CN113731444B - 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用 - Google Patents

一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113731444B
CN113731444B CN202110988119.4A CN202110988119A CN113731444B CN 113731444 B CN113731444 B CN 113731444B CN 202110988119 A CN202110988119 A CN 202110988119A CN 113731444 B CN113731444 B CN 113731444B
Authority
CN
China
Prior art keywords
sns
sno
nano
catalyst
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110988119.4A
Other languages
English (en)
Other versions
CN113731444A (zh
Inventor
陈阿青
梁轻
孔哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202110988119.4A priority Critical patent/CN113731444B/zh
Publication of CN113731444A publication Critical patent/CN113731444A/zh
Application granted granted Critical
Publication of CN113731444B publication Critical patent/CN113731444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于降解有机废水的Sb‑SnO2/SnS2纳米催化剂及其制备方法和应用。以硫脲和四氯化锡为原料,通过水热法合成得到二维片层的SnS2纳米催化剂,之后真空烘干得到黄色粉末状。再将得到的SnS2纳米催化剂分散在含有四氯化锡和三氯化锑的水溶液中,再次通过水热工艺得到复合型的Sb‑SnO2/SnS2异质结纳米颗粒。该催化剂具有球状的纳米花结构,能够实现光催化剂对紫外光、可见光到近红外光的有效吸收,增强了光催化剂利用太阳光降解有机废水的能力。

Description

一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备 方法和应用
技术领域
本发明属于利用太阳光降解有机污染物的光催化剂技术领域,尤其涉及一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用。
背景技术
当前工业废水的治理工艺还是采用传统的生化细菌降解废水中的有机物、氨氮和总氮。然而,随着现代工业的高速发展,工业废水的成分越来越复杂,废水的生物毒性也越来越高;尤其是化工和医药制造类的废水,具有高COD,高氨氮,高盐分等特点。生化细菌难以在这种高浓废水中生存,无法降解高浓废水。其他添加的氧化剂,如双氧水,次氯酸钠等高级氧化工艺会在治理过程中带来二次污染。光催化剂能够利用太阳能产生具有强氧化的物质,羟基自由基等。例如基于TiO2的光催化剂能够分解有机物。但是,这些光催化剂都只能利用太阳光中的短波段的紫外光,对太阳光的利用率很低,造成分解有机物效率低。针对这一缺陷,通过对TiO2掺杂来提高TiO2对可见光的吸收,如专利(CN 112774671 A)报道钌掺杂TiO2对可见光吸收得到了增强。但是,钌掺杂TiO2对在对400nm 以上的光吸收还是相对较弱,没有实现全光谱吸收,不能满足当前光催化治理工业废水的应用。因此,开发一种能够利用太阳光的催化剂在光催化降解有机废水上显得相当重要。
发明内容
本发明的一个目的是针对现有技术的不足,提供一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法。这种光催化剂能够对太阳光谱中的紫外光、可见光到近红外光都能够吸收,极大提高了光催化剂利用太阳光催化降解废水中有机物的能力,克服了光催化剂对太阳光利用的不足,实现即使在弱光下也有良好的光电催化效应。
本发明通过如下技术方案实现:
本发明一种Sb-SnO2/SnS2异质结纳米催化剂的方法,包括以下步骤:
S1、以硫脲和四氯化锡为原料,加入去离子水,溶解搅拌后得到硫脲和四氯化锡的水溶液;
S2、利用硫脲和四氯化锡的水溶液通过水热法合成得到二维片层的SnS2纳米催化剂;
S3、对上述二维片层的SnS2纳米催化剂真空烘干,得到SnS2纳米催化剂黄色粉末状;
S4、将SnS2纳米催化剂黄色粉末状分散在含有四氯化锡和三氯化锑的水溶液中,调节pH至5~6,通过水热工艺得到复合型的Sb-SnO2/SnS2异质结纳米颗粒;其中四氯化锡和三氯化锑的质量比为97:10~3,这保证了产品Sb-SnO2/SnS2异质结纳米颗粒呈黑色;SnS2纳米催化剂颗粒与四氯化锡和三氯化锑的水溶液的质量比为0.8~2:100,这确保了Sb-SnO2/SnS2异质结纳米催化剂呈球状的纳米花状的纳米颗粒;
进一步地,步骤S1中硫脲和四氯化锡的质量比为1:2~3;
进一步地,步骤S1中反应温度为20~30℃,搅拌时间为1-3小时;
进一步地,步骤S1中硫脲和四氯化锡的水溶液pH值为5~6;
进一步地,步骤S2中二维片层的SnS2纳米催化剂水热合成温度为160~180℃;
进一步地,步骤S2中二维片层的SnS2纳米催化剂水热合成时间为16~18小时;
进一步地,步骤S3中二维片层的SnS2纳米催化剂真空烘干温度为60~70℃;
进一步地,步骤S4中采用盐酸调节pH至5~6,这确保了三氯化锑完全溶于水中,溶液清澈均匀;
进一步地,步骤S4中复合型的Sb-SnO2/SnS2异质结纳米颗粒水热合成温度为160~180℃;
进一步地,步骤S4中复合型的Sb-SnO2/SnS2异质结纳米颗粒水热合成时间为16~18小时。
本发明的另一个目的是提供了一种Sb-SnO2/SnS2异质结纳米催化剂,采用以上方法制备得到。该催化剂由二维纳米片层的SnS2纳米催化剂与Sb掺杂SnO2 纳米颗形成复合型的,具有球状的纳米花结Sb-SnO2/SnS2异质结的纳米催化剂。该纳米催化剂具有球状的纳米花结构,能够实现了光催化剂对紫外光、可见光到近红外光的有效吸收,可实现弱光下保持良好的光电性能,增强了光催化剂利用太阳光降解有机废水的能力。
本发明的又一个目的是提供Sb-SnO2/SnS2异质结纳米催化剂在降解有机废水中的应用。
本发明的有益效果如下:
本发明的Sb-SnO2/SnS2异质结纳米催化剂颗粒能够在全光谱内对可见光保持几乎相等的吸光度,对可见光进行吸收,并且实现在弱光下保持良好的光电催化效应,从而有效降解废水中的有机物,去除COD。
附图说明
图1是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒的扫描电子照片;
图2是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒的XRD图谱;
图3是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒的可见光吸收图谱。
图4是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒去除废水中COD效果图。
具体实施方式
下面结合具体实施例对本发明做进一步的分析。
实例1、
1、用电子天平称取1.75g SnCl4·5H2O和0.75g硫脲,将两种化学物质溶解到60mL的去离子水中,用磁力加热搅拌器恒温25℃下不断搅拌70min,使溶液充分分散,得到均匀透明溶液,调节溶液pH为5.0,之后将溶液转移至容量为 80ml的不锈钢反应釜内衬中。将拧紧密封的不锈钢反应釜放入恒温干燥箱中,调节干燥箱温度为180℃下,恒温保持16h。待反应釜加热完成后,取出反应釜冷却到室温,然后用滴管将上层清液吸出,然后将内衬中合成的纳米颗粒倒入烧杯中用去离子水反复冲洗3次。去离子水冲洗完后将其放入真空干燥箱中,在 60℃下干燥24h后,取出所得干燥SnS2产物。
2、用电子天平称取1.80g SnCl4·5H2O和0.06g三氯化锑将两种化学物质溶解到60mL的去离子水中,用盐酸调节溶液pH为5.0,用磁力加热搅拌器恒温25℃下不断搅拌30min,使溶液充分分散,得到均匀透明溶液,之后称取步骤1所制备得到的SnS20.5g,并搅拌均匀;最后,将溶液转移至容量为80ml的不锈钢反应釜内衬中。将拧紧密封的不锈钢反应釜放入恒温干燥箱中,调节干燥箱温度为 180℃下,恒温保持16h。待反应釜加热完成后,取出反应釜冷却到室温,然后用滴管将上层清液吸出,然后将内衬中合成的物质倒入烧杯中用去离子水反复冲洗3次。去离子水冲洗完后将其放入真空干燥箱中,在50℃下干燥24h后,取出所得干燥产物研磨之后保存。
图1是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒的扫描电子照片;
图2是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒的XRD图谱;
图3是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒的可见光吸收图谱。
实例2、
1、用电子天平称取2.00g SnCl4·5H2O和0.85g硫脲,将两种化学物质溶解到60mL的去离子水中,用磁力加热搅拌器恒温25℃下不断搅拌70min,使溶液充分分散,得到均匀透明溶液,调节溶液pH为6.0,之后将溶液转移至容量为 80ml的不锈钢反应釜内衬中。将拧紧密封的不锈钢反应釜放入恒温干燥箱中,调节干燥箱温度为160℃下,恒温保持16h。待反应釜加热完成后,取出反应釜冷却到室温,然后用滴管将上层清液吸出,然后将内衬中合成的纳米颗粒倒入烧杯中用去离子水反复冲洗3次。去离子水冲洗完后将其放入真空干燥箱中,在 70℃下干燥24h后,取出所得干燥SnS2产物。
2、用电子天平称取2.00g SnCl4·5H2O和0.08g三氯化锑,将两种化学物质溶解到60mL的去离子水中,用盐酸调节溶液pH为5.0,用磁力加热搅拌器恒温 25℃下不断搅拌30min,使溶液充分分散,得到均匀透明溶液,之后称取步骤1所制备得到的SnS20.5g,并搅拌均匀,最后,将溶液转移至容量为80ml的不锈钢反应釜内衬中。将拧紧密封的不锈钢反应釜放入恒温干燥箱中,调节干燥箱温度为180℃下,恒温保持16h。待反应釜加热完成后,取出反应釜冷却到室温,然后用滴管将上层清液吸出,然后将内衬中合成的物质倒入烧杯中用去离子水反复冲洗3次。去离子水冲洗完后将其放入真空干燥箱中,在50℃下干燥24h后,取出所得干燥产物研磨之后保存。
实例3、
1、用电子天平称取1.80g SnCl4·5H2O和0.80g硫脲,将两种化学物质溶解到60mL的去离子水中,用磁力加热搅拌器恒温30℃下不断搅拌80min,使溶液充分分散,得到均匀透明溶液,调节溶液pH为6.0,之后将溶液转移至容量为 80ml的不锈钢反应釜内衬中。将拧紧密封的不锈钢反应釜放入恒温干燥箱中,调节干燥箱温度为170℃下,恒温保持16h。待反应釜加热完成后,取出反应釜冷却到室温,然后用滴管将上层清液吸出,然后将内衬中合成的纳米颗粒倒入烧杯中用去离子水反复冲洗3次。去离子水冲洗完后将其放入真空干燥箱中,在 60℃下干燥24h后,取出所得干燥SnS2产物。
2、用电子天平称取2.00g SnCl4·5H2O和0.10g三氯化锑,将两种化学物质溶解到60mL的去离子水中,用盐酸调节溶液pH为5.0,用磁力加热搅拌器恒温 25℃下不断搅拌30min,使溶液充分分散,得到均匀透明溶液,之后称取步骤1所制备得到的SnS21.0g,并搅拌均匀,最后,将溶液转移至容量为80ml的不锈钢反应釜内衬中。将拧紧密封的不锈钢反应釜放入恒温干燥箱中,调节干燥箱温度为160℃下,恒温保持18h。待反应釜加热完成后,取出反应釜冷却到室温,然后用滴管将上层清液吸出,然后将内衬中合成的物质倒入烧杯中用去离子水反复冲洗3次。去离子水冲洗完后将其放入真空干燥箱中,在50℃下干燥24h后,取出所得干燥产物研磨之后保存。
应用实例:
(1)配置COD含量为1260mg/L的苯酚溶液500mL,以模拟有机废水。
(2)将50mg上述实例中的Sb-SnO2/SnS2异质结纳米颗粒分散到步骤1配置好的模拟有机废水溶液中,记为实验组1。为了对照,同时设置50mg纯SnS2片层纳米颗粒分散到相同参数的步骤1配置好的模拟有机废水溶液中,记为对照组1。
(3)将实验组1和对照组1的溶液均放置在光照强度为1000W/m2的太阳模拟器的灯光下,并不断搅拌,每隔30分钟取样检测COD含量。120分钟后,分散有Sb-SnO2/SnS2异质结纳米颗粒的苯酚溶液(实验组1)中COD含量只有300 mg/L左右;分散纯SnS2片层纳米颗粒的苯酚溶液(对照组1)中COD含量为 900mg/L。
图4是本发明实例中Sb-SnO2/SnS2异质结纳米颗粒去除废水中COD效果图。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于包括以下步骤:
S1、以硫脲和四氯化锡为原料,加入去离子水,溶解搅拌后得到硫脲和四氯化锡的水溶液;
S2、利用硫脲和四氯化锡的水溶液通过水热法合成得到二维片层的SnS2纳米催化剂;
S3、对上述二维片层的SnS2纳米催化剂真空烘干,得到SnS2纳米催化剂黄色粉末状;
S4、将SnS2纳米催化剂黄色粉末状分散在含有四氯化锡和三氯化锑的水溶液中,调节pH至5~6,通过水热工艺得到复合型的Sb-SnO2/SnS2异质结纳米颗粒;其中四氯化锡和三氯化锑的质量比为97:10~3,SnS2纳米催化剂颗粒与四氯化锡和三氯化锑的水溶液的质量比为0.8~2:100。
2.如权利要求1所述的一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于步骤S1中硫脲和四氯化锡的质量比为1:2~3。
3.如权利要求1所述的一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于步骤S1中反应温度为20~30℃,搅拌时间为1-3小时。
4.如权利要求1或2所述的一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于步骤S1中硫脲和四氯化锡的水溶液pH值为5~6。
5.如权利要求1所述的一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于步骤S2中二维片层的SnS2纳米催化剂水热合成温度为160~180℃;合成时间为16~18小时。
6.如权利要求1所述的一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于步骤S3中二维片层的SnS2纳米催化剂真空烘干温度为60~70℃。
7.如权利要求1所述的一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于步骤S4中采用盐酸调节pH至5~6。
8.如权利要求1或5所述的一种Sb-SnO2/SnS2异质结纳米催化剂的制备方法,其特征在于步骤S4中复合型的Sb-SnO2/SnS2异质结纳米颗粒水热合成温度为160~180℃;水热合成时间为16~18小时。
9.一种Sb-SnO2/SnS2异质结纳米催化剂,采用权利要求1-8任一所述的方法制备得到,其特征在于该催化剂由二维纳米片层的SnS2纳米催化剂与Sb掺杂SnO2纳米颗形成具有球状的纳米花结Sb-SnO2/SnS2异质结的复合型纳米催化剂。
10.权利要求9所述的一种Sb-SnO2/SnS2异质结纳米催化剂在降解有机废水中的应用。
CN202110988119.4A 2021-08-26 2021-08-26 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用 Active CN113731444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110988119.4A CN113731444B (zh) 2021-08-26 2021-08-26 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110988119.4A CN113731444B (zh) 2021-08-26 2021-08-26 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113731444A CN113731444A (zh) 2021-12-03
CN113731444B true CN113731444B (zh) 2022-11-15

Family

ID=78733002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110988119.4A Active CN113731444B (zh) 2021-08-26 2021-08-26 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113731444B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505080A (zh) * 2022-03-10 2022-05-17 燕山大学 原位制备SnO2/SnS2异质结光催化剂的方法及其使用方法
CN115069271A (zh) * 2022-07-07 2022-09-20 南京工业大学 一种高效处理含铬废水的复合材料光催化剂及其制备方法
CN115992364B (zh) * 2023-02-08 2024-09-27 中国科学院山西煤炭化学研究所 一种锑掺杂二硫化锡电催化材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327948A (zh) * 2008-07-31 2008-12-24 浙江大学 一种锑掺杂二氧化锡纳米粉体的水热法制备方法
CN101823691B (zh) * 2010-05-06 2012-12-19 宁波大学 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法
CN103861618A (zh) * 2014-04-04 2014-06-18 扬州大学 一种SnO2基复合可见光光催化剂的制备方法
CN104148050B (zh) * 2014-07-23 2016-08-24 陕西科技大学 一种Sb2O3/SnO2复合光催化材料的制备方法
CN105080573B (zh) * 2015-08-13 2018-02-23 陕西科技大学 一种采用微波水热法制备SnS2/SnO2纳米光催化复合材料的方法

Also Published As

Publication number Publication date
CN113731444A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN113731444B (zh) 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用
Ren et al. Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation
Iqbal et al. Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applications
Cao et al. A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: Enhanced photocatalytic performance
CN105148894B (zh) 一种羟基化氧化钛/石墨烯可见光催化材料的制备方法
Mohanty et al. Enhanced photocatalytic degradation of rhodamine B and malachite green employing BiFeO3/g-C3N4 nanocomposites: an efficient visible-light photocatalyst
Zha et al. The degradation of tetracycline by modified BiOCl nanosheets with carbon dots from the chlorella
Ghorbani et al. Facile synthesis of Z-scheme ZnO-nanorod@ BiOBr-nanosheet heterojunction as efficient visible-light responsive photocatalyst: The effect of electrolyte and scavengers
Elias et al. An experimental and theoretical study of the effect of Ce doping in ZnO/CNT composite thin film with enhanced visible light photo-catalysis
CN105540733A (zh) 一种TiO2-还原石墨烯复合材料及其制备方法和在人工海水体系中的应用
Meena et al. Biogenic synthesis of Bi2O3 nanoparticles using Cassia fistula plant pod extract for the effective degradation of organic dyes in aqueous medium
Dhiman et al. Co3O4 nanoparticles synthesized from waste Li-ion batteries as photocatalyst for degradation of methyl blue dye
Kotp Fabrication of cerium titanate cellulose fiber nanocomposite materials for the removal of methyl orange and methylene blue from polluted water by photocatalytic degradation
Dou et al. Ag nanoparticle-decorated 2D/2D S-scheme gC 3 N 4/Bi 2 WO 6 heterostructures for an efficient photocatalytic degradation of tetracycline
Pirsaheb et al. Photocatalyzed degradation of acid orange 7 dye under sunlight and ultraviolet irradiation using Ni-doped ZnO nanoparticles
Chen et al. Sulfur doped Bi-MOF with adjustable band gap for tetracycline removal under visible light
WO2018092945A1 (ko) 비스무스 바나데이트 광촉매 및 그 제조방법
Cao et al. Trash to treasure: green synthesis of novel Ag2O/Ag2CO3 Z-scheme heterojunctions with highly efficient photocatalytic activities derived from waste mussel shells
Sawunyama et al. Photocatalytic degradation of tetracycline using surface defective black TiO2–ZnO heterojunction photocatalyst under visible light
Vasheghani Farahani et al. Fabrication of Fe-doped ZnO/nanocellulose nanocomposite as an efficient photocatalyst for degradation of methylene blue under visible light
Mandar et al. Chataliytic activity of nano ZnO/Cu for degradation humic acid under ilumination outdoor light
CN111632619A (zh) 一种铜-氮共掺杂二氧化钛光催化材料、制备方法及应用
Wang et al. Synthesis of CuO@ TiO2 nanocomposite and its photocatalytic and electrochemical properties. Application for treatment of azo dyes in industrial wastewater
Rattan Paul et al. Li doped graphitic carbon nitride based solar light responding photocatalyst for organic water pollutants degradation
Patial et al. Hydrothermal synthesis of (mt) BiVO4/g-C3N4 heterojunction for enhancement in photocatalytic degradation of imidacloprid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant