi 2μL
内切酶3/BamH I 1μL
内切酶4/Sac I 1μL
10×Cutsmart buffer 3μL
RNase-free water 23μL
Total 30μL
2.1.6慢病毒包装
实验过程同1.2,将构建的质粒替换为2.1.4提取得到的质粒。
2.1.7感染LLC细胞
实验过程同1.3,将慢病毒更换为2.1.6得到的包装后的慢病毒,病毒感染后使用的抗性筛选药物为2μg/mL puromycin,最终得到敲低PRTN3的LLC稳定细胞系。
实验例1
PRTN3敲除后对小鼠肺部成瘤情况和生存期的影响
1.1转基因小鼠模型构建
本发明通过北京唯尚立德生物科技有限公司利用CRISPR系统和同源重组原理代理繁育得到PRTN3flox/flox转基因小鼠,然后交由江苏集萃药康生物科技有限公司代理将PRTN3flox/flox转基因小鼠与KrasG12D/+小鼠繁育,通过基因型鉴定获得KrasG12D/+;PRTN3flox /flox小鼠,所用引物、PCR体系及程序如表12所示,鉴定结果如下图5和6所示。
表12
Figure BDA0003253193330000111
PCR扩增体系如表13所示。
表13
Reaction Components Volume
gDNA Template 2.0μL
10×Taq Buffer(mg<sup>2+</sup>plus) 2.0μL
dNTP Mixture(10mM) 0.5μL
Primer mix(10μM) 0.5μL
Taq DNA polymerase(5U/μL) 0.5μL
Milli-Q H<sub>2</sub>O To 20μL
PCR扩增程序如表14所示。
表14
Figure BDA0003253193330000121
本发明选择6-8周的KrasG12D/+小鼠以及KrasG12D/+;PRTN3flox/flox小鼠作为实验对象,通过鼻腔吸入的方式给予每只小鼠100μL滴度为1×1012V.g/mL的腺相关病毒AAV6-CMV-CRE,以诱导小鼠肺上皮细胞中PRTN3的敲除以及肺癌的发生。本发明通过WB和免疫组化验证了小鼠肺组织中PRTN3的敲除(图7E和F),并通过HE染色确定了小鼠肺癌的发生(图7A)。由于在实验中没有发现明显的性别依赖差异,所以同时使用了雌性和雄性小鼠用于后续实验。
分别收集AAV6-CMV-CRE诱导后4周的KrasG12D/+小鼠以及KrasG12D/+;PRTN3flox/flox小鼠的肺组织,经过脱水、石蜡包埋、切片后利用HE染色检测肺腺癌的发生情况,统计成瘤率。
结果如图7所示,HE染色结果表明KrasG12D/+;PRTN3flox/flox小鼠与KrasG12D/+小鼠相比具有更低的成瘤率及成瘤面积(图7A),与图7B、图C结果一致。且KrasG12D/+小鼠在200天之前全部死亡,KrasG12D/+:PRTN3flox/flox小鼠在300天后仍然有一定的存活率(图7D)。图7E、7F表明KrasG12D/+;PRTN3flox/flox与KrasG12D/+相比蛋白表达程度低,表明KrasG12D/+;PRTN3flox/flox小鼠体内PRTN3成功敲除。由此可知,由于KrasG12D/+;PRTN3flox/flox小鼠体内PRTN3基因敲除,其有助于降低腺相关病毒诱导小鼠感染肺癌后小鼠肺组织的成瘤率及成瘤面积,提高小鼠存活率。
实验例2
PRTN3敲除后肿瘤浸润的NK细胞和CD8+T细胞激活比例检测
2.1肿瘤组织的消化
(1)配制肿瘤消化液:向DMEM/F12培养基中加入0.125%Deoxyribonuclease I、0.05%Collagenase type 3及0.0125%Neutral protease得到肿瘤消化液。
(2)将实验例1构建得到的KrasG12D/+及KrasG12D/+;PRTN3flox/flox小鼠的肺肿瘤组织取下,置于平面皿中,用刀片将组织切碎至1mm3,然后每个组织滴加2-3mL步骤(1)的肿瘤消化液,37℃环境下消化30min,每隔10min用吸管或枪头吹打组织液,使其充分消化。
(3)将步骤(2)消化完的肿瘤组织液用70μm的滤网过滤一次,收集滤液后再用50μm的滤网过滤一次,收集滤液;于37℃环境中1000rpm离心5min。
(4)用3-5mL红细胞裂解液重悬细胞,室温裂解10min,期间可将沉降的细胞稍微弹起,保证裂解的充分性。
(5)再次于37℃环境中1000rpm离心5min。PBS重悬后,对细胞进行计数。
2.2淋巴细胞的分离
分离淋巴细胞时,首先配制40%和80%的percoll溶液,用4mL 40%的溶液重悬的上述2.1得到的肿瘤组织细胞沉淀,然后沿着管壁逐滴加入到含有2mL 80%溶液的15mL管中,以3500rpm离心20min。慢慢吸取中间层即淋巴细胞,加入5-6mL DMEM基本培养基中和溶液浓度梯度,再以2000rpm离心10min,即可得到固有层的淋巴细胞。
2.3流式染色与检测
通过针对CD8和NK1.1蛋白的流式抗体PE-Cy7 anti-mouse CD8 antibody和APCanti-mouse NK1.1 antibody来检测CD8+T细胞和NK细胞,进一步在此基础上利用CD8+T细胞和NK细胞激活相关标志物的抗体去检测相应激活细胞的比例。具体步骤为:
准备每个流式管包含1×106个细胞的100μL细胞悬液,其中设置每种抗体的单染分别为:PE-Cy7 anti-mouse CD8 antibody、APC anti-mouse NK1.1 antibody、PE anti-mouse GranzymeB antibody、PE anti-mouse CD314 antibody、PE anti-mouse IFNγantibody、PE anti-mouse NKp46 antibody、PITC anti-mouse CD44 antibody、PE anti-mouse CD69 antibody、PE anti-mouse CD25 antibody,并设置不加抗体的阴性对照组,其余设置组为:PE-Cy7 anti-mouse CD8 antibody和PE anti-mouse GranzymeB antibody或PE anti-mouse CD314 antibody或PE anti-mouse IFNγ antibody或PITC anti-mouseCD44 antibody或PE anti-mouse CD69 antibody或PE anti-mouse CD25 antibody,及APCanti-mouse NK1.1 antibody和PE anti-mouse GranzymeB antibody或PE anti-mouseCD314 antibody或PE anti-mouse IFNγantibody或PE anti-mouse NKp46 antibody或PEanti-mouse CD69 antibody,每种抗体的加入体积均为1μL。
细胞表面蛋白CD8,NK1.1,CD314,NKp46,CD44,CD69,CD25的染色步骤如下:
(1)向流式管中加入上边步骤所述的相应抗体后震荡混匀,冰上染色1h,染色过程注意避光;
(2)洗细胞:用预冷的PBS重悬步骤(1)得到的细胞,于4℃下1000rpm离心5min;
(3)固定细胞:用1%PFA固定步骤(2)得到的细胞,每管1mL,固定30min;
细胞内蛋白GranzymeB,IFNγ的染色步骤如下:
(4)细胞破膜:将步骤(3)的细胞于4℃下1000rpm离心5min,弃上清,用1×破膜液重悬细胞,每管1mL,室温放置30min;(5)再次于4℃下1000rpm离心5min步骤(4)得到的细胞,弃上清,用1×破膜液重悬细胞,每管100μL,分别加入PE anti-mouse GranzymeBantibody和PE anti-mouse IFNγantibody各1μL,。冰上染色1h,注意避光;
(6)洗细胞:每管加入1mL 1×破膜液,震荡混匀;
(7)于4℃下1000rpm离心5min,弃上清,用1mL预冷PBS重悬细胞,注意避光;
(8)流式细胞仪检测。
结果如图8所示,KrasG12D/+;PRTN3flox/flox小鼠肺组织与KrasG12D/+小鼠肺组织内的CD8+T细胞和NK细胞相比均具有更高的激活水平。
实验例3
敲低PRTN3对小鼠皮下肿瘤增殖及肿瘤浸润的CD8+T细胞和NK细胞激活情况
3.1 PRTN3敲低效率的检测
通过Western blot检测PRTN3在LLC细胞以及培养上清中的敲低效率,具体步骤如下:
3.1.1蛋白提取
(1)分别铺8×105个LLC-shCtrl、LLC-shPRTN3#2、LLC-shPRTN3#3细胞于6孔板中,每孔加入2mL培养基,培养2天。
(2)分别收取每种细胞的培养上清,震荡混匀后立即收取每种细胞的上清各500μL,并加入120μL 5×Loading Buffer,在100℃金属浴中煮10min,冷却至室温后放-20℃保存。
(3)用预冷的PBS洗细胞3次,去除残余PBS。加入RIPA裂解液后,用刮刀把细胞刮下来,并转移到离心管中,冰上裂解30min。
(4)4℃,12000rpm离心10min,离心后将上清转移至新的离心管。
3.1.2蛋白定量
根据BCA蛋白定量试剂盒的操作步骤计算收取的细胞蛋白的浓度。用5×LoadingBuffer和dd H2O把蛋白稀释到统一的浓度,然后用金属浴煮10min,冷却至室温后放-20℃保存。
3.1.3 SDS-PAGE电泳
配制1×Running Buffer和1×Transfer Buffer,根据需要将一定量的蛋白样品加入胶孔中,并加入蛋白marker,恒压电泳至溴酚蓝指示剂处于合适的高度。
3.1.4转膜:用无水甲醇激活PVDF膜。将胶和PVDF膜放于海绵和滤纸的“三明治”结构中,并排出气泡,放置于转膜槽中,放入冰袋降温,恒压100V,室温1h。
3.1.5封闭
用含5%脱脂牛奶的TBST封闭,放置摇床上,室温慢摇1h。
3.1.6孵育一抗
按照PRTN3 1:1000和β-actin 1:10000的稀释比例,使用含5%胎牛血清的TBST进行稀释,一抗孵育过夜,4℃摇床慢摇。
3.1.7孵育二抗
TBST洗3次后,按照1:200的比例,用含5%脱脂牛奶的TBST稀释二抗,室温慢摇,孵育1个小时。
3.1.8曝光
用TBST洗3次,每次10min,然后配制ECL显色液,使用化学发光成像仪进行曝光。
结果如图9A所示,Western blot检测结果表明shPRTN3#3组对应的PRTN3在LLC细胞以及培养上清中的敲低效率均处于较高水平。
3.2小鼠皮下成瘤模型构建
选取鼠龄为6-8周的C57BL/6小鼠,每组5只,分别皮下注射实施例1、实施例2构建得到的敲低PRTN3的LLC细胞系,每只注射细胞数5×105个,体积100μL。按照LLC细胞系的不同分为shCtrl对照组、shPRTN3#2组、shPRTN3#3组。
从第10天左右对小鼠肿瘤进行测量,记录肿瘤的长和宽用于肿瘤生长曲线测定。最后按照如下公式统计小鼠的肿瘤体积,其中公式中a为肿瘤的长,b为肿瘤的宽,并绘制相应的肿瘤生长曲线。
Figure BDA0003253193330000151
图9B表明,随着注射后时间的延长,shCtrl对照组小鼠体内肿瘤体积增长迅速,shPRTN3#2组、shPRTN3#3组较慢,表明敲低PRTN3有助于降低肿瘤的生长速率。
3.3流式细胞术检测CD8+T细胞和NK细胞激活相关分子的表达情况
步骤同实验例2所述。
结果如图9C所示,本发明得到的敲低PRTN3组(即shPRTN3#2组、shPRTN3#3组)有助于提高CD8+T细胞和NK细胞中各相关分子的表达。
实验例4
CD8+T细胞和NK细胞分别与敲低PRTN3的细胞体外共培养后的激活情况
4.1小鼠脾脏分离CD8+T和NK细胞
(1)首先,处理小鼠之前先将所需要的手术器械、枪头、离心管等高压灭菌;
(2)将C57BL/6小鼠处死,浸泡在酒精中消毒处理。在超净台中,剖开小鼠腹腔,取出脾脏,置于平面皿中,用5mL的注射器塞子研磨小鼠脾脏;
(3)将步骤(2)得到的小鼠脾脏磨碎后用70μm的滤网过滤一次,收集滤液到50mL离心管中,再用50μm的滤网过滤一次,收集滤液。于37℃下1000rpm离心5min;
(4)将步骤(3)得到的脾脏细胞悬液用3-5mL红细胞裂解液室温裂解10min以去除红细胞,然后于37℃下1000rpm离心5min。PBS重悬后,细胞计数;
(5)将步骤(4)的细胞于37℃下1000rpm离心5min,用含1%FBS的PBS重悬细胞;
(6)流式抗体染色:每个流式管分装包含1×106个细胞的100μL细胞悬液,其中一管细胞不加抗体作为阴性对照,一管细胞加1μL单一PE抗CD3抗体,一管细胞加1μL单一PE/Cy7抗CD8抗体,一管细胞加1μL单一APC抗NK1.1抗体,其余每管细胞中加入上述三种抗体各1μL。震荡混匀后,冰上染色1h,注意避光;
(7)洗细胞:将步骤(6)添加三种抗体染色流式管中的细胞分别收集于50mL管中,加入10mL预冷的PBS,轻轻震荡混匀细胞,4℃下1000rpm离心5min。PBS重悬细胞以保证每管细胞密度为4~5×106个;
(8)流式细胞术分选CD3+CD8+细胞群为CD8+T细胞,CD3-NK1.1+细胞群为NK细胞,分选小鼠脾脏中CD8+T细胞和NK细胞的流式图如图10A所示;
(9)将步骤(8)分选得到的原代CD8+T细胞和NK细胞培养在含5%CO2的37℃孵箱中备用,培养基为RPMI 1640包含10%FBS、500μM 2-巯基乙醇、10mM HEPES、1%青霉素和链霉素。
4.2敲低PRTN3的LLC细胞系与CD8+T细胞和NK细胞体外共培养
在进行共培养之前,首选需要将4.1得到的原代CD8+T细胞在200ng/mL IL-15和1μg/mL IL-15Rα鼠源重组蛋白存在的情况下刺激96h,原代NK细胞需要50ng/mL IL-15鼠源重组蛋白存在的情况下刺激24h。
将敲低PRTN3的LLC细胞(包含shCtrl对照组、shPRTN3#2组、shPRTN3#3组)分别接种于6孔板中,每孔5×105个细胞,过夜贴壁后,分别将刺激后的CD8+T细胞和NK细胞按照与敲低PRTN3的LLC细胞1:7的比例加入到敲低PRTN3的LLC细胞培养基中,37℃孵箱培养,共培养9小时后收集细胞,检测NK细胞中GZMB的表达;共培养16小时后检测CD8+T细胞中GZMB的表达。本发明通过流式细胞术检测GZMB的表达,具体操作步骤为:
(1)分别收集不同组的细胞培养上清,1000rpm离心5min收集细胞沉淀,用PBS洗细胞2次,最后用100μL PBS重悬细胞;
(2)向流式管中加入0.5μL PE anti-GZMB抗体,另外有一管加入PE anti-mouseIgG 0.5μL作为阴性对照组,震荡混匀,冰上染色1h,染色过程注意避光;
(3)洗细胞:用预冷的PBS重悬步骤(2)得到的细胞,于4℃下1000rpm离心5min;
(4)固定细胞:用1%PFA固定步骤(3)得到的细胞,每管1mL,固定30min;
(5)流式细胞仪检测。
如图10B为流式细胞术检测CD8+T细胞和NK细胞分别与LLC细胞体外共培养后GZMB阳性的比例,结果表明与对照组相比,敲低PRTN3的LLC细胞系与CD8+T细胞和NK细胞共培养后,细胞中GZMB表达比例更高,敲低PRTN3能够增加CD8+T细胞和NK细胞激活比例。
实验例5
PRTN3酶活性位点失活后CD8+T细胞及NK细胞在体外激活情况的检测
5.1 Western blot检测外源过表达PRTN3S205A和PRTN3WT后LLC细胞及相应细胞培养上清中PRTN3的蛋白水平
步骤同3.1所述过程。
图11A为鼠源PRTN3基因结构及酶活性位点突变的示意图,图11B为Western blot检测外源过表达PRTN3S205A和PRTN3WT后LLC细胞及相应细胞培养上清中PRTN3的蛋白水平,结果表明,敲低PRTN3酶活性位点失活对PRTN3蛋白的表达几乎无影响。
5.2过表达PRTN3S205A和PRTN3WT的LLC细胞系分别与CD8+T细胞及NK细胞体外共培养
将敲低PRTN3的LLC细胞更换为过表达PRTN3S205A和PRTN3WT的LLC细胞系,其余与4.2所述过程相同。
图11C所示为流式细胞术检测过表达PRTN3S205A和PRTN3WT的LLC细胞系分别与CD8+T细胞及NK细胞共培养后GZMB表达的情况,结果表明PRTN3酶活性位点失活后不能抑制NK细胞和CD8+T细胞的激活。
综上,本发明提供PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用。本发明通过建立KrasG12D/+;PRTN3flox/flox条件型小鼠研究敲除PRTN3对肺癌发生的影响及肿瘤浸润的细胞毒性免疫细胞活化的影响,发现敲除PRTN3能够抑制肺癌的进展,促进肺癌浸润的NK细胞、CD8+T细胞的激活。同时本发明通过构建敲低PRTN3的LLC稳定细胞系并构建小鼠皮下成瘤模型,发现敲低PRTN3能够抑制肿瘤的生长并促进肿瘤浸润的NK细胞、CD8+T细胞的激活。将敲低PRTN3的LLC细胞系分别与NK细胞、CD8+T细胞进行体外共培养,发现敲低PRTN3能够增加NK细胞、CD8+T细胞的激活比例。本发明还通过构建PRTN3酶活性位点失活的突变体(PRTN3S205A)质粒和野生型PRTN3(PRTN3WT)质粒,建立了过表达PRTN3WT和PRTN3S205A的LLC稳定细胞系,通过与NK细胞和CD8+T细胞进行体外共培养,发现PRTN3酶活性位点失活后不能抑制NK细胞和CD8+T细胞的激活。
上述结果表明,敲除和/或敲低PRTN3以及抑制PRTN3酶活性位点都能够促进NK细胞和CD8+T细胞的激活,为临床抗肺腺癌免疫治疗提供了新思路,从而打破肺腺癌免疫抑制。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
序列表
<110> 河南省医药科学研究院
<120> PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用
<130> 说明书
<140> 202110768356X
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 765
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atggctggaa gctacccatc ccccaagggg atccatccct tcctgctgct tgccctggtg 60
gttggtggcg cagtccaggc ctccaagatt gtaggtgggc acgaggctcg gccccactct 120
cggccttatg tggcatccct gcagctgagc aggttccctg ggagccactt ctgtggtggc 180
accctgatcc acccgagatt cgtgctgaca gccgcccact gcctgcagga catctcctgg 240
cagcttgtga cagtggtgct gggtgcccac gacctgctga gctcggagcc tgagcagcag 300
aagttcacca tcagtcaggt cttccagaac aattacaacc ccgaggagaa cctcaatgac 360
gtgcttctcc tccagctaaa ccggacagcc tccctgggca aggaggtggc ggtggcttct 420
ctgccccagc aggaccagac tctgtcccag ggcacccagt gcctggccat gggctggggt 480
cgcctgggca cccaagcacc cacgccccgt gtgctgcagg aactgaacgt cacggtggtc 540
accttcctat gccgggaaca caacgtgtgc acgctggtgc cacggagggc agcaggcata 600
tgcttcggag actcgggcgg ccccttgatc tgcaatggca ttcttcatgg agtggactcc 660
ttcgtgatcc gcgaatgcgc ctccctccag ttccctgatt tcttcgcccg ggtgtccatg 720
tatgtggact ggattcaaaa cgtgctgcgg ggcgcagagc cctga 765
<210> 2
<211> 765
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atggctggaa gctacccatc ccccaagggg atccatccct tcctgctgct tgccctggtg 60
gttggtggcg cagtccaggc ctccaagatt gtaggtgggc acgaggctcg gccccactct 120
cggccttatg tggcatccct gcagctgagc aggttccctg ggagccactt ctgtggtggc 180
accctgatcc acccgagatt cgtgctgaca gccgcccact gcctgcagga catctcctgg 240
cagcttgtga cagtggtgct gggtgcccac gacctgctga gctcggagcc tgagcagcag 300
aagttcacca tcagtcaggt cttccagaac aattacaacc ccgaggagaa cctcaatgac 360
gtgcttctcc tccagctaaa ccggacagcc tccctgggca aggaggtggc ggtggcttct 420
ctgccccagc aggaccagac tctgtcccag ggcacccagt gcctggccat gggctggggt 480
cgcctgggca cccaagcacc cacgccccgt gtgctgcagg aactgaacgt cacggtggtc 540
accttcctat gccgggaaca caacgtgtgc acgctggtgc cacggagggc agcaggcata 600
tgcttcggag actcgggcgg ccccttgatc tgcaatggca ttcttcatgg agtggactcc 660
ttcgtgatcc gcgaatgcgc ctccctccag ttccctgatt tcttcgcccg ggtgtccatg 720
tatgtggact ggattcaaaa cgtgctgcgg ggcgcagagc cctga 765
<210> 3
<211> 765
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggctggaa gctacccatc ccccaagggg atccatccct tcctgctgct tgccctggtg 60
gttggtggcg cagtccaggc ctccaagatt gtaggtgggc acgaggctcg gccccactct 120
cggccttatg tggcatccct gcagctgagc aggttccctg ggagccactt ctgtggtggc 180
accctgatcc acccgagatt cgtgctgaca gccgcccact gcctgcagga catctcctgg 240
cagcttgtga cagtggtgct gggtgcccac gacctgctga gctcggagcc tgagcagcag 300
aagttcacca tcagtcaggt cttccagaac aattacaacc ccgaggagaa cctcaatgac 360
gtgcttctcc tccagctaaa ccggacagcc tccctgggca aggaggtggc ggtggcttct 420
ctgccccagc aggaccagac tctgtcccag ggcacccagt gcctggccat gggctggggt 480
cgcctgggca cccaagcacc cacgccccgt gtgctgcagg aactgaacgt cacggtggtc 540
accttcctat gccgggaaca caacgtgtgc acgctggtgc cacggagggc agcaggcata 600
tgcttcggag acgcgggcgg ccccttgatc tgcaatggca ttcttcatgg agtggactcc 660
ttcgtgatcc gcgaatgcgc ctccctccag ttccctgatt tcttcgcccg ggtgtccatg 720
tatgtggact ggattcaaaa cgtgctgcgg ggcgcagagc cctga 765
<210> 4
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gctctagaat ggctggaagc tacccatc 28
<210> 5
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
cgacgcgttc agggctctgc gccc 24
<210> 6
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gcaggcatat gcttcggaga cgcgggcggc cccttgatct g 41
<210> 7
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cagatcaagg ggccgcccgc gtctccgaag catatgcctg c 41
<210> 8
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
aaaagctaca ctatcgagca attttggatc caaaattgct cgatagtgta gc 52
<210> 9
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
aaaagaacct caatgacgtg cttctttgga tccaaagaag cacgtcattg aggttc 56
<210> 10
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
aaaagatctg caatggcatt cttcattgga tccaatgaag aatgccattg cagatc 56
<210> 11
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ggaatcagga attaccagcc aag 23
<210> 12
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tctaggcagg taggaggaac t 21
<210> 13
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tgacaccagc ttcggcttc 19
<210> 14
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
gcagctaatg gctctcaaag ga 22
<210> 15
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
ctgcatagta cgctataccc tgt 23
<210> 16
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
gcaggtcgag ggacctaata 20

Claims (5)

1.PRTN3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用。
2.如权利要求1所述的应用,其特征在于,通过敲除PRTN3、和/或敲低PRTN3、和/或PRTN3酶活性位点失活激活肿瘤浸润的细胞毒性免疫细胞。
3.如权利要求2所述的应用,其特征在于,所述细胞毒性免疫细胞为NK细胞、CD8+T细胞。
4.如权利要求1所述的应用,其特征在于,所述肿瘤为肺癌。
5.如权利要求4所述的应用,其特征在于,所述肿瘤为肺腺癌。
CN202111051722.6A 2021-09-08 2021-09-08 Prtn3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用 Active CN113736742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111051722.6A CN113736742B (zh) 2021-09-08 2021-09-08 Prtn3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111051722.6A CN113736742B (zh) 2021-09-08 2021-09-08 Prtn3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用

Publications (2)

Publication Number Publication Date
CN113736742A true CN113736742A (zh) 2021-12-03
CN113736742B CN113736742B (zh) 2023-07-21

Family

ID=78737318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111051722.6A Active CN113736742B (zh) 2021-09-08 2021-09-08 Prtn3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用

Country Status (1)

Country Link
CN (1) CN113736742B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368479A (zh) * 2023-11-13 2024-01-09 郑州大学 一种用于肺腺癌诊断的生物标志物及检测试剂盒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091773A2 (en) * 2005-02-25 2006-08-31 University Of Chicago Compositions and methods related to serpin spi6
US20130302409A1 (en) * 2010-07-16 2013-11-14 Yale University Methods and compositions for cancer immunotherapy
CN105431524A (zh) * 2013-06-10 2016-03-23 达娜-法勃肿瘤研究所公司 用于降低通过肿瘤细胞的免疫抑制的方法和组合物
CN109337980A (zh) * 2018-11-23 2019-02-15 中国科学院昆明动物研究所 人ythdf1基因的用途
US20200085944A1 (en) * 2017-03-17 2020-03-19 Curevac Ag Rna vaccine and immune checkpoint inhibitors for combined anticancer therapy
CN111032075A (zh) * 2017-06-15 2020-04-17 芝加哥大学 用于治疗癌症的方法和组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091773A2 (en) * 2005-02-25 2006-08-31 University Of Chicago Compositions and methods related to serpin spi6
US20130302409A1 (en) * 2010-07-16 2013-11-14 Yale University Methods and compositions for cancer immunotherapy
CN105431524A (zh) * 2013-06-10 2016-03-23 达娜-法勃肿瘤研究所公司 用于降低通过肿瘤细胞的免疫抑制的方法和组合物
US20200085944A1 (en) * 2017-03-17 2020-03-19 Curevac Ag Rna vaccine and immune checkpoint inhibitors for combined anticancer therapy
CN111032075A (zh) * 2017-06-15 2020-04-17 芝加哥大学 用于治疗癌症的方法和组合物
CN109337980A (zh) * 2018-11-23 2019-02-15 中国科学院昆明动物研究所 人ythdf1基因的用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NCBI: "Homo sapiens proteinase 3 (PRTN3), mRNA", GENBANK DATABASE, pages 002777 *
TIAN-HUI YANG等: "Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation", JOURNAL OF IMMUNOLOGY, vol. 201, no. 5, pages 1389 *
刘广花等: "蛋白酶3及其与疾病的关系研究进展", 生物化学与生物物理进展, vol. 42, no. 3, pages 244 - 253 *
喻瑞等: "非小细胞肺癌靶向治疗相关研究进展", 肿瘤预防与治疗, vol. 25, no. 6, pages 383 - 388 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368479A (zh) * 2023-11-13 2024-01-09 郑州大学 一种用于肺腺癌诊断的生物标志物及检测试剂盒

Also Published As

Publication number Publication date
CN113736742B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN108315330B (zh) CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及敲除方法和应用
CN107982538B (zh) 一种药物组合物及其应用
CN106636090B (zh) 人源白细胞介素6的siRNA、重组表达CAR-T载体及其构建方法和应用
JP6890831B2 (ja) Hiv予備免疫化および免疫療法
US20210277102A1 (en) Compositions and methods for treating a tumor suppressor deficient cancer
US20210301349A1 (en) Compositions and methods for treating a tumor suppressor deficient cancer
CN111606999B (zh) 兼具激活免疫共刺激信号通路和阻断免疫检查点的复制型溶瘤腺病毒及其应用
CN110157686B (zh) 一种免疫检查点激活免疫共刺激的复制型溶瘤腺病毒及其构建方法和应用
CN113736742A (zh) Prtn3基因作为肿瘤免疫治疗中激活细胞毒性免疫细胞靶点的应用
CN107523569A (zh) Pdcd1基因的用途及其相关药物
CN109055374B (zh) 特异性抑制OCT1基因表达的shRNA及应用
CN113908283A (zh) Prmt5抑制剂及其与pd-l1抗体阻断剂联合在治疗肺癌上的应用
CN110746509B (zh) 一种抗人cd147 car-t细胞、制备方法和应用
CN111849914A (zh) 一种用于杀伤肿瘤的tcr-t细胞及其制备方法和应用
CN107082811B (zh) 一种嵌合抗原受体并融合诱导性凋亡酶的复合蛋白
CN103952406B (zh) 抑制人恶性脑胶质瘤增殖的靶向STAT3基因的siRNA及其表达载体和应用
CN114075548B (zh) 一种靶向axl的car-t细胞及其制备方法和应用
CN102056631B (zh) 细胞凋亡诱导物
CN104450781A (zh) 一种过表达ciapin1蛋白的细胞系及其制备方法和应用
CN110042083B (zh) 稳定表达map3k8蛋白的bhk-21细胞株及其构建和应用
CN115992244B (zh) Sart1在肝癌治疗中的作用
CN117304343B (zh) Gpc3靶向的car-nk细胞的制备及其应用
CN117965632A (zh) 一种功能增强型nk细胞的制备方法与应用
WO2022133970A1 (zh) 一种包含溶瘤病毒的组合物及其在肿瘤治疗中的应用
CN114875069B (zh) 基因工程修饰的il2细胞因子的重组载体、宿主细胞及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant