CN113712902A - 一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用 - Google Patents

一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用 Download PDF

Info

Publication number
CN113712902A
CN113712902A CN202111054865.2A CN202111054865A CN113712902A CN 113712902 A CN113712902 A CN 113712902A CN 202111054865 A CN202111054865 A CN 202111054865A CN 113712902 A CN113712902 A CN 113712902A
Authority
CN
China
Prior art keywords
peg
ptk
active oxygen
hydrogel
micelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111054865.2A
Other languages
English (en)
Other versions
CN113712902B (zh
Inventor
高长有
周同
王淑琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202111054865.2A priority Critical patent/CN113712902B/zh
Publication of CN113712902A publication Critical patent/CN113712902A/zh
Application granted granted Critical
Publication of CN113712902B publication Critical patent/CN113712902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Rheumatology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Dermatology (AREA)
  • Neurosurgery (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用。复合水凝胶包括醛基修饰的葡聚糖(Dex‑ALH),己二酸二酰肼接枝的透明质酸(HA‑ADH)和分散在水凝胶网络中的聚乙二醇‑聚酮缩硫醇‑聚乙二醇(PEG‑PTK‑PEG)胶束;水凝胶网络是通过Dex‑ALH和HA‑ADH间的席夫碱反应形成的,PEG‑PTK‑PEG中的PTK链段可以被多种活性氧降解并同时消耗活性氧。复合水凝胶具有良好的可注射性和活性氧自由基清除能力。其中的PEG‑PTK‑PEG自组装胶束可以负载疏水性药物。复合水凝胶的制备方法简单,条件温和;所得水凝胶可生物降解,生物相容性、力学性能良好,适用于高氧化应激的炎症微环境的组织修复与再生。

Description

一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备 方法和应用
技术领域
本发明涉及一种可注射水凝胶及其制备方法,特别涉及一种负载活性氧响应降解的聚合物胶束的可注射水凝胶及制备方法和应用。
背景技术
骨关节炎是一种常见的慢性的退行性关节疾病。在60岁以上的人群中,约18%的女性和6%的男性患有有症状的骨关节炎。随着人口老龄化的加剧和肥胖人群的增多,骨关节炎的发病率也在逐年增加。骨关节炎在临床上以关节疼痛为主要特征,伴随着软骨表面粗糙,关节腔间隙变窄,滑液变稀,关节肿胀、畸形、活动困难,骨赘产生等病理变化。骨关节炎的发病率高,病程长,治愈难度大,严重影响居民的健康水平,消耗大量的医疗资源,也给社会和广大家庭增加了负担。
现阶段对于骨关节炎的一线疗法仍以类糖皮质激素药、非甾体类抗炎药、全身性阵痛药等为主。由于这些药物只具有消炎镇痛作用,不能改善骨关节炎的病理微环境,并且长期使用这些药物会不可避免地带来副作用。随着炎症加重,关节组织病变加剧,严重者可能会致残(骨关节炎致残率为53%)。晚期患者往往需要接受关节镜灌洗,清创术,关节置换等手术治疗,而昂贵且治疗效果有限的手术治疗会给患者带来更多的经济和疼痛负担。
目前学术界普遍认为,骨关节炎是由于关节部位不正常的力学刺激或不正常的代谢因素引起,导致软骨细胞异常及软骨细胞外基质降解,进而引发多种细胞、炎症因子之间的稳态失衡,引起整个关节组织发生病变。而作为主要发病源头的软骨组织没有血管和神经,难以自发修复和再生。
在骨关节炎的病变过程中,过度的氧化应激被视为是一个重要的特征。活性氧几乎参与了所有关节内组织病变的过程。过高的氧化应激,导致细胞内信号传导过程异常、软骨细胞衰老和凋亡、细胞外基质合成和降解失衡以及滑膜炎症和软骨下骨功能障碍。由于骨关节炎的疾病改善药物很少,针对复杂的氧化应激信号通路会为探索治疗这种致残性疾病的潜在治疗策略提供一个有价值的前景。滑液的主要组成成分透明质酸作为关节内注射治疗的关节润滑剂,已获得FDA批准,广泛用于临床治疗中。以化学改性、交联的透明质酸水凝胶可以延缓降解、持续润滑、有效缓解关节炎症,促进软骨再生。
聚酮缩硫醇类化合物是一种主链含有活性氧特异响应断裂并消耗活性氧的官能团酮缩硫醇的聚合物,含有酮缩硫醇链段的生物材料被广泛用于活性氧高表达的炎症或肿瘤微环境改善和治疗。以往研究中常将其用作软段来制备活性氧响应性聚氨酯类材料,但制备出的材料往往是疏水性的,它们在水作为介质的高活性氧环境中,响应灵敏性较差。鉴于两亲性聚合物材料在水中会发生自组装行为,因而可以将疏水性的PTK和亲水性聚合物嵌段共聚,获得具有更加灵敏的活性氧响应-清除能力的可溶性纳米粒子。并且可以将疏水性药物和两亲性聚合物共组装,将药物包载到含有聚酮缩硫醇链段的两亲性聚合物形成的胶束的疏水部分中。
在临床治疗中,透明质酸水凝胶作为润滑剂的关节内注射治疗或保留时间过短的抗炎药物的关节注射治疗的单一治疗方式,因药物在关节腔内保留时间过短,需要反复多次给药,药物特别是糖皮质激素类药物等的剂量过大会产生一定的副作用等,限制了其治疗效果。本发明将基于透明质酸和葡聚糖的水凝胶和基于含有聚酮缩硫醇两亲性聚合物的胶束PEG-PTK-PEG结合成水凝胶-胶束复合体,通过PEG-PTK-PEG胶束消除过量的活性氧改善骨关节炎组织微环境和透明质酸的润滑作用来协同治疗骨关节炎;并且可以利用PEG-PTK-PEG胶束的疏水部分负载抗炎药物,润滑-改善病理微环境协同治疗的同时,活性氧响应断裂降解释药及水凝胶包载延长保留时间,可以根据炎症反应的程度来进行智能反馈按需给药,最大程度地减小药物导致的潜在副反应,实现更佳的治疗效果。
发明内容
本发明的目的在于针对现有技术的不足,提供一种负载活性氧响应降解聚合物胶束的可注射水凝胶,能够作为粘弹体补充剂的同时消除炎症关节组织过表达活性氧,改善炎症组织微环境,并且可作为疏水性抗炎药物的载体,实现多功能协同治疗骨关节炎。
本发明的一种含有负载活性氧响应降解聚合物胶束的可注射水凝胶,包括:化学改性后葡聚糖和透明质酸交联形成的水凝胶及分散在其中的具有活性氧响应功能的胶束;所述化学改性后的葡聚糖为醛基修饰的葡聚糖(Dex-ALH),透明质酸为己二酸二酰肼(ADH)接枝的透明质酸(HA-ADH),活性氧响应降解胶束为含有聚酮缩硫醇结构的三嵌段聚合物PEG-PTK-PEG在水中自组装形成的胶束。
进一步地,所述的PEG-PTK-PEG胶束为含有聚酮缩硫醇结构的三嵌段聚合物,包括两段亲水性PEG聚合物段,以及位于其中间的疏水性聚酮缩硫醇(PTK)段。
进一步地,所述的PEG-PTK-PEG胶束的制备方法包括以下步骤:
1)在氮气保护下,将无水乙腈、双(2-巯基乙基)醚、对甲苯磺酸搅拌均匀,加热回流,再向反应器中滴加2,2-二甲氧基丙烷,滴加完毕后继续反应至少12h;旋蒸去除溶剂后在乙醇中沉淀3-5次并干燥得到聚酮缩硫醇(PTK);
进一步地,所述的双(2-巯基乙基)醚在无水乙腈中的浓度为10wt%-30wt%,所述对甲苯磺酸的物质的量相当于双(2-巯基乙基)醚的1.5%,所述的2,2-二的甲氧基丙烷的投料量为双(2-巯基乙基)醚的物质的量的0.8-1倍;
2)向反应器中加入步骤1)制备的聚酮缩硫醇(PTK),加入无水二甲亚砜或无水N,N-二甲基甲酰胺,并加入一端甲基一端双键的聚乙二醇(m-PEG-acrylate)以及催化剂三乙胺,室温反应过夜;
进一步地,所述PTK和m-PEG-acrylate的投料质量比例为1:3-1:10,所述PTK在混合液中的浓度为1wt%-3wt%,所述m-PEG-acrylate的分子量为480Da-700Da,三乙胺的添加量为2-3滴(通常不超过溶剂体积的5%);
3)将步骤2)中得到的反应液在水中透析,冷冻干燥,获得PEG-PTK-PEG;
进一步地,所述透析的截留分子量为1kDa;
4)将PEG-PTK-PEG溶于四氢呋喃中后,在超声水浴条件下,滴加到水中组装成含有聚酮缩硫醇结构的三嵌段聚合物PEG-PTK-PEG胶束;
进一步地,所述PEG-PTK-PEG在四氢呋喃中的浓度为1-10mg/mL,PEG-PTK-PEG的四氢呋喃溶液和水的体积比为1:1-1:5。
本发明还提供负载活性氧响应降解聚合物胶束的可注射水凝胶的制备方法,包括如下步骤:
1)醛基修饰的葡聚糖制备:室温条件下,将高碘酸钠水溶液滴加到葡聚糖的水溶液中,反应一段时间后,加入乙二醇中和未反应的高碘酸钠,透析,冷冻干燥;
进一步地,葡聚糖的氧化率为18%-60%;
2)己二酸二酰肼修饰的透明质酸的制备:37℃下,向1wt%浓度的透明质酸的双倍PBS溶液中依次加入己二酸二酰肼,N-琥珀酰亚胺,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,在反应过程中维持反应液的pH值为6,反应过夜后将pH调为7,透析,冷冻干燥,得到己二酸二酰肼修饰的透明质酸(HA-ADH);
进一步地,己二酸二酰肼修饰的透明质酸的接枝率为30%-40%;可以使用1M盐酸和1M氢氧化钠调节pH值;反应过夜的时间通常可为10h;
3)水凝胶的制备:将步骤2)得到的己二酸二酰肼修饰的透明质酸溶于含有PEG-PTK-PEG胶束的水溶液中,与醛基修饰的葡聚糖水溶液等体积混合,得到负载活性氧响应降解聚合物胶束的可注射水凝胶;
进一步地,葡聚糖水溶液浓度为2wt%-10wt%;透明质酸水溶液浓度为1wt%-6wt%;PEG-PTK-PEG胶束在水凝胶中的终浓度不超过10mg/mL。
本发明提供的负载活性氧响应降解聚合物胶束的可注射水凝胶可以负载疏水性药物,是通过所述PEG-PTK-PEG胶束负载疏水性药物实现的,所述疏水性药物包括醋酸地塞米松、醋酸曲安奈德、甲基泼尼松龙中至少一种。
本发明负载活性氧响应降解聚合物胶束的可注射水凝胶,可用于制备用于高氧化应激的炎症微环境组织修复的药物,特别是可用于制备关节内注射治疗骨关节炎的药物。
同现有的用于骨关节炎的注射水凝胶产品相比,本发明的有益效果体现在:将具有活性氧清除功能的纳米胶束和基于天然多糖的粘弹性补充体相结合,通过胶束消除过量的活性氧改善骨关节炎组织微环境和透明质酸的润滑作用来协同治疗骨关节炎,且胶束亲水段的存在使得在水作为介质的高活性氧环境中,胶束响应灵敏性提高;并且可以利用胶束的疏水部分负载抗炎药物,润滑-改善病理微环境协同治疗的同时,活性氧响应断裂降解释药及水凝胶包载延长药物保留时间,可以根据炎症反应的程度来进行智能反馈按需给药,最大程度地减小药物导致的潜在副反应,实现更佳的治疗效果。
附图说明
图1为实施例1制备的含聚酮缩硫醇(PTK)链段三嵌段聚合物PEG-PTK-PEG的合成路线;
图2为实施例1制备的含聚酮缩硫醇(PTK)链段三嵌段聚合物PEG-PTK-PEG的核磁表征结果;
图3为实施例1制备的聚酮缩硫醇(PTK)链段三嵌段聚合物PEG-PTK-PEG的GPC表征结果;
图4为实施例1制备的PEG-PTK-PEG胶束的TEM照片;
图5为实施例1制备的醛基修饰的葡聚糖Dex-ALH的核磁表征结果;
图6为实施例1制备的己二酸二酰肼接枝的透明质酸HA-ADH的核磁表征结果;
图7为实施例1的水凝胶的流变表征;
图8为实施例1的水凝胶的SEM照片;
图9为应用例1制备的负载醋酸地塞米松的PEG-PTK-PEG胶束的TEM照片;
图10为应用例2不同浓度的PEG-PTK-PEG胶束的DPPH清除率;
图11为应用例3有无负载PEG-PTK-PEG胶束的水凝胶随着时间延长的DPPH清除率变化;
图12为应用例4的水凝胶治疗后,关节内活性氧水平检测结果;
图13为应用例4水凝胶治疗后,H&E染色,番红O-固绿染色以及Ⅱ型胶原免疫组化染色的组织学切片结果。
具体实施方式
下面结合具体实施例和说明书附图对本发明作进一步说明,但这些实施例并不用于限制本发明。
实施例1:
1)含聚酮缩硫醇(PTK)链段三嵌段聚合物PEG-PTK-PEG的制备
第一步:在氮气保护下,将300mL无水乙腈、30g双(2-巯基乙基)醚、0.56g对甲苯磺酸搅拌均匀,加热回流,向反应器中滴加18.76g 2,2-二甲氧基丙烷,滴加完毕后继续反应16h。旋蒸去除溶剂后在乙醇中沉淀3次并干燥得到双端巯基的聚酮缩硫醇。其分子量与核磁氢谱如图2所示,结果表明成功合成了聚酮缩硫醇。
第二步:向反应器中加入第一步制备的聚酮缩硫醇0.1g,加入5mL无水二甲亚砜,0.5g m-PEG-acrylate480,再加入催化剂三乙胺50μL,室温反应过夜。
第三步:将第二步中得到的反应液在水中透析,冷冻干燥,获得PEG-PTK-PEG。
本实施例的合成路线如图1所示,所得化合物PTK和PEG-PTK-PEG的核磁谱图如图2所示,可以证明PTK和PEG-PTK-PEG的成功制备。GPC结果如图3所示,其中,PTK的数均分子量为2116Da,PDI为1.61,PEG-PTK-PEG的数均分子量为3149Da,PDI为1.30。
2)PEG-PTK-PEG胶束制备
将5mg PEG-PTK-PEG溶于1mL四氢呋喃中,室温下,以1滴/s的速度滴加到置于超声水浴中的5mL去离子水中,通过旋转蒸发除去四氢呋喃,获得自组装胶束。所得PEG-PTK-PEG胶束如图4的TEM结果所示。通过动态光散射纳米粒度电位仪测得胶束粒径为41.6±0.1nm,多分散系数为0.071。
3)醛基修饰的葡聚糖(Dex-ALH)的制备
室温条件下,将高碘酸钠水溶液(1g溶于10mL水中)逐滴滴加到葡聚糖的水溶液(2g溶于90mL水)中,反应8h后,加入500μL乙二醇中和未反应的高碘酸钠,将反应液透析,冷冻干燥,获得Dex-ALH。为了更加直观得表征醛基的成功修饰,将20mg叔丁氧羰基肼(tBC)和25mg Dex-ALH溶于2mL PBS中,在37℃条件下反应4h后,将反应液透析,冷冻干燥,获得核磁修饰tBC的Dex-ALH。核磁结果如图5所示。用盐酸羟胺滴定法测定Dex-ALH的氧化率为18.2%。
4)己二酸二酰肼接枝的透明质酸的制备
37℃下,将1g透明质酸钠溶于100mL的双倍PBS缓冲液中,搅拌下依次加入13.05g己二酸二酰肼,1.15g N-琥珀酰亚胺,3.9g 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,在反应过程中维持反应液的pH值为6,反应过夜后将pH调为7,将反应液透析,冷冻干燥,获得HA-ADH。通过核磁结果(图6所示)计算得己二酸二酰肼的接枝率为38%。
5)水凝胶的制备
将5wt%质量浓度的Dex-ALH和5wt%质量浓度的HA-ADH按等体积充分混合,在室温下30s成胶。
6)负载PEG-PTK-PEG胶束的水凝胶的制备
将5wt%质量浓度的Dex-ALH和含有10wt%质量浓度的PEG-PTK-PEG胶束的5wt%质量浓度的HA-ADH按等体积充分混合,在室温下5min左右成胶。本实施例获得的水凝胶具有剪切变稀性(如图7所示)。通过扫描电镜观察本实施例获得的水凝胶,水凝胶有良好的均匀性(如图8所示)。
应用例1:载药PEG-PTK-PEG胶束制备
将5mg PEG-PTK-PEG和0.5mg醋酸地塞米松溶于1mL四氢呋喃中,室温下,以1滴/s的速度滴加到置于超声水浴中的5mLl去离子水中,通过旋转蒸发除去四氢呋喃,获得负载醋酸地塞米松的自组装胶束。所得载药胶束的TEM照片如图9所示。通过动态光散射纳米粒度电位仪测得胶束粒径为47.2±1.3nm,多分散系数为0.103。
应用例2:PEG-PTK-PEG胶束自由基清除能力测定
将500μl的10mg/mL、5mg/mL、2mg/mL、1mg/mL胶束溶液分别与500μl200μM DPPH溶液混合,并以500μl水和500μl 200μM DPPH溶液的混合溶液作为对照,在37℃下孵育12h后,用酶标仪测定517nm波长处的吸收值,以517nm波长处的相对吸光度计算不同浓度的PEG-PTK-PEG胶束的DPPH的清除能力,结果如图10所示,证明了PEG-PTK-PEG胶束具有自由基清除能力,并且随着胶束浓度增大,自由基清除能力增强。
应用例3:负载PEG-PTK-PEG胶束的水凝胶消除活性氧能力测定
将含有10mg/mL胶束的水凝胶200μL置于1mL 100μM DPPH乙醇溶液中,以100μMDPPH乙醇溶液作为对照,将各组在37℃下孵育一定时间后,用酶标仪测定517nm波长处的吸收值,以517nm波长处的相对吸光度计算不同时间点的DPPH清除率,结果如图11所示,证明了负载PEG-PTK-PEG胶束的水凝胶具有自由基清除能力,并且随着时间延长,自由基清除量增加,PEG-PTK-PEG胶束复合水凝胶具有持久的自由基清除能力。
应用例4:水凝胶用于大鼠骨关节炎治疗
向SD大鼠关节内注射50μL(20mg/mL)碘乙酸钠(MIA),建立骨关节炎(OA)模型。在造模三天后分别向关节内注射10mg/mL PEG-PTK-PEG胶束(P),不含胶束的水凝胶(H-D),含有10mg/mL胶束的水凝胶(H-D-P)以及含有的负载地塞米松胶束的水凝胶(H-D-P-D,胶束浓度10mg/mL,地塞米松用量12.5μg/只)50μL,同时设立注射PBS对照组。治疗4周后,向大鼠体内注射L-012活性氧荧光探针,检测关节处的活性氧水平。结果(图12)显示,相比于PBS组和H-D组,活性氧响应胶束有效降低了炎症关节处的活性氧水平;在胶束和水凝胶复合后,这种降低活性氧水平的能力显著提高,并且负载地塞米松的胶束和水凝胶的联合作用可以最大限度的降低活性氧水平。
之后通过H&E染色表征炎症情况,番红O-固绿染色以及Ⅱ型胶原免疫组化染色表征软骨修复情况。切片结果如图13所示。
从对比结果来看,注射材料均有一定的治疗效果,注射含有PEG-PTK-PEG胶束的水凝胶相比于单纯注射水凝胶或胶束后,软骨表面更加光滑,软骨基质流失更少;注射含有负载地塞米松的PEG-PTK-PEG胶束的水凝胶的治疗组软骨基质沉积更加明显,软骨结构更加完整,炎症浸润更少。说明,胶束和水凝胶复合可以有效治疗骨关节炎,并且这种复合物可以作为药物载体,实现更佳的治疗效果。

Claims (10)

1.一种负载活性氧响应降解聚合物胶束的可注射水凝胶,其特征在于,所述水凝胶包括醛基修饰的葡聚糖(Dex-ALH)、己二酸二酰肼接枝的透明质酸(HA-ADH)以及聚乙二醇-聚酮缩硫醇-聚乙二醇(PEG-PTK-PEG)胶束;所述的Dex-ALH和HA-ADH以席夫碱反应形成水凝胶网络,所述的PEG-PTK-PEG胶束分散在所述的水凝胶网络中。
2.如权利要求1所述的负载活性氧响应降解聚合物胶束的可注射水凝胶,其特征在于,所述的PEG-PTK-PEG胶束为含有聚酮缩硫醇结构的三嵌段聚合物,包括两段亲水性PEG聚合物段,以及位于其中间的疏水性聚酮缩硫醇(PTK)段。
3.如权利要求1所述的负载活性氧响应降解聚合物胶束的可注射水凝胶,其特征在于,所述的PEG-PTK-PEG胶束的制备方法包括以下步骤:
1)在氮气保护下,将无水乙腈、双(2-巯基乙基)醚、对甲苯磺酸搅拌均匀,加热回流,再向反应器中滴加2,2-二甲氧基丙烷,滴加完毕后继续反应至少12h;旋蒸去除溶剂后在乙醇中沉淀3-5次并干燥得到聚酮缩硫醇(PTK);
2)向反应器中加入步骤1)制备的聚酮缩硫醇(PTK),加入无水二甲亚砜或无水N,N-二甲基甲酰胺,并加入一端甲基一端双键的聚乙二醇(m-PEG-acrylate)以及催化剂三乙胺,室温反应过夜;
3)将步骤2)中得到的反应液在水中透析,冷冻干燥,获得PEG-PTK-PEG;
4)将PEG-PTK-PEG溶于四氢呋喃中后,在超声水浴条件下,滴加到水中自组装成含有聚酮缩硫醇结构的三嵌段聚合物PEG-PTK-PEG胶束。
4.如权利要求3所述的负载活性氧响应降解聚合物胶束的可注射水凝胶,其特征在于:
所述步骤1)中,所述的双(2-巯基乙基)醚在无水乙腈中的浓度为10wt%-30wt%,所述对甲苯磺酸的物质的量相当于双(2-巯基乙基)醚的1.5%,所述的2,2-二的甲氧基丙烷的投料量为双(2-巯基乙基)醚的物质的量的0.8-1倍;
所述步骤2)中,所述PTK和m-PEG-acrylate的投料质量比例为1:2-1:10,所述PTK在混合液中的浓度为1wt%-3wt%,所述m-PEG-acrylate的分子量为480-700Da;
所述步骤3)中,所述透析的截留分子量为1kDa;
所述步骤4)中,所述PEG-PTK-PEG在四氢呋喃中的浓度为1-10mg/mL,PEG-PTK-PEG的四氢呋喃溶液和水的体积比为1:1-1:5。
5.负载活性氧响应降解聚合物胶束的可注射水凝胶的制备方法,其特征在于,包括如下步骤:
1)醛基修饰的葡聚糖制备:室温条件下,将高碘酸钠水溶液滴加到葡聚糖的水溶液中,反应一段时间后,加入乙二醇中和未反应的高碘酸钠,透析,冷冻干燥;
2)己二酸二酰肼修饰的透明质酸的制备:37℃下,向1wt%浓度的透明质酸的双倍PBS溶液中依次加入己二酸二酰肼、N-琥珀酰亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,在反应过程中维持反应液的pH值为6,反应过夜后将pH调为7,透析,冷冻干燥,得到己二酸二酰肼修饰的透明质酸(HA-ADH);
3)水凝胶的制备:将步骤2)得到的己二酸二酰肼修饰的透明质酸溶于含有PEG-PTK-PEG胶束的水溶液中,与醛基修饰的葡聚糖水溶液等体积混合,得到负载活性氧响应降解聚合物胶束的可注射水凝胶。
6.如权利要求5所述的负载活性氧响应降解聚合物胶束的可注射水凝胶的制备方法,其特征在于:所述步骤1)中,葡聚糖的氧化率为18%-60%。
7.如权利要求5所述的负载活性氧响应降解聚合物胶束的可注射水凝胶的制备方法,其特征在于:所述步骤2)中,己二酸二酰肼修饰的透明质酸的接枝率为30%-40%。
8.如权利要求5所述的负载活性氧响应降解聚合物胶束的可注射水凝胶的制备方法,其特征在于:所述步骤3)中,葡聚糖水溶液浓度为2wt%-10wt%;透明质酸水溶液浓度为1wt%-6wt%;PEG-PTK-PEG胶束在水凝胶中的终浓度不超过10mg/mL。
9.负载活性氧响应降解聚合物胶束的可注射水凝胶的应用,其特征在于,所述的PEG-PTK-PEG胶束用于负载疏水性药物,所述疏水性药物包括醋酸地塞米松、醋酸曲安奈德、甲基泼尼松龙中至少一种。
10.负载活性氧响应降解聚合物胶束的可注射水凝胶的应用,其特征在于,所述可注射水凝胶用于制备用于高氧化应激的炎症微环境组织修复的药物,或者用于制备关节内注射治疗骨关节炎的药物。
CN202111054865.2A 2021-09-09 2021-09-09 一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用 Active CN113712902B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111054865.2A CN113712902B (zh) 2021-09-09 2021-09-09 一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111054865.2A CN113712902B (zh) 2021-09-09 2021-09-09 一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用

Publications (2)

Publication Number Publication Date
CN113712902A true CN113712902A (zh) 2021-11-30
CN113712902B CN113712902B (zh) 2024-01-30

Family

ID=78682947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111054865.2A Active CN113712902B (zh) 2021-09-09 2021-09-09 一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用

Country Status (1)

Country Link
CN (1) CN113712902B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605676A (zh) * 2022-01-25 2022-06-10 四川大学华西医院 一种退变髓核修复可注射水凝胶及其用途
CN114699563A (zh) * 2022-02-22 2022-07-05 中国医科大学附属盛京医院 一种负载型聚醚型聚氨酯薄膜、制备方法及其应用
CN115010966A (zh) * 2022-05-31 2022-09-06 深圳大学 一种过氧化氢酶启发的纳米复合水凝胶及其制备方法与应用
CN115607747A (zh) * 2022-12-19 2023-01-17 上海明悦医疗科技有限公司 双交联网络载药水凝胶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885455A (zh) * 2019-12-05 2020-03-17 浙江大学 一种活性氧响应水凝胶的制备及应用
WO2021087378A1 (en) * 2019-11-01 2021-05-06 Icahn School Of Medicine At Mount Sinai Improved approach to repair tissue defects by bonding injectable gels to native soft tissues
WO2021127807A1 (en) * 2019-12-23 2021-07-01 Evonik Industries Ag Dual-crosslinked hydrogel and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087378A1 (en) * 2019-11-01 2021-05-06 Icahn School Of Medicine At Mount Sinai Improved approach to repair tissue defects by bonding injectable gels to native soft tissues
US20230158210A1 (en) * 2019-11-01 2023-05-25 Icahn School Of Medicine At Mount Sinai Iimproved approach to repair tissue defects by bonding injectable gels to native soft tissues
CN110885455A (zh) * 2019-12-05 2020-03-17 浙江大学 一种活性氧响应水凝胶的制备及应用
WO2021127807A1 (en) * 2019-12-23 2021-07-01 Evonik Industries Ag Dual-crosslinked hydrogel and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李丹丹;莫秀梅;: "基于席夫碱反应的氧化葡聚糖/胺化羧甲基壳聚糖双组分水凝胶粘合剂", 中国组织工程研究, no. 22 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605676A (zh) * 2022-01-25 2022-06-10 四川大学华西医院 一种退变髓核修复可注射水凝胶及其用途
CN114605676B (zh) * 2022-01-25 2023-06-09 四川大学华西医院 一种退变髓核修复可注射水凝胶及其用途
CN114699563A (zh) * 2022-02-22 2022-07-05 中国医科大学附属盛京医院 一种负载型聚醚型聚氨酯薄膜、制备方法及其应用
CN114699563B (zh) * 2022-02-22 2024-02-02 中国医科大学附属盛京医院 一种负载型聚醚型聚氨酯薄膜、制备方法及其应用
CN115010966A (zh) * 2022-05-31 2022-09-06 深圳大学 一种过氧化氢酶启发的纳米复合水凝胶及其制备方法与应用
CN115607747A (zh) * 2022-12-19 2023-01-17 上海明悦医疗科技有限公司 双交联网络载药水凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN113712902B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN113712902B (zh) 一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用
Lei et al. Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis
Zhang et al. Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications
Zhou et al. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo
US10064889B2 (en) Mercapto-modified biocompatible macromolecule derivatives with low degree of mercapto-modification and the cross-linked materials and uses thereof
JP5539727B2 (ja) ヒドロゲルを形成する新規な注入可能なキトサン混合物
EP1701981B1 (en) Cohesive gels from cross-linked hyaluronan and/or hylan,their preparation and use
Goodarzi et al. Injectable drug loaded gelatin based scaffolds as minimally invasive approach for drug delivery system: CNC/PAMAM nanoparticles
Zhou et al. An injectable hydrogel dotted with dexamethasone acetate-encapsulated reactive oxygen species-scavenging micelles for combinatorial therapy of osteoarthritis
Oprea et al. Cellulose/chondroitin sulfate hydrogels: Synthesis, drug loading/release properties and biocompatibility
US20150080333A1 (en) Hyaluronic acid particles and their use in biomedical applications
Wang et al. An injectable and self-strengthening nanogel encapsuled hydrogel gene delivery system promotes degenerative nucleus pulposus repair
CN111686075B (zh) 一种以纳米胶束为交联剂的原位水凝胶组合物及其应用
JP2021526934A (ja) 安定化されたヒアルロン酸
CN107096036A (zh) 一种pH敏感型透明质酸‑多柔比星纳米前药的制备方法及其应用
Yu et al. Microgel-integrated, high-strength in-situ formed hydrogel enables timely emergency trauma treatment
CN112675314A (zh) 一种骨靶向纳米胶束递送系统及其制备方法
CN106692179A (zh) 关节腔注射用含低分子量黄原胶的药物制剂及其制备方法
CN115040472B (zh) 一种仿生可注射多肽水凝胶的制备及应用
KR101637883B1 (ko) 폴리에틸렌글리콜 수화젤 주사제
CN116919982A (zh) 一种用于治疗关节炎的药物组合物及其应用
EP3956386A1 (fr) Procede de reticulation d'un polymere
CN114641319A (zh) 皮肤填充剂组合物
EP3142749B1 (en) Viscosupplement composition comprising ulvan for treating arthritis
Xu et al. Prolonged, staged, and self-regulated methotrexate release coupled with ROS scavenging in an injectable hydrogel for rheumatoid arthritis therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant