CN113713624B - 一种污水处理的双陶瓷膜一体化装置及压力故障判断方法 - Google Patents

一种污水处理的双陶瓷膜一体化装置及压力故障判断方法 Download PDF

Info

Publication number
CN113713624B
CN113713624B CN202111279352.1A CN202111279352A CN113713624B CN 113713624 B CN113713624 B CN 113713624B CN 202111279352 A CN202111279352 A CN 202111279352A CN 113713624 B CN113713624 B CN 113713624B
Authority
CN
China
Prior art keywords
ceramic membrane
inorganic ceramic
membrane filter
pressure
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111279352.1A
Other languages
English (en)
Other versions
CN113713624A (zh
Inventor
徐涛
陈斐斐
俞敏华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Teqin Satellite Navigation Technology Co ltd
Original Assignee
Zhejiang Teqin Satellite Navigation Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Teqin Satellite Navigation Technology Co ltd filed Critical Zhejiang Teqin Satellite Navigation Technology Co ltd
Priority to CN202111279352.1A priority Critical patent/CN113713624B/zh
Publication of CN113713624A publication Critical patent/CN113713624A/zh
Application granted granted Critical
Publication of CN113713624B publication Critical patent/CN113713624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种污水处理的双陶瓷膜一体化装置,包括纳米陶瓷膜生物滤塔、第一无机陶瓷膜过滤器、第二无机陶瓷膜过滤器、过滤泵、循环泵、在线压力传感器、消毒装置和控制装置,控制装置依据在线压力传感器所传输的压力数据和过滤泵所传输的信号进行报警控制。本装置综合考虑无机陶瓷膜过滤器内部压力和过滤泵的外部输入压力之间的顺势和逆势关系,将定性和定量判据相结合,可以更准确地判断正在使用的无机陶瓷膜过滤器是否出现故障,以便于维护故障无机陶瓷膜过滤器并同时启动备用无机陶瓷膜过滤器,高效安全地实现污水处理。

Description

一种污水处理的双陶瓷膜一体化装置及压力故障判断方法
技术领域
本发明涉及污水处理装置,尤其涉及一种污水处理的双陶瓷膜一体化装置及压力故障判断方法。
背景技术
目前污水处理一般均是通过二级处理来达到处理效果的,在二级处理中为了达到更好的出水要求,后端往往需采用絮凝沉淀工艺来实现,或采用膜技术工艺来实现。通过好絮凝沉淀工艺时必须使用絮凝沉淀设备以及大体积池体,一方面增加了设备能耗,另一方面增加设施所占用的土地;采用膜技术可以大大缩小了设施的总体体积,且能达到出水水质要求。
膜技术中使用的膜一般又分为两种,一种是有机膜,一种是无机膜。有机膜在污水处理行业被普通使用,但有机膜在使用过程中有耐腐蚀性差、机械强度低以及使用寿命短的缺点。
现有的污水处理的一体化装置采用厌氧好氧+絮凝沉淀法或厌氧好氧+MBR膜法,厌氧好氧+絮凝沉淀法在污水处理中要使用到曝气机,而使用曝气机所消耗的能源占污水处理过程的总能源消耗的40%以上,二级处理过程采用絮凝沉淀工艺,此过程相对能源消耗较高,占地面积大;厌氧好氧+MBR膜法在污水处理过程中也同样使用曝气机,使用曝气机所消耗的能源同样要占污水处理过程的总能源消耗的40%以上,二级处理过程采用MBR膜法大大降低了设备所占用的土地面积,但MBR膜作为机膜的一种,由于MBR膜在正常的维护保养条件下,使用寿命一般为3~5年,因此,厌氧好氧+MBR膜法在污水处理过程中,由于膜的保养及更换将会大大提高使用及维护成本。
当采用生物滤塔代替厌氧好氧絮凝沉淀法或厌氧好氧MBR膜法时,其故障往往难以通过无机陶瓷膜过滤器的检测的压力直接快速识别,使得故障无法及时发现,进而影响污水处理的有效性。
发明内容
本发明基于厌氧好氧絮凝沉淀法或厌氧好氧MBR膜法时的污水处理一体化装置的缺点,使用生物滤塔代替厌氧好氧,并对生物滤塔的故障进行及时监控,及时有效的识别故障,降低污水处理异常的风险。
本发明提供一种污水处理的双陶瓷膜一体化装置,包括纳米陶瓷膜生物滤塔、无机陶瓷膜过滤器、消毒装置和控制装置,纳米陶瓷膜生物滤塔还包括一循环泵,无机陶瓷膜过滤器包括第一无机陶瓷膜过滤器、第二无机陶瓷膜过滤器、与第一无机陶瓷膜过滤器和第二无机陶瓷膜过滤器都连接的一过滤泵、以及感知第一无机陶瓷膜过滤器和第二无机陶瓷膜过滤器内压力的在线的压力传感器,控制装置电性连接循环泵、过滤泵、第一无机陶瓷膜过滤器、第二无机陶瓷膜过滤器、在线的压力传感器、和消毒装置,控制装置依据在线压力传感器所传输的压力数据和过滤泵所传输的信号进行报警控制;
其中,所述进行报警控制的方法为:基于常数与乘幂函数组成的分段函数的第一周期比较过滤泵的第一压力值P1及无机陶瓷膜过滤器的第二压力值P2的变化率判断是否报警。
优选的,该体化装置整体外型设计成撬装式的,四面及顶面设计成快开式。
优选的,纳米陶瓷膜生物滤塔的循环泵由第一液位控制器将信号传输至控制装置,然后再由控制装置内PLC程序进行运行控制;第一无机陶瓷膜过滤器和第二无机陶瓷膜过滤器的过滤泵由第二液位控制器将信号传输至控制装置,然后再由控制装置内PLC程序进行运行控制,通过在线的压力传感器同时感知无机陶瓷膜过滤器内的压力,然后将压力数据传输至控制装置内PLC程序并结合过滤泵的第二液位控制器所传输的信号进行报警控制。
优选的,当操作人员听到报警后,即可直接判定为第一无机陶瓷膜过滤器或第二无机陶瓷膜过滤器需进行维护操作,启用第二无机陶瓷膜过滤器或第一无机陶瓷膜过滤器,再将第一无机陶瓷膜过滤器或第二无机陶瓷膜过滤器进行维护好后待用。
优选的,消毒装置的启停是通过控制装置内PLC程序与过滤泵进行联动,当过滤泵运行时,消毒装置运行。
一种污水处理的双陶瓷膜一体化装置的压力故障判断方法,包括:
S1采集过滤泵的第一压力值P1及无机陶瓷膜过滤器的第二压力值P2
S2若无机陶瓷膜过滤器的第二压力值P2超过阈值,则报警;无机陶瓷膜过滤器的第二压力值P2不超过阈值,进行第一定性判断;
S3第一定性判断为:计算第一压力值P1及无机陶瓷膜过滤器的第二压力值P2的变化率方向;若第一压力值P1及无机陶瓷膜过滤器的第二压力值P2的变化率方向相反,则进入第二定量判断过程;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
S4第二定量判断为:计算顺势压力变化或逆势压力变化是否超过阈值,若顺势压力变化或逆势压力变化是否超过阈值,则进入第三频发判断;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
S5第三频发判断为:在第一周期后再次进行第二定量判断,若顺势压力变化或逆势压力变化超过阈值,则报警,否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
所述第一周期为常数与乘幂函数组合的分段函数。
优选的,所述第一周期T的确定方法为
Figure DEST_PATH_IMAGE001
其中,T为第一周期,P1为过滤泵7的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t为时刻;c1、c2、c3为边界参数;T1为最大周期阈值,T2为最小周期阈值,k1、k2、k3为平衡系数,其中,k1大于0,k2小于0。
优选的,所述第二定量判断包括:若顺势压力
Figure DEST_PATH_IMAGE002
(1),或者逆势压力
Figure DEST_PATH_IMAGE003
(2),进行第三频发判断过程,否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
其中,P1为过滤泵7的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t为时刻;m为顺势故障因子,其取值范围为(1.44,1.45);a为顺势系数,其取值范围为(2.5,3);n为逆势故障因子,其取值范围为(0.70,0.71);b为逆势系数,其取值范围为(1,1.5)。
优选的,所述第一定性判断包括:进行
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
的符号判断:当
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
,或者
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE010
时,进入第二定量判断过程;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障。
本发明的污水处理的双陶瓷膜一体化装置的发明点体现在两个方面,一方面是结构先进,另一方面是报警判断实时性好、准确率高。
在结构上,该污水处理的双陶瓷膜一体化装置主要由一级处理的纳米陶瓷膜生物滤塔、二级处理的陶瓷膜过滤器、消毒装置及控制装置组成。这种装置的有机组合,可以使得业主在建设污水处理工程时大大减少工程的占地面积,节约土地,在污水处理工程运行时降低对操作人员的专业性要求,节约用人成本,工程运行过程无需进行系统加药,有效避免二次污染,由于本发明使用的双陶瓷膜组合,大大提高了设备核心部件的使用寿命,减少了对工程运行维护的投入,为污水处理工程运行低成本、免维护、高质量出水提供了有效的保障。
在报警判断上,本发明综合考虑无机陶瓷膜过滤器内部压力和过滤泵的外部输入压力之间的顺势和逆势关系,将定性和定量判据相结合,通过定性判断快速过滤非异常值,提高计算效率;通过定量判断准确地判断正在使用的无机陶瓷膜过滤器是否出现故障;通过不同压差变化率下的故障发生情况优化采样时间周期,避免过高的采样频率冗余或过低的采样频率无法及时发现故障,进而实现双陶瓷膜一体化装置的有效报警,高效地实现污水处理。
附图说明
图1为根据本发明的污水处理的双陶瓷膜一体化装置中各组成部分的连接及机构设置;
图2为根据本发明的污水处理的双陶瓷膜一体化装置压力报警流程图。
附图标记说明:
1---控制装置
2---纳米陶瓷膜生物滤塔
3---第一无机陶瓷膜过滤器
4---第二无机陶瓷膜过滤器
5---消毒装置
6---循环泵
7---过滤泵
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护范围。
实施例一
本实施例提供了一种污水处理量大、停留时间短出水清澈、故障报警速度快的双陶瓷膜一体化装置,如图1所示。包括纳米陶瓷膜生物滤塔、无机陶瓷膜过滤器、消毒装置、和控制装置。控制装置作为该污水处理的双陶瓷膜一体化装置的核心控制部件,对纳米陶瓷膜生物滤塔、无机陶瓷膜过滤器、消毒装置进行系统控制。本实施例的纳米陶瓷膜生物滤塔2的循环泵6由第一液位控制器(未示出)将信号传输至控制装置1控制,然后再由控制装置1内PLC程序进行运行控制;无机陶瓷膜装置设置成一用一备,无机陶瓷膜装置的过滤泵7由第二液位控制器(未示出)将信号传输至控制装置1控制,然后再由控制装置1内PLC程序进行运行控制,通过在线的压力传感器(未示出)同时感知无机陶瓷膜过滤器内的压力,然后将压力数据传输至控制装置1内PLC程序并结合过滤泵7的第二液位控制器(未示出)所传输的信号进行报警控制,操作人员听到报警后,即可直接判定为第一无机陶瓷膜过滤器3需进行维护操作,启用第二无机陶瓷膜过滤器4,再将第一无机陶瓷膜过滤器3进行维护好后待用;消毒装置5的启停是通过控制装置1内PLC程序与过滤泵7进行联动,只有当过滤泵7运行时,消毒装置5才会运行。
所述污水处理的双陶瓷膜一体化装置整体外型设计成撬装式的,四面及顶面设计成快开式,利于装置内核心部件的维护及保养。
在第一无机陶瓷膜过滤器3待用期间,继续通过在线的压力传感器(未示出)感知无机陶瓷膜过滤器内的压力,然后将压力数据传输至控制装置1内PLC程序并结合过滤泵7的第二液位控制器(未示出)所传输的信号进行报警控制,操作人员听到报警后,即可直接判定为第二无机陶瓷膜过滤器4需进行维护操作,启用第一无机陶瓷膜过滤器3,再将第二无机陶瓷膜过滤器4进行维护好后待用。
本实施例使用的无机膜,它是由无机材料,如陶瓷、金属、金属氧化物、多孔下班、沸石、无机高分子等材料制成的,具有耐腐蚀、机械强度高及使用寿命长等优点。
本实施例还提供一种污水处理的双陶瓷膜一体化装置的压力故障判断方法,如图2所示,具体包括如下步骤:
判断无机陶瓷膜过滤器的第二压力值P2超过阈值是否超过阈值,若超过阈值,则报警,若不超过阈值,则结合过滤泵7的第二液位控制器(未示出)所传输的第一压力信号进行报警判断,一般进行三次判断过程,分别为:第一定性判断、第二定量判断、第三频发判断。
第一定性判断进行
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE012
的符号判断:当
Figure DEST_PATH_IMAGE013
Figure DEST_PATH_IMAGE014
,或者
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
时,进入第二定量判断过程;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障。其中,P1为过滤泵7的压力值;P2为在线压力传感器所传输的压力数据值;t为时刻。
通过第一定性判断可有效基于较少的计算量排除较多的非故障情况,对全局数据进行快速筛选和过滤,提高故障判断的计算效率。
第二定量判断为计算顺势压力变化或逆势压力变化是否超过阈值,若顺势压力
Figure DEST_PATH_IMAGE017
(1),或者逆势压力
Figure DEST_PATH_IMAGE018
(2),进行第三频发判断过程,否则,认为无机陶瓷膜过滤器内无需要报警的压力故障。
其中,P1为过滤泵7的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t为时刻;m为顺势故障因子,其取值范围为(1.44,1.45),此处优选1.4459;a为顺势系数,其取值范围为(2.5,3),此处优选为2.6845;n为逆势故障因子,其取值范围为(0.70,0.71),此处优选0.7084;b为逆势系数,其取值范围为(1,1.5),此处优选为1.2283。上述顺势故障因子,顺势系数,逆势故障因子,逆势系数的取值根据流量、水质情况的变化在上述范围内变化,优选数值并非唯一可获得本发明技术效果的范围。
第三频发判断包括:当第一次满足公式(1)或者公式(2)时,说明第一无机陶瓷膜过滤器3或者第二无机陶瓷膜过滤器4可能处于故障状态,为了防止误报警的发生,在第一周期之后再次读取第一压力值P1及无机陶瓷膜过滤器的第二压力值P2进行进一步的第二定量判断过程,如果再次满足公式(1)或者公式(2)时,说明第一无机陶瓷膜过滤器3或者第二无机陶瓷膜过滤器4处于故障状态,此时进行报警。所述第一周期T的确定方法为
Figure 843960DEST_PATH_IMAGE001
其中,T为第一周期,P1为过滤泵7的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t为时刻;c1、c2、c3为边界参数;T1为最大周期阈值,T2为最小周期阈值,k1、k2、k3为平衡系数,其中,k1大于0,k2小于0。边界参数及最小周期阈值的选择,根据不同压力差对应的历史过往故障情况发生的频次确定。如,根据无故障出现的压力变化率的差的上限设置边界参数c1,并基于对双陶瓷膜一体化装置的各项参数的采集处理时间设置最大周期阈值T1,以适应常规的日常监控频率;根据压力传感器的最高采样周期及出现故障后带来的直接影响的时间间隔,设置最小周期阈值T2,以避免故障带来后续影响的扩大;平衡系数k1、k2、k3根据不同压力差对应的历史过往故障情况发生的频次,通过数据拟合欧氏距离最小时的解确定最优值。
本实施例从能源消耗上至少比原有工艺降低40%以上的能源消耗,更加绿色环保;从空间占地面积上来讲,生物滤塔吨污水平均占用面积只为原有工艺的1/2以下;本发明二级处理采用无机陶瓷膜过滤器,凝沉淀过程无需使用药剂来提高处理周期的问题,由于本发时所采用的无机膜过滤器体积较小,且具有操作简单方便、易清洗、免维护及寿命长的优点,这在污水处理过程中大大降低了设备占用土地的情况,也降低业主单位对工程操作维护人员的技术要求,使得污水处理工程的正常使用提供了可靠的保证。
本实施例综合考虑无机陶瓷膜过滤器内部压力和过滤泵的外部输入压力之间的顺势和逆势关系,将定性和定量判据相结合,通过定性判断快速过滤非异常值,提高计算效率;通过定量判断准确地判断正在使用的无机陶瓷膜过滤器是否出现故障;避免过高的采样频率冗余或过低的采样频率无法及时发现故障,避免过高的采样频率冗余或过低的采样频率无法及时发现故障,进而实现双陶瓷膜一体化装置的有效报警,高效地实现污水处理。
以上所述的具体实施例,对本发明的目的,技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种污水处理的双陶瓷膜一体化系统,包括纳米陶瓷膜生物滤塔、无机陶瓷膜过滤器、消毒装置和控制装置,其特征在于,纳米陶瓷膜生物滤塔还包括一循环泵,无机陶瓷膜过滤器包括第一无机陶瓷膜过滤器、第二无机陶瓷膜过滤器、与第一无机陶瓷膜过滤器和第二无机陶瓷膜过滤器都连接的一过滤泵、以及感知第一无机陶瓷膜过滤器和第二无机陶瓷膜过滤器内压力的在线的压力传感器,控制装置电性连接循环泵、过滤泵、第一无机陶瓷膜过滤器、第二无机陶瓷膜过滤器、在线的压力传感器、和消毒装置,控制装置依据在线压力传感器所传输的压力数据和过滤泵所传输的信号进行报警控制;
所述压力传感器被配置为执行采集过滤泵的第一压力值P1及无机陶瓷膜过滤器的第二压力值P2
所述控制装置被配置为执行:
若无机陶瓷膜过滤器的第二压力值P2超过阈值,则报警;无机陶瓷膜过滤器的第二压力值P2不超过阈值,进行第一定性判断;
第一定性判断为:计算第一压力值P1及无机陶瓷膜过滤器的第二压力值P2的变化率方向;若第一压力值P1及无机陶瓷膜过滤器的第二压力值P2的变化率方向相反,则进入第二定量判断过程;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
第二定量判断为:计算压力变化是否超过阈值,若压力变化超过阈值,则进入第三频发判断;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
第三频发判断为:在第一周期后再次进行第二定量判断,若压力变化超过阈值,则报警,否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
所述第一周期为常数与乘幂函数组合的分段函数;所述第一周期T的确定方法为:
Figure 232057DEST_PATH_IMAGE001
其中,T为第一周期,P1为过滤泵的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t 为时刻;c1、c2、c3为边界参数;T1为最大周期阈值,T2为最小周期阈值,k1、k2、k3为平衡系数, 其中,k1大于0,k2小于0;所述第二定量判断包括:若
Figure 421730DEST_PATH_IMAGE002
(1), 或者
Figure 134602DEST_PATH_IMAGE003
(2),进行第三频发判断过程,否则,认为无机陶瓷膜过 滤器内无需要报警的压力故障;
其中,P1为过滤泵的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t为时刻;m为顺势故障因子,其取值范围为(1.44,1.45);a为顺势系数,其取值范围为(2.5,3);n为逆势故障因子,其取值范围为(0.70,0.71);b为逆势系数,其取值范围为(1,1.5)。
2.根据权利要求1所述污水处理的双陶瓷膜一体化系统,其特征在于,所述双陶瓷膜一体化系统整体外型设计成撬装式的,四面及顶面设计成快开式。
3.根据权利要求1所述污水处理的双陶瓷膜一体化系统,其特征在于,纳米陶瓷膜生物滤塔的循环泵由第一液位控制器将信号传输至控制装置,然后再由控制装置内PLC程序进行运行控制;第一无机陶瓷膜过滤器和第二无机陶瓷膜过滤器的过滤泵由第二液位控制器将信号传输至控制装置,然后再由控制装置内PLC程序进行运行控制,通过在线的压力传感器同时感知无机陶瓷膜过滤器内的压力,然后将压力数据传输至控制装置内PLC程序并结合过滤泵的第二液位控制器所传输的信号进行报警控制。
4.根据权利要求1或3所述污水处理的双陶瓷膜一体化系统,其特征在于,当操作人员听到报警后,即可直接判定为第一无机陶瓷膜过滤器或第二无机陶瓷膜过滤器需进行维护操作,启用第二无机陶瓷膜过滤器或第一无机陶瓷膜过滤器,再将第一无机陶瓷膜过滤器或第二无机陶瓷膜过滤器进行维护好后待用。
5.根据权利要求1所述污水处理的双陶瓷膜一体化系统,其特征在于,消毒装置的启停是通过控制装置内PLC程序与过滤泵进行联动,当过滤泵运行时,消毒装置运行。
6.一种污水处理的双陶瓷膜一体化系统的压力故障判断方法,其特征在于,包括:
S1采集过滤泵的第一压力值P1及无机陶瓷膜过滤器的第二压力值P2
S2若无机陶瓷膜过滤器的第二压力值P2超过阈值,则报警;无机陶瓷膜过滤器的第二压力值P2不超过阈值,进行第一定性判断;
S3第一定性判断为:计算第一压力值P1及无机陶瓷膜过滤器的第二压力值P2的变化率方向;若第一压力值P1及无机陶瓷膜过滤器的第二压力值P2的变化率方向相反,则进入第二定量判断过程;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
S4第二定量判断为:计算压力变化是否超过阈值,若压力变化超过阈值,则进入第三频发判断;否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
S5第三频发判断为:在第一周期后再次进行第二定量判断,若压力变化超过阈值,则报警,否则,认为无机陶瓷膜过滤器内无需要报警的压力故障;
所述第一周期为常数与乘幂函数组合的分段函数;所述第一周期T的确定方法为
Figure 700713DEST_PATH_IMAGE001
其中,T为第一周期,P1为过滤泵的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t 为时刻;c1、c2、c3为边界参数;T1为最大周期阈值,T2为最小周期阈值,k1、k2、k3为平衡系数, 其中,k1大于0,k2小于0;所述第二定量判断包括:若
Figure 2381DEST_PATH_IMAGE002
(1), 或者
Figure 425272DEST_PATH_IMAGE003
(2),进行第三频发判断过程,否则,认为无机陶瓷膜过 滤器内无需要报警的压力故障;
其中,P1为过滤泵的第一压力值;P2为无机陶瓷膜过滤器的第二压力值;t为时刻;m为顺势故障因子,其取值范围为(1.44,1.45);a为顺势系数,其取值范围为(2.5,3);n为逆势故障因子,其取值范围为(0.70,0.71);b为逆势系数,其取值范围为(1,1.5)。
7.根据权利要求6所述的污水处理的双陶瓷膜一体化系统的压力故障判断方法,其特 征在于,所述第一定性判断包括:进行
Figure 812391DEST_PATH_IMAGE004
Figure 493777DEST_PATH_IMAGE005
的符号判断:当
Figure 384373DEST_PATH_IMAGE006
Figure 243744DEST_PATH_IMAGE007
, 或者
Figure 852580DEST_PATH_IMAGE008
Figure 839122DEST_PATH_IMAGE009
时,进入第二定量判断过程;否则,认为无机陶瓷膜过滤器内无 需要报警的压力故障。
CN202111279352.1A 2021-11-01 2021-11-01 一种污水处理的双陶瓷膜一体化装置及压力故障判断方法 Active CN113713624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111279352.1A CN113713624B (zh) 2021-11-01 2021-11-01 一种污水处理的双陶瓷膜一体化装置及压力故障判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111279352.1A CN113713624B (zh) 2021-11-01 2021-11-01 一种污水处理的双陶瓷膜一体化装置及压力故障判断方法

Publications (2)

Publication Number Publication Date
CN113713624A CN113713624A (zh) 2021-11-30
CN113713624B true CN113713624B (zh) 2022-02-08

Family

ID=78686218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111279352.1A Active CN113713624B (zh) 2021-11-01 2021-11-01 一种污水处理的双陶瓷膜一体化装置及压力故障判断方法

Country Status (1)

Country Link
CN (1) CN113713624B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776673B (zh) * 2016-05-16 2018-09-21 河海大学 一种微污染水处理设备及利用其处理水的方法
CN107117768B (zh) * 2017-04-19 2023-04-07 环境保护部华南环境科学研究所 一种市政污水深度处理及在线回用装置
CN107335277B (zh) * 2017-06-22 2023-05-02 杭州利群环保纸业有限公司 一种烟草提取液膜分离装置及控制方法
CN109293054A (zh) * 2018-10-25 2019-02-01 鲁言和 一种海洋生物提取系统及提取工艺

Also Published As

Publication number Publication date
CN113713624A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
EP2731917B1 (en) Method of maintaining water quality in a process stream
CN202936289U (zh) 垃圾渗滤液处理装置的综合监控系统
JP4871766B2 (ja) 濁水処理装置
CN204342561U (zh) 一种具有稳定出水水质的节水净水器
KR20180104891A (ko) 산업용 스마트 정수기
CN110255808A (zh) 基于物联网和人工智能为一体的污水处理系统
CN209602246U (zh) 纯水机
CN111039470A (zh) 一种智能纳滤及反渗透水处理系统及处理方法
CN112982346A (zh) 智能海洋云仓设备及船舶水污染物收集转运系统
CN117571583B (zh) 一种适用于污水处理厂的污水处理设备运行监测系统
CN103626263A (zh) 渗滤液的处理控制方法、装置、系统及污水处理设备
CN110354570B (zh) 一种通过水质检测器进行滤芯寿命判断的方法及系统
CN113713624B (zh) 一种污水处理的双陶瓷膜一体化装置及压力故障判断方法
CN205427567U (zh) 一种液压油净化及在线监测设备
JP3680452B2 (ja) 膜処理システムの異常検知方法および制御方法
CN104609533A (zh) 一种难降解有机废水臭氧非均相催化氧化处理工艺的控制系统及方法
CN209405831U (zh) 一种具有远程检修功能的饮水机
CN203324722U (zh) 一种钢丝酸洗磷化废水处理系统自动控制装置
CN102778574A (zh) 一种厌氧反应器在线监测诊断方法及系统
CN117446885B (zh) 一种基于超滤膜的净水系统
CN115350595B (zh) 井下自清洗反渗透装置及控制方法
CN110898525A (zh) 一种净水器的控制系统和控制方法
CN211927940U (zh) 污水排放终端全自动cod在线检测系统
CN217490085U (zh) 一种污水汽提预处理装置
CN217535538U (zh) 一种燃料电池测试台水净化集成系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant