CN113701738A - 一种车辆定位方法及装置 - Google Patents

一种车辆定位方法及装置 Download PDF

Info

Publication number
CN113701738A
CN113701738A CN202010438125.8A CN202010438125A CN113701738A CN 113701738 A CN113701738 A CN 113701738A CN 202010438125 A CN202010438125 A CN 202010438125A CN 113701738 A CN113701738 A CN 113701738A
Authority
CN
China
Prior art keywords
vehicle
positioning
color
semi
positioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010438125.8A
Other languages
English (en)
Inventor
张竞
王发平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Cloud Computing Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202010438125.8A priority Critical patent/CN113701738A/zh
Priority to PCT/CN2021/085478 priority patent/WO2021232971A1/zh
Publication of CN113701738A publication Critical patent/CN113701738A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/08Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams

Abstract

本申请公开了一种车辆定位方法及装置,该方法包括:在车辆进入半封闭空间后,监测车辆是否位于半封闭空间中定位系统的预设范围内;在车辆位于定位系统的预设范围内的情况下,获取地图中定位系统在半封闭空间中的位置信息;根据位置信息在地图中对车辆进行定位。实施本申请实施例,可以实现车辆在信号较弱的隧道、停车场等空间的准确定位,提升了车辆在信号不佳的空间中定位的鲁棒性。

Description

一种车辆定位方法及装置
技术领域
本申请涉及通信技术领域以及车辆定位领域,尤其涉及一种车辆定位方法及装置。
背景技术
在车辆行驶的过程中,车辆位置是车辆导航以及规划控制的重要输入参数,能够实现对车辆位置的实时定位具有重要意义。通常情况下,车辆定位主要依赖于全球卫星导航系统(Global Navigation Satellite System,GNSS)以及惯性导航系统(InertialNavigation System,INS),但在车辆处于隧道、地下停车场等信号较弱或有屏蔽、遮挡的场景下,由于无法接收到卫星信号导致无法对行驶车辆进行定位;若在此场景下车辆通过自身的惯性测量单元(Inertial Measurement Unit,IMU)计算自身的实时位置,但由于IMU的累积误差会随着时间显著增大,导致车辆的定位精度难以满足需求。
目前,已有一些替代方案欲解决例如隧道场景下的车辆定位问题,例如,利用隧道内环境亮度变化对车辆进行定位,但隧道中的环境亮度变化属于短周期变化,且光线由强到弱或由弱到强的变化是渐变的,因此识别转变点很容易出现识别或计算错误;还有些通过采用超宽带技术或者射频识别技术实现对隧道内的车辆的定位,但这些方法需要额外安装的硬件成本都很昂贵,批量布置的成本更高,除此之外,超宽带技术或射频识别技术都是基于电磁波的定位方案,在狭长的隧道中容易产生多路径效应,难以实现车辆的准确定位。
发明内容
本申请实施例公开了一种车辆定位方法和装置,能够实现在卫星信号被遮挡或者屏蔽的隧道、地下停车场等空间下对车辆进行精确定位,且为车辆提供持续的定位能力,直至车辆离开卫星信号定位盲区。
第一方面,本申请实施例提供了一种车辆定位方法,所述方法包括:在车辆进入半封闭空间后,监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内;在所述车辆位于所述定位系统的预设范围内的情况下,获取地图中所述定位系统在所述半封闭空间中的位置信息;根据所述位置信息在所述地图中对所述车辆进行定位。
本申请实施例中,车辆进入半封闭空间后,在车辆监测到自身位于半封闭空间中某定位系统的预设范围内时,则获取该定位系统在半封闭空间中的位置信息,并将该位置信息作为自身当前的位置信息结合半封闭空间的地图进行定位。
半封闭空间是指卫星信号因受到屏蔽或遮挡导致信号差或不稳定的空间。半封闭空间包括信号不佳的地下空间、信号不佳的地上空间。本申请实施例中,车辆可以是人类代步工具,也可以是物流运输工具,本申请实施例不做具体限定。
可以看到,在设置有定位系统的半封闭空间中,车辆结合自身与定位系统的位置关系可以获得半封闭空间中定位系统对应的至少一个精确的位置信息,根据该位置信息和半封闭空间的地图可以实现车辆在半封闭空间中的准确定位,提升了车辆在信号不佳的半封闭空间中定位的鲁棒性,有效解决了半封闭空间中车辆难以准确定位的问题。
基于第一方面,在可能的实施例中,所述地图为所述车辆从服务器下载的,或者,所述地图为所述车辆从半封闭空间入口处的路侧单元处下载的,或者,所述地图为所述车辆从半封闭空间中的其他车辆处获得的。
基于第一方面,在可能的实施例中,所述监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内,包括:确定所述车辆与所述定位系统之间的第一距离;根据所述第一距离确定所述车辆是否位于所述定位系统的预设范围内。
本申请的一种实施例中,车辆可以通过监测自身距离定位系统的第一距离判断自身是否在该定位系统的预设范围内,在第一距离小于等于预设阈值时,则该车辆位于该定位系统的预设范围内。
可以看到,当车辆确定自身是位于某定位系统的预设范围内时,车辆才会获取该定位系统的位置信息,从而根据该定位系统的位置信息实现车辆在半封闭空间的定位,提高了车辆定位过程中的处理效率,节省了车辆的计算资源。
基于第一方面,在可能的实施例中,所述定位系统包括第一颜色装置和定位装置,所述地图还包括指示所述第一颜色装置的离地高度的信息;所述定位装置用于在所述车辆位于所述定位装置处时触发第一广播信息;所述确定所述车辆与所述定位系统之间的第一距离,包括:拍摄第一环境图像,所述第一环境图像包含所述第一颜色装置的图像;根据所述第一环境图像确定所述车辆与所述第一颜色装置之间的第二距离;根据所述第二距离和所述第一颜色装置的离地高度,获得所述第一距离。
其中,第一距离为图像采集装置所在的车辆距离垂直平面的距离,垂直平面为定位装置所在的与车辆行驶方向垂直的平面;第二距离为指图像采集装置所在的车辆与半封闭空间中某颜色装置之间的空间距离。
本申请的另一种实施例中,在车辆通过处理第一环境图像获得其自身与颜色装置之间的第二距离后,车辆获得第一距离的方式还可以是:根据第二距离和车辆的图像采集装置拍摄第一颜色装置时的俯仰角,获得所述第一距离。
可以看到,车辆结合计算机视觉处理技术处理包含颜色装置的第一环境图像来确定自身是否在定位系统的预设范围内,这种方式不受半封闭空间中卫星信号屏蔽等环境因素的影响。
基于第一方面,在可能的实施例中,所述定位系统包括第一颜色装置和定位装置,所述定位装置用于在所述车辆位于所述定位装置处时触发第一广播信息;所述第一广播信息包括所述定位装置的位置信息;所述获取地图中所述定位系统在所述半封闭空间中的位置信息,包括:根据所述定位装置发送的第一广播信息获得所述定位装置的位置信息;根据所述定位装置的位置信息确定所述定位系统在所述半封闭空间中的位置信息。
本申请的一种实施例中,第一广播信息包括定位装置的位置信息和该定位装置的编号,在地图包含多个定位系统的编号时,位于该定位装置的预设范围内的车辆可通过第一广播信息中的编号和定位装置的位置信息结合地图获得该定位装置所在的定位系统的位置信息。
基于第一方面,在可能的实施例中,所述第一广播信息包括触发时刻和所述定位装置的位置信息,所述触发时刻用于指示所述定位装置被所述车辆触发的时刻,所述根据所述位置信息在所述地图中对所述车辆进行定位,包括:根据所述位置信息和所述触发时刻在所述地图中对所述车辆进行定位。
本申请实施例中,定位系统除了可以在自身被车辆触发时立即发送第一广播信息外,还可以在自身被触发后的一段时间再发送第一广播信息。第一广播信息的发送时刻和车辆接收到第一广播信息的时刻之间的时延可忽略不计。
基于第一方面,在可能的实施例中,所述根据所述第一环境图像确定所述车辆与所述第一颜色装置之间的第二距离,包括:从所述第一环境图像中识别出所述第一颜色装置;根据所述第一颜色装置的图像确定所述第二距离。
本申请的一种实施例中,车辆识别出颜色装置后获得第一颜色装置在第一环境图像中的像素位置以及尺寸大小,根据第一颜色装置在第一环境图像中的像素位置、尺寸大小以及地图中第一颜色装置的实际尺寸信息,确定车辆距离第一颜色装置的第二距离。
可以看到,车辆结合计算机视觉处理技术识别定位系统中定位装置对应的颜色装置来确定车辆距离颜色装置的第二距离,从而确定车辆距离该颜色装置对应的定位装置的第一距离,这种方式不受半封闭空间中卫星信号屏蔽的影响,且由于半封闭空间的光照环境稳定,能提高车辆识别颜色装置的准确性。
基于第一方面,在可能的实施例中,所述第一颜色装置包括一个或多个标识灯;所述从所述第一环境图像中识别出所述第一颜色装置,包括:通过识别所述一个或多个标识灯的颜色和顺序来识别出所述第一颜色装置。
本申请的一种实施例中,在半封闭空间设置有多个颜色装置时,这多个颜色装置被间隔设置在半封闭空间中的不同位置处,且不同位置处的颜色装置具有不同的颜色或不同颜色的排列组合,以降低识别颜色装置的误码率。
基于第一方面,在可能的实施例中,所述定位装置包括定位光栅或地磁感应器。
基于第一方面,在可能的实施例中,所述方法还包括:在所述车辆不位于所述定位系统的预设范围内时,丢弃所述第一广播信息。
本申请的一种实施例中,车辆接收到来自某定位系统的第一广播信息时,若车辆确定自身不位于定位系统的预设范围内,车辆可直接丢弃第一广播信息,以节省车辆侧的计算资源,提高车辆在半封闭空间中的定位效率。
基于第一方面,在可能的实施例中,所述监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内,包括:接收第二广播信息,所述第二广播信息用于指示位于所述定位系统的预设范围内的车辆;根据所述第二广播信息确定所述车辆是否位于所述定位系统的预设范围内。
本申请实施例中,监测车辆是否位于定位系统的预设范围内的任务可由服务器或者位于半封闭空间中的图像采集装置执行。因此,上述接收第二广播信息可以是接收服务器发送的第二广播信息或者接收位于半封闭空间中的图像采集装置发送的第二广播信息。
本申请的一种实施例中,在半封闭空间设置有多个定位定位系统时,第二广播信息还包括所述定位系统的编号,以使车辆可以根据接收到的第二广播信息确定自身是否在该定位系统的预设范围内。第二广播信息承载于广播信道中。
可以看到,车辆只需接收指示了位于某定位系统的预设范围内的车辆的第二广播信息,然后匹配自身是否为第二广播信息中指示的车辆,即可确定车辆自身是否在该定位系统的预设范围内。节省了车辆侧的计算资源,提高了车辆在半封闭空间中的定位效率。
基于第一方面,在可能的实施例中,所述车辆设置有第二颜色装置,所述第二颜色装置包括一个或多个标识灯;所述第二广播信息携带指示信息,所述指示信息指示了一个或多个标识灯的颜色和顺序;所述根据所述第二广播信息确定所述车辆是否位于所述半封闭空间中定位系统的预设范围内,包括:根据所述第二广播信息指示的一个或多个标识灯的颜色和顺序是否与所述第二颜色装置匹配,来确定所述车辆是否位于所述定位系统的预设范围内。
本申请的一种实施例中,半封闭空间设置有多个定位系统,每个定位系统包含定位装置和图像采集装置,颜色装置设置于车辆上,且不同车辆上的颜色装置的颜色或颜色排列组合不同。
本申请的一种实施例中,在半封闭空间设置有多个并行车道的情况下,第二广播信息中携带的指示信息指示了至少一个颜色装置的颜色和顺序,且上述至少一个颜色装置为位于该定位系统的预设范围内的多辆车的颜色装置,在车辆自身的颜色装置与第二广播信息中指示的颜色装置中的一个匹配成功时,该车辆位于此定位系统的预设范围内。
基于第一方面,在可能的实施例中,在所述根据所述位置信息在所述地图中对所述车辆进行定位之后,所述方法还包括:获取所述车辆的运动信息;根据所述车辆的位置信息和所述车辆的运动信息在所述地图中对所述车辆进行导航。
本申请实施例中,车辆结合车辆当前的位置信息和车辆的运动信息利用惯性导航技术对车辆进行导航,从而获得车辆行驶过程中在半封闭空间中的实时位置。在车辆触发下一个定位系统时,将被触发的定位系统的位置信息更新为车辆当前的位置信息,从而实现了车辆在半封闭空间中的精确定位。
本申请实施例中,半封闭空间中设置的多个定位系统将半封闭空间分成多个小段,以使车辆在每个小段行驶的时间相较于在整个半封闭空间中的行驶时间大大减少,因此,车辆在每个小段中因惯性导航累积的误差可忽略不计,提高了车辆定位的准确性。
第二方面,本申请实施例提供了一种车辆定位方法,该方法包括:在车辆进入半封闭空间后,监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内;在监测到所述车辆位于所述定位系统的预设范围内的情况下,发送第二广播信息,所述第二广播信息用于指示所述车辆位于所述定位系统的预设范围内,以便于所述车辆根据所述定位系统的位置信息进行定位。
本申请实施例中,在车辆进入半封闭空间后,可由服务器或半封闭空间中的图像采集装置对车辆进行监测并判断其是否位于半封闭空间中某一定位系统的预设范围内,当确定该车辆位于某一定位系统的预设范围内时,服务器或半封闭空间中的图像采集装置向外发送第二广播信息,以使车辆根据第二广播信息确定自身是否位于定位系统的预设范围内。
半封闭空间是指卫星信号因受到屏蔽或遮挡导致信号差或不稳定的空间。半封闭空间包括信号不佳的地下空间、地上空间等。
可以看到,服务器或半封闭空间中的图像采集装置承担监测车辆的当前位置是否在定位系统的预设范围内的任务,车辆侧无需执行监测过程中的复杂算法,仅通过接收第二广播信息即可确定自身车辆是否位于定位系统的预设范围内,节省了车辆侧的计算资源,提高了车辆在半封闭空间中的定位效率。
基于第二方面,在可能的实施例中,所述监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内包括:监测所述车辆与所述定位系统之间的第三距离;根据所述第三距离确定所述车辆是否位于所述定位系统的预设范围内。
本申请实施例中,服务器或半封闭空间中的图像采集装置可以通过监测车辆与定位系统之间的第三距离判断车辆是否在该定位系统的预设范围内,在第三距离小于等于预设阈值,则车辆位于该定位系统的预设范围内。
基于第二方面,在可能的实施例中,所述定位系统包括图像采集装置和定位装置,所述地图还包括指示所述图像采集装置的离地高度的信息;所述定位装置用于在所述车辆位于所述定位装置处时触发包含所述定位装置的位置信息的第一广播信息;所述车辆上设置有第二颜色装置;所述监测所述车辆与所述定位系统之间的第三距离,包括;获取所述图像采集装置采集的第二环境图像,所述第二环境图像包含所述第二颜色装置的图像;根据所述第二环境图像确定所述车辆与所述图像采集装置之间的第四距离;根据所述第四距离和所述图像采集装置的离地高度,获得所述第三距离。
其中,第三距离为颜色装置所在的车辆距离垂直平面的距离,垂直平面为定位装置所在的与车辆行驶方向垂直的平面;第四距离为颜色装置所在的车辆与该定位装置之间的空间距离。
本申请的一种实施例中,在服务器或者图像采集装置通过处理第二环境图像获得第四距离后,服务器或者图像采集装置获得第三距离的方式还可以是:根据第四距离和所述图像采集装置拍摄所述第二颜色装置时的俯仰角,获得所述第三距离。
可以看到,服务器或设置于半封闭空间中的图像采集装置利用计算机视觉处理技术处理包含车辆上的颜色装置的第二环境图像来确定车辆是否在定位系统的预设范围内,这种方式不受半封闭空间中卫星信号屏蔽的影响。
基于第二方面,在可能的实施例中,所述定位装置包括定位光栅或地磁感应器。
基于第二方面,在可能的实施例中,所述根据所述第二环境图像确定所述车辆与所述图像采集装置之间的第四距离,包括:从所述第二环境图像中识别出所述第二颜色装置;根据所述第二颜色装置的图像确定所述第四距离。
本申请实施例中,服务器或图像采集装置识别出第二环境图像中的第二颜色装置后获得第二颜色装置在第二环境图像中的像素位置以及尺寸大小,根据第二颜色装置在第二环境图像中的像素位置、尺寸大小以及地图中第二颜色装置的实际尺寸信息,确定上述第四距离。
可以看到,服务器或半封闭空间中的图像采集装置通过识别车辆上的颜色装置进而确定颜色装置所在的车辆距离对应图像采集装置的第四距离,从而确定车辆距离该颜色装置对应的定位装置的第三距离。这种方式不受半封闭空间中卫星信号屏蔽的影响,且由于半封闭空间的光照环境稳定,能提高识别车辆的颜色装置的准确性。
基于第二方面,在可能的实施例中,所述第二颜色装置包括一个或多个标识灯;所述从所述第二环境图像中识别出所述第二颜色装置,包括:通过识别所述一个或多个标识灯的颜色和顺序来识别出所述第二颜色装置。
本申请实施例中,第二颜色装置中的各标识灯可被设置显示不同颜色的可见光。在一些可能的实施例中,第二颜色装置也可以包括至少一个可发光器件,或者,第二颜色装置还可以包括一个或多个带颜色的金属板。
可以看到,基于颜色装置的颜色和顺序识别第二环境图像中车辆上的颜色装置,从而获得车辆距离图像采集装置的第四距离,以及确定车辆距离该图像采集装置对应的定位装置的第三距离。这种方式不受半封闭空间中卫星信号屏蔽的影响,且由于半封闭空间的光照环境稳定,能提高识别车辆的颜色装置的准确性。
基于第二方面,在可能的实施例中,所述第二广播信息携带了指示信息,所述指示信息指示了所述一个或多个标识灯的颜色和顺序,所述指示信息用于指示所述车辆根据所述指示信息指示的颜色和顺序确定所述车辆是否位于所述定位系统的预设范围内。
可以看到,第二广播信息可用于辅助车辆判断自身当前所在的位置是否在定位系统的预设范围内,从而实现达到车辆监测自身是否在定位系统的预设范围内的目的。当车辆位于定位系统的预设范围内且接收到该定位系统触发时对应的第一广播信息时,本车辆当前的位置即为该定位系统对应的位置信息。可以看出,大大简化了车辆侧实现自身在半封闭空间中定位的流程,节省了车辆侧的计算资源,有效解决了半封闭空间中车辆难以准确定位的问题。
第三方面,本申请实施例提供了一种监测装置,该监测装置包括接收器和处理器,其中,所述接收器用于获取图像采集装置采集的环境图像,所述环境图像包含颜色装置的图像;所述处理器用于:根据所述环境图像确定所述颜色装置与所述图像采集装置之间的距离;根据所述图像采集装置和所述颜色装置之间的位置关系以及所述图像采集装置与所述颜色装置之间的距离,确定所述图像采集装置与所述颜色装置之间的水平距离;根据所述图像采集装置与所述颜色装置之间的水平距离,确定在车辆进入所述半封闭空间后所述车辆位于所述半封闭空间中定位装置的预设范围内,以便于所述车辆根据所述定位装置的位置信息进行定位。
基于第三方面,在可能的实施例中,所述处理器具体用于:从所述环境图像中识别出所述颜色装置;根据所述颜色装置的图像确定所述颜色装置与所述图像采集装置之间的距离。
基于第三方面,在可能的实施例中,所述颜色装置包括一个或多个标识灯;所述处理器具体用于:通过识别所述一个或多个标识灯的颜色和顺序来识别出所述颜色装置。
基于第三方面,在可能的实施例中,当所述颜色装置为第一颜色装置时,所述第一颜色装置和所述定位装置位于所述半封闭空间中,所述图像采集装置和所述监测装置位于所述车辆上。
基于第三方面,在可能的实施例中,当所述颜色装置为第二颜色装置时,所述第二颜色装置位于所述车辆上,所述图像采集装置和所述定位装置位于所述半封闭空间中,所述监测装置集成于所述图像采集装置中;所述监测装置还包括:发送器,用于在所述车辆位于所述定位装置的预设范围内时,发送第二广播信息,以使所述车辆根据所述第二广播信息确定所述车辆是否位于所述定位装置的预设范围内。
基于第三方面,在可能的实施例中,当所述颜色装置为第二颜色装置时,所述第二颜色装置位于所述车辆上,所述图像采集装置和所述定位装置位于所述半封闭空间中,所述监测装置集成于服务器中;所述接收器具体用于:接收所述图像采集装置发送的所述环境图像;所述监测装置还包括:发送器,用于在所述车辆位于所述定位装置的预设范围内时,发送第二广播信息,以使所述车辆根据所述第二广播信息确定所述车辆是否位于所述定位装置的预设范围内。
基于第三方面,在可能的实施例中,所述第二广播信息携带了指示信息,所述指示信息指示了所述一个或多个标识灯的颜色和顺序,所述指示信息用于指示所述车辆根据所述指示信息指示的颜色和顺序确定所述车辆是否位于所述定位装置的预设范围内。
第四方面,本申请实施例提供了一种装置,该装置包括:监测单元,用于在车辆进入半封闭空间后,监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内;获取单元,用于在所述车辆位于所述定位系统的预设范围内的情况下,获取地图中所述定位系统在所述半封闭空间中的位置信息;单位单元,用于根据所述位置信息在所述地图中对所述车辆进行定位。
基于第四方面,在可能的实施例中,所述地图为所述车辆从服务器下载的,或者,所述地图为所述车辆从半封闭空间入口处的路侧单元处下载的,或者,所述地图为所述车辆从半封闭空间中的其他车辆处获得的。
基于第四方面,在可能的实施例中,所述监测单元具体用于:确定所述车辆与所述定位系统之间的第一距离;根据所述第一距离确定所述车辆是否位于所述定位系统的预设范围内。
基于第四方面,在可能的实施例中,所述定位系统包括第一颜色装置和定位装置,所述地图还包括指示所述第一颜色装置的离地高度的信息;所述定位装置用于在所述车辆位于所述定位装置处时触发第一广播信息;所述装置还包括采集单元,用于拍摄第一环境图像,所述第一环境图像包含所述第一颜色装置的图像;所述监测单元具体用于,根据所述第一环境图像确定所述车辆与所述第一颜色装置之间的第二距离;根据所述第二距离和所述第一颜色装置的离地高度,获得所述第一距离。
基于第四方面,在可能的实施例中,所述定位系统包括第一颜色装置和定位装置,所述定位装置用于在所述车辆位于所述定位装置处时触发第一广播信息;所述第一广播信息包括所述定位装置的位置信息;所述获取单元具体用于:根据所述定位装置发送的第一广播信息获得所述定位装置的位置信息;根据所述定位装置的位置信息确定所述定位系统在所述半封闭空间中的位置信息。
基于第四方面,在可能的实施例中,所述第一广播信息包括触发时刻和所述定位装置的位置信息,所述触发时刻用于指示所述定位装置被所述车辆触发的时刻,所述定位单元具体用于:根据所述位置信息和所述触发时刻在所述地图中对所述车辆进行定位。
基于第四方面,在可能的实施例中,所述监测单元具体用于:从所述第一环境图像中识别出所述第一颜色装置;根据所述第一颜色装置的图像确定所述第二距离。
基于第四方面,在可能的实施例中,所述第一颜色装置包括一个或多个标识灯;所述监测单元具体用于:所述从所述第一环境图像中识别出所述第一颜色装置,包括:通过识别所述一个或多个标识灯的颜色和顺序来识别出所述第一颜色装置。
基于第四方面,在可能的实施例中,所述定位装置包括定位光栅或地磁感应器。
基于第四方面,在可能的实施例中,所述定位单元还用于:在所述车辆不位于所述定位系统的预设范围内时,丢弃所述第一广播信息。
基于第四方面,在可能的实施例中,所述获取单元用于:接收第二广播信息,所述第二广播信息用于指示位于所述定位系统的预设范围内的车辆;所述监测单元具体用于:根据所述第二广播信息确定所述车辆是否位于所述定位系统的预设范围内。
基于第四方面,在可能的实施例中,所述车辆设置有第二颜色装置,所述第二颜色装置包括一个或多个标识灯;所述第二广播信息携带指示信息,所述指示信息指示了一个或多个标识灯的颜色和顺序;所述监测单元具体用于:根据所述第二广播信息指示的一个或多个标识灯的颜色和顺序是否与所述第二颜色装置匹配,来确定所述车辆是否位于所述定位系统的预设范围内。
基于第四方面,在可能的实施例中,所述获取单元还用于:获取所述车辆的运动信息;所述定位单元还用于:根据所述车辆的位置信息和所述车辆的运动信息在所述地图中对所述车辆进行导航。
第五方面,本申请实施例提供了一种装置,该装置包括:监测单元,用于在车辆进入半封闭空间后,监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内;广播单元:在监测到所述车辆位于所述定位系统的预设范围内的情况下,发送第二广播信息,所述第二广播信息用于指示所述车辆位于所述定位系统的预设范围内,以便于所述车辆根据所述定位系统的位置信息进行定位。
基于第五方面,在可能的实施例中,所述监测单元具体用于:监测所述车辆与所述定位系统之间的第三距离;根据所述第三距离确定所述车辆是否位于所述定位系统的预设范围内。
基于第五方面,在可能的实施例中,所述定位系统包括图像采集装置和定位装置,所述地图还包括指示所述图像采集装置的离地高度的信息;所述定位装置用于在所述车辆位于所述定位装置处时触发包含所述定位装置的位置信息的第一广播信息;所述车辆上设置有第二颜色装置;所述装置还包括获取单元,用于获取所述图像采集装置拍摄的第二环境图像,所述第二环境图像包含所述第二颜色装置的图像;所述监测单元具体用于:根据所述第二环境图像确定所述车辆与所述图像采集装置之间的第四距离;根据所述第四距离和所述图像采集装置的离地高度,获得所述第三距离。
基于第五方面,在可能的实施例中,所述监测单元具体用于:从所述第二环境图像中识别出所述第二颜色装置;根据所述第二颜色装置的图像确定所述第四距离。
基于第五方面,在可能的实施例中,所述第二颜色装置包括一个或多个标识灯;所述监测单元具体用于:通过识别所述一个或多个标识灯的颜色和顺序来识别出所述第二颜色装置。
基于第五方面,在可能的实施例中,所述第二广播信息携带了指示信息,所述指示信息指示了所述一个或多个标识灯的颜色和顺序,所述指示信息用于指示所述车辆根据所述指示信息指示的颜色和顺序确定所述车辆是否位于所述定位系统的预设范围内。
基于第五方面,在可能的实施例中,所述定位装置包括定位光栅或地磁感应器。
第六方面,本申请实施例提供了一种装置,该装置包括:获取单元,用于获取图像采集装置采集的环境图像,所述环境图像包含颜色装置的图像;处理单元用于:根据所述环境图像确定所述颜色装置与所述图像采集装置之间的距离;根据所述图像采集装置和所述颜色装置之间的位置关系以及所述图像采集装置与所述颜色装置之间的距离确定所述图像采集装置与所述颜色装置之间的水平距离;根据所述图像采集装置与所述颜色装置之间的水平距离,确定在车辆进入所述半封闭空间后所述车辆位于所述半封闭空间中定位装置的预设范围内,以便于所述车辆根据所述定位装置的位置信息进行定位。
基于第六方面,在可能的实施例中,所述处理单元具体用于:从所述环境图像中识别出所述颜色装置;根据所述颜色装置的图像确定所述颜色装置与所述图像采集装置之间的距离。
基于第六方面,在可能的实施例中,所述颜色装置包括一个或多个标识灯;所述处理单元具体用于:通过识别所述一个或多个标识灯的颜色和顺序来识别出所述颜色装置。
基于第六方面,在可能的实施例中,所述装置还包括:广播单元,用于在所述车辆位于所述定位装置的预设范围内时,发送第二广播信息,以使所述车辆根据所述第二广播信息确定所述车辆是否位于所述定位装置的预设范围内。
基于第六方面,在可能的实施例中,所述获取单元具体用于:接收所述图像采集装置发送的所述环境图像;所述装置还包括:广播单元,用于在所述车辆位于所述定位装置的预设范围内时,发送第二广播信息,以使所述车辆根据所述第二广播信息确定所述车辆是否位于所述定位装置的预设范围内。
基于第六方面,在可能的实施例中,所述第二广播信息携带了指示信息,所述指示信息指示了所述一个或多个标识灯的颜色和顺序,所述指示信息用于指示所述车辆根据所述指示信息指示的颜色和顺序确定所述车辆是否位于所述定位装置的预设范围内。
第七方面,本申请实施例提供了一种系统,还系统包括图像采集装置、颜色装置和定位装置,其中,颜色装置和定位装置设置于半封闭空间,图像采集装置设置于车辆上。图像采集装置用于采集包含颜色装置的图像并根据图像计算车辆与定位装置之间的水平距离,根据该水平距离确定车辆是否位于定位装置的预设范围内,以使车辆确定自身在定位装置的预设范围内时进行定位。
第八方面,本申请实施例提供了一种系统,还系统包括图像采集装置、颜色装置和定位装置,其中,颜色装置设置于车辆上,定位装置和图像采集装置设置于半封闭空间。图像采集装置用于执行上述第二方面或者第二方面的任一可能的实施例中的所述方法。
第九方面,本申请实施例提供了一种系统,还系统包括图像采集装置、颜色装置、定位装置和服务器,其中,颜色装置设置于车辆上,定位装置和图像采集装置设置于半封闭空间。图像采集装置用于采集包含颜色装置的图像并将该图像发送给服务器,服务器用于执行上述第二方面或者第二方面的任一可能的实施例中的所述方法。
第十方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第一方面或者第一方面的任一可能的实现方式中的方法的指令。
第十一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第二方面或者第二方面的任一可能的实现方式中的方法的指令。
第十二方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第三方面或者第三方面的任一可能的实现方式中的方法的指令。
第十三方面,本申请实施例提供了一种计算机软件产品,该计算机程序软件产品包括程序指令,当该计算机软件产品被装置执行时,该装置执行前述第一方面或者第一方面的任一可能的实施例中的所述方法。该计算机软件产品可以为一个软件安装包,在需要使用前述第一方面的任一种可能的设计提供的方法的情况下,可以下载该计算机软件产品并在装置上执行该计算机软件产品,以实现第一方面或者第一方面的任一可能的实施例中的所述方法。
第十四方面,本申请实施例提供了一种计算机软件产品,该计算机程序软件产品包括程序指令,当该计算机软件产品被装置执行时,该装置执行前述第二方面或者第二方面的任一可能的实施例中的所述方法。该计算机软件产品可以为一个软件安装包,在需要使用前述第二方面的任一种可能的设计提供的方法的情况下,可以下载该计算机软件产品并在装置上执行该计算机软件产品,以实现第二方面或者第二方面的任一可能的实施例中的所述方法。
第十五方面,本申请实施例提供了一种计算机软件产品,该计算机程序软件产品包括程序指令,当该计算机软件产品被装置执行时,该装置执行前述第三方面或者第三方面的任一可能的实施例中的所述方法。该计算机软件产品可以为一个软件安装包,在需要使用前述第三方面的任一种可能的设计提供的方法的情况下,可以下载该计算机软件产品并在装置上执行该计算机软件产品,以实现第三方面或者第三方面的任一可能的实施例中的所述方法。
可以看到,实施本申请实施例,在卫星信号不佳的场景中,一方面,可以通过设置多组定位装置和多组具有不同颜色的颜色装置,建立颜色装置和定位装置与该场景中各位置的对应关系,从而实现对车辆的准确定位;另一方面,还可以通过图像采集装置识别车载颜色装置的颜色以及顺序确定车辆的位置,再结合定位装置是否被该车辆触发实现对车辆的精准定位。有效解决了在卫星信号被遮挡或者屏蔽的隧道、停车场等半封闭空间中车辆无法定位或定位不准的问题,提升了车辆在半封闭空间中定位的鲁棒性,降低了半封闭空间下车辆定位的施工成本。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种应用的系统架构;
图2是本申请实施例提供的又一种应用的系统架构;
图3是本申请实施例提供的又一种应用的系统架构;
图4是本申请实施例提供的一种车辆定位方法的流程图;
图5是本申请实施例提供的又一种车辆定位方法的流程图;
图6是本申请实施例提供的又一种车辆定位方法的流程图;
图7A是本申请实施例提供的一种标识灯组的示意图;
图7B是本申请实施例提供的又一种标识灯组的示意图;
图8A是本申请实施例提供的一种标识灯组在隧道中的部署示意图;
图8B是本申请实施例提供的又一种标识灯组在隧道中的部署示意图;
图9是本申请实施例提供的一种车辆在隧道中的定位示意图;
图10A是本申请实施例提供的又一种车辆在隧道中的部署示意图;
图10B是本申请实施例提供的又一种车辆在隧道中的部署示意图;
图11是本申请实施例提供的一种车辆定位的场景示意图;
图12是本申请实施例提供的一种标识灯故障检测方法的流程图;
图13是本申请本实施例提供的一种车辆定位方法的流程图;
图14A是本申请实施例提供的一种车辆在隧道中的定位示意图;
图14B是本申请实施例提供的又一种车辆在隧道中的定位示意图;
图15是本申请实施例提供的一种车辆定位的场景示意图;
图16是本申请实施例提供的一种车辆定位的场景示意图;
图17是本申请本实施例提供的一种装置的结构示意图;
图18是本申请本实施例提供的又一种装置的结构示意图;
图19是本申请本实施例提供的一种装置的结构示意图;
图20是本申请本实施例提供的一种装置的结构示意图;
图21是本申请本实施例提供的一种装置的功能结构示意图;
图22是本申请本实施例提供的一种装置的功能结构示意图;
图23是本申请本实施例提供的一种装置的功能结构示意图。
具体实施方式
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。本申请实施例中的说明书和权利要求书中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
为了便于理解,下面先对本申请实施例可能涉及的相关术语等进行介绍。
(1)网联通信
网联通信技术应用于车辆中常被称之为车联网(Internet of Vehicles,IoV),是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在V-X(车、路、人及云端等)之间,进行无线通讯和信息交换的大系统网络,即可以实现车与车、车与设施、车与云端等的实时在线通信。其中,车与车之间的通信也叫车车通信(Vehicle toVehicle,V2V);车与设施之间的通信也叫车路通信(Vehicle to Infrastructure,V2I),即指车与道路通过路侧通信设备之间进行通信;车与云端之间的通信也叫车云通信(Vehicleto Network,V2N),即指车与云端通过蜂窝网络通信。
(2)RGB色彩空间
RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色,RGB即是代表红、绿、蓝三个通道的颜色,这个标准几乎包括了人类视力所能感知的所有颜色,是运用最广的颜色系统之一。在RGB色彩空间中,每个颜色通道的取值范围均为[0,255],其中,“0”表示没有刺激量,“255”表示刺激量达到最大值,例如:当R、G、B三者均为0时,三通道合成表示黑色;当R、G、B三者均为255时,三通道合成白光。本申请实施例中,对某种颜色来说,其三个通道的取值(r,g,b)称作该颜色的颜色编码。
(3)惯性导航系统
惯性导航系统(Inertial Navigation System,INS)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体(例如,车辆)在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。
惯性导航的核心器件是惯性测量单元(Inertial Measurement Unit,IMU)常安装与运动体的重心上,是用于测量运动体的三轴姿态角(或角速率)以及加速度的装置,其主要包括加速度计和陀螺仪这两种惯性元件,其中,加速度计用于检测运动体的加速度信号,而陀螺仪用于检测运动体相对于导航坐标系的角速度信号。
具体地,惯性导航系统可以从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到位移。
通常情况下,车辆定位主要依赖于全球卫星导航系统(Global NavigationSatellite System,GNSS)以及惯性导航系统(Inertial Navigation System,INS),在车辆处于隧道、地下停车场等信号较弱或有屏蔽、遮挡的场景下时,不妨以隧道为例进行描述,一方面,由于隧道的墙壁厚,导致车辆在隧道中无法接收到卫星信号或者接收到的卫星信号弱以使车辆无法进行准确定位,另一方面,由于隧道的距离远,若车辆使用自身的惯性导航计算自身的实时位置,由于惯性测量单元的累积误差会随着时间显著增大,从而导致惯性导航的精准度难以满足要求。
为了能解决隧道中车辆的定位问题,目前已提出一些新的替代方案,例如雷达定位、伪卫星定位(例如,超带宽Ultra Wide Band,UWB)、射频识别技术(Radio FrequencyIdentification,RFID)等,但上述这些方案都是基于电磁波的定位方案,一方面,电磁波在隧道中的传输会有明显的多路径效应,影响车辆的准确定位,另一方面,上述方案的应用过程中需额外安装的设备的成本高,难以批量布置,方案的性价比低。
此外,还有人提出由于隧道内的光照环境稳定,利用隧道内环境亮度变化对车辆进行定位,但隧道中的环境亮度变化属于短周期变化,且光线由强到弱或由弱到强的变化是渐变的,导致检测光线由强到弱或由弱到强的转变点很容易出现计算错误,该方案的实用性受到较大限制。因此,急需一种方案能解决隧道、地下停车场等卫星信号较弱或有屏蔽、遮挡的场景下车辆的定位问题。
下面描述本申请实施例应用的一种系统架构。参见图1,图1示例性地给出了本申请实施例应用的半封闭空间中车辆定位系统的示意性框图。如图1所示,该系统10包括车辆和至少一组定位系统,每组定位系统都包括定位装置和颜色装置,且每组定位系统均设置于半封闭空间中,半封闭空间为允许车辆行驶的卫星信号较弱的空间(例如,隧道、地下停车场等),车辆上安装有图像采集装置,图像采集装置用于采集车辆行驶时前方的环境图像,该环境图像中包含颜色装置的图像。图像采集装置可以是摄像机、相机或其他具有图像采集功能的装置,本申请不做具体限定。图1中图像采集装置不妨以摄像机为例进行示例性阐述,但本申请实施例不限定图像采集装置仅为摄像机。定位系统中的定位装置通过无线连接的方式和车辆进行通信。
半封闭空间是指允许车辆行驶但卫星信号因受到屏蔽或遮挡导致信号差或不稳定的空间。半封闭空间可以是地下隧道、地下停车场、矿井、地下仓库、地下工地等空间,还可以是地下管道、下水道、地窖、涵洞、地坑、暗沟等空间,本申请实施例不做具体限定。需要说明的是,半封闭空间并不限于指地面以下的空间,也可以指地面上的允许车辆行驶但卫星信号差的空间,例如:地上隧道、室内停车场、室内仓库等。下文半封闭空间不妨以隧道为例进行方案的示例性阐述,但是本申请实施例不限定半封闭空间仅为隧道。
在一些可能的实施例中,车辆内还包含监测装置,监测装置用于对摄像机采集的环境图像进行处理和分析,例如,识别环境图像中的颜色装置、根据颜色装置的图像计算颜色装置与摄像机之间的距离等,以辅助车辆判断自身是否在该颜色装置对应的定位装置的预设范围内,进一步地,车辆结合接收到的来自该定位装置被触发时的第一广播信息,可以根据该定位装置的位置实现自身在半封闭空间中的定位。需要说明的是,监测装置可以集成于车辆的摄像机中,也可以独立于摄像机存在于车辆中,本申请不做具体限定。
示例性地,在监测装置集成于车辆的摄像机时,摄像机在采集到包含颜色装置的环境图像后可直接对该环境图像进行处理,在处理结果指示车辆位于该颜色装置对应的定位装置的预设范围内时,摄像机可与车辆内的控制单元(例如,处理器)通信以使控制单元根据定位装置的位置信息对车辆进行定位。
示例性地,在监测装置集成于车辆里但独立于车辆里的摄像机存在时,监测装置先获取摄像机采集到的包含颜色装置的环境图像,并对该环境图像进行相应处理,在处理结果指示车辆位于该颜色装置对应的定位装置的预设范围内时,监测装置可与车辆内的控制单元(例如,处理器)通信以使控制单元根据定位装置的位置信息对车辆进行定位。
颜色装置可以用于显示一种单一的颜色,也可以用于同时显示多种不同颜色。多个颜色装置安装于隧道中,通常安装于隧道的顶部,以使车辆的摄像机易于采集到颜色装置。在一些可能的实施例中,也可以安装在隧道的侧壁,本申请实施例不做具体限定。由于隧道一般较长,因此多个颜色装置被间隔设置。总之,颜色装置尽可能正对行驶的车辆,在车辆高速行驶时,能有效降低光流造成的干扰。一具体实施中,颜色装置可以是标识灯组,标识灯组包含至少一个标识灯,每个标识灯可以被预先被设置显示一种颜色的可见光,在每个标识灯组的标识灯数量为多个时,每个标识灯组呈现的即为多个颜色的排列组合。又一具体实施中,颜色装置还可以是至少一个带颜色的金属板或者其他可以显示颜色的装置,本申请实施例不做限定。
定位装置可以是定位光栅或者地磁感应器,定位装置被触发时,被触发的定位装置可以向附近的所有车辆播报指示了自身被触发的广播信息。由于定位装置与颜色装置一一对应,若定位装置和颜色装置的数量均为K,即第Ki个颜色装置对应第Ki个定位装置。由于第Ki定位装置与第Ki个颜色装置安装于同一位置,因此第Ki个颜色装置的位置和第Ki个定位装置的位置均与第Ki个定位系统的位置信息相同。
需要说明的是,本申请实施例对定位系统中的颜色装置和定位装置在半封闭空间中的安装位置不做具体限定,例如,定位系统中的颜色装置和定位装置可以设置在与车辆行驶方向垂直的同一平面上,如同一位置同一高度、同一位置不同高度,其中,同一位置是指在同一平面上;除此之外,颜色装置和定位装置还可以设置在与车辆行驶方向垂直的不同平面上,但颜色装置和定位装置所在平面之间的距离不应相差太远。
下面描述本申请实施例应用的又一种系统架构。参见图2,图2示例性地给出了本申请实施例应用的半封闭空间车辆定位系统的示意性框图。如图2所示,该系统20可以包括服务器、车辆和至少一组定位系统,其中,每组定位系统均包括图像采集装置和定位装置,定位系统安装于半封闭空间中,车辆上安装有一个颜色装置。多个定位装置、多个图像采集装置、车辆通过无线连接的方式与服务器进行通信。
图像采集装置可以是摄像机、相机或其他具有图像采集功能的装置,本申请不做具体限定。图2中图像采集装置不妨以摄像机为例进行示例性阐述,但本申请实施例不限定图像采集装置仅为摄像机。
半封闭空间是指允许车辆行驶但卫星信号较差的空间,半封闭空间可以是地下隧道、地下停车场、矿井、地下仓库、地下工地等空间,还可以是地下管道、下水道、地窖、涵洞、地坑、暗沟等空间,本申请实施例不做具体限定。需要说明的是,半封闭空间并不限于指地面以下的空间,也可以指地面上的允许车辆行驶且卫星信号差的空间,例如:地上隧道、室内停车场、室内仓库等。下文半封闭空间不妨以隧道为例进行方案的示例性阐述,但是本申请实施例不限定半封闭空间仅为隧道。
服务器的功能在于,一方面,用于接收定位系统中的摄像机发送的已采集的环境图像,并将这些环境图像根据摄像机的编号进行存储。另一方面,服务器中还集成有监测装置,用于对接收到的环境图像进行处理和分析,例如,识别环境图像中的颜色装置、根据颜色装置的图像计算颜色装置与摄像机之间的距离等,以监测是否有车辆位于摄像机对应的定位装置的预设范围内,若定位装置的预设范围内有车辆,则向外发送第二广播信息,第二广播信息指示了位于该定位装置预设范围内的车辆。在一些可能的实施例中,服务器还可以向即将进入或已进入半封闭空间中的车辆发送半封闭空间的地图,地图中包括定位系统的位置信息、摄像机的编号、摄像机的离地高度等信息。在一些可能的实施例中,定位系统被触发时,还可由服务器向外播报第一广播信息,第一广播信息指示有车辆触发了该定位系统。
颜色装置安装于车辆上,通常安装于车辆的顶部,以使其易于被设置于半封闭空间中的摄像机拍摄到。在一些可能的实施例中,颜色装置也可以安装于车前盖上或车辆上其他显眼的位置。颜色装置为可以调控颜色的装置,例如,标识灯组,标识灯组包括至少一个标识灯,每个标识灯可以被设置显示一种颜色的可见光,一个标识灯组呈现的为一种不同颜色的排列组合。需要说明的是,不同车辆上的颜色装置呈现的颜色或颜色排列顺序是不同的,换句话说,即每辆车上的颜色装置具有唯一性。
摄像机,通常情况下,安装于隧道的天花板顶部,用于拍摄隧道中的车辆上的颜色装置。摄像机将采集的图像发送给服务器,以使服务器将接收的图像根据摄像机的编号进行存储。由于隧道一般较长,多个摄像机在隧道中被间隔安装,相邻的摄像机之间的距离可以是固定的,也可以根据隧道的弯道参数等因地制宜,本申请实施例不做具体限定。
定位装置可以是定位光栅或地磁感应器,定位装置的位置信息存储于服务器中。定位装置被车辆触发时,定位装置可以直接向外发送第一广播信息,也可以向服务器上报自身的编号以使服务器发送第一广播信息,本申请不做限定。在一些可能的实施例中,第一广播信息中还可以携带该定位装置的位置信息,以辅助车辆实现自身在半封闭空间中的精确定位。
需要说明的是,本申请实施例对定位系统中的图像采集装置和定位装置在半封闭空间中的安装位置不做具体限定,例如,定位系统中的图像采集装置和定位装置可以设置在与车辆行驶方向垂直的同一平面上,如同一位置同一高度、同一位置不同高度,其中,同一位置是指在同一平面上;除此之外,图像采集装置和定位装置还可以设置在与车辆行驶方向垂直的不同平面上,但图像采集装置和定位装置所在平面之间的距离不应相差太远。
下面描述本申请实施例应用的又一种系统架构。参见图3,图3示例性地给出了本申请实施例应用的半封闭空间车辆定位系统的示意性框图。如图3所示,该系统30可以包括车辆和至少一组定位系统,其中,每组定位系统均包括设置图像采集装置和定位装置,定位系统安装于半封闭空间中,车辆上安装有一个颜色装置。多组定位系统通过无线连接的方式与车辆进行通信。图像采集装置可以是摄像机、相机或其他具有图像采集功能的装置,本申请不做具体限定。图3中图像采集装置不妨以摄像机为例进行示例性阐述,但本申请实施例不限定图像采集装置仅为摄像机。
半封闭空间是指允许车辆行驶但卫星信号较差的空间,半封闭空间可以是地下隧道、地下停车场、矿井、地下仓库、地下工地等大型空间,还可以是地下管道、下水道、地窖、涵洞、地坑、暗沟等信号遮挡严重的空间,本申请实施例不做具体限定。需要说明的是,半封闭空间并不限于指地面以下的空间,也可以指地面上的允许车辆行驶且卫星信号差的空间,例如:地上隧道、室内停车场、室内仓库等。下文半封闭空间不妨以隧道为例进行方案的示例性阐述,但是本申请实施例不限定半封闭空间仅为隧道。
摄像机,通常情况下,安装于隧道的天花板顶部,用于拍摄隧道中的车辆上的颜色装置获得包含车辆上颜色装置的环境图像,摄像机中还集成有监测装置,以使摄像机可直接对采集到的环境图像进行处理和分析,例如,识别环境图像中的颜色装置、根据颜色装置的图像计算颜色装置与自身摄像机之间的距离等,以监测是否有车辆位于该摄像机对应的定位装置的预设范围内,若有车辆位于该定位装置的预设范围内,则向外发送第二广播信息,第二广播信息指示了位于该定位装置预设范围内的车辆。由于隧道一般较长,可以有多个摄像机在隧道中被间隔安装,相邻的摄像机之间的距离可以是固定的,也可以根据隧道的弯道参数等因地制宜,本申请实施例不做具体限定。
颜色装置位于车辆上,有关于颜色装置的说明可参考图2实施例中的相关叙述,为了说明书的简洁,在此不再赘述。
定位装置可以是定位光栅或地磁感应器。定位装置被车辆触发时,定位装置可以向外发送第一广播信息,第一广播信息指示了有车辆触发该定位装置。在一些可能的实施例中,当摄像机与定位装置位于相近位置的不同高度时,第一广播信息中还可以携带该定位装置的位置信息,以辅助车辆实现自身在半封闭空间中的精确定位。
参见图4,基于上文所描述的系统架构,下面描述本申请实施例提供的一种车辆定位方法,该方法包括但不限于一下步骤:
S101、在车辆进入半封闭空间后,车辆监测自身是否位于半封闭空间中定位系统的预设范围内。
本申请实施例中,车辆进入半封闭空间后,车辆需监测车辆当前是否位于定位系统的预设范围内,简单来说,即监测车辆是否位于定位系统附近。示例性地,车辆可以通过计算自身与定位系统之间的距离判断自身是否位于定位系统的预设范围内。在一些可能的实施例中,车辆还可以通过接收指示了定位系统的预设范围内的车辆的广播信息判断自己是否为该车辆,从未确定自身是否位于定位系统的预设范围内。
需要说明的是,半封闭空间为允许车辆行驶但因信号屏蔽或遮挡导致卫星信号差的空间。半封闭空间可以是地下隧道、地下停车场、矿井、地下仓库、地下工地等大型空间,还可以是地下管道、下水道、地窖、涵洞、地坑、暗沟等信号遮挡严重的空间,本申请实施例不做具体限定。需要说明的是,本申请实施例中,半封闭空间并不指地面以下的空间,也可以指位于地面上的允许车辆行驶且卫星信号差的空间,例如:地上隧道、室内停车场等。
另外,本申请实施例中的车辆是一种运输工具的示例,车辆可以泛指小轿车、汽车、旅游大巴车、自行车、电动车等交通工具。在一些可能的实施例中,车辆还可以是电动叉车、矿车、货车等物流运输工具,本申请实施例不做具体限定。
示例性地,定位系统包括设置于同一位置不同高度的定位装置和第一颜色装置,车辆通过计算自身与定位系统之间的第一距离判断自身是否位于定位系统的预设范围内,具体过程如下:车辆上的摄像机拍摄了包含前方行驶路段中颜色装置的环境图像,通过识别环境图像中的第一颜色装置确定自身与第一颜色装置之间的第二距离,再结合第一颜色装置与车辆上上的位置关系(例如,垂直高度差),确定车辆距离定位装置的第一距离,第一距离也表征车辆距离定位装置所在的定位系统的距离。需要说明的是,在此实施例中,车辆中存储有半封闭空间的地图,地图中包含指示第一颜色装置的离地高度的信息,由于车辆上摄像机的离地高度已知,因此车辆可以获得第一颜色装置与车辆摄像机之间的垂直高度差进而可以计算车辆距离第一颜色装置对应的定位装置的第一距离。例如,若第一距离小于等于预设阈值,则车辆位于定位系统的预设范围内;若第一距离大于预设阈值,则车辆不位于定位系统的预设范围内。
需要说明的是,在半封闭空间中设置有多组定位系统的情况下,每组定位系统包含设置于同一位置不同高度的颜色装置和定位装置,不同位置处的颜色装置的颜色或颜色排列顺序不同。其中,不妨以一组定位系统为例,车辆通过摄像机拍摄包含该组定位系统中的颜色装置的第一环境图像后,可以通过识别该颜色装置的颜色来确定该颜色装置,从而也就知道地图中该颜色装置的相关信息。具体地,车辆从第一环境图像中获得该颜色装置颜色的解析结果,该解析结果指示了颜色装置的颜色和顺序,车辆根据该解析结果与半封闭空间的地图中各颜色装置进行比对,从而车辆可以确定识别出的颜色装置在半封闭空间中的编号,也可从地图中获得该颜色装置的离地高度,车辆即可进一步计算自身车辆与该颜色装置对应的定位装置之间的第一距离。
需要说明的是,在定位系统包括颜色装置和定位装置时,定位系统中的颜色装置和定位装置可以设置在与车辆行驶方向垂直的同一平面上,如同一位置同一高度、同一位置不同高度,其中,同一位置是指在同一平面上;除此之外,颜色装置和定位装置还可以设置在与车辆行驶方向垂直的不同平面上,但颜色装置和定位装置所在平面之间的距离不应相差太远。本申请对同一定位系统中的颜色装置和定位装置在半封闭空间中的安装位置不做具体限定。
需要说明的是,在颜色装置设置于半封闭空间中时,在此情况下,车辆通过计算第一距离监测自身是否位于定位系统的预设范围内,车辆中存储的半封闭空间的地图可以是车辆预先存储的,即可以是车辆在进入半封闭空间前从服务器或者半封闭空间入口处的路侧单元或者已进入半封闭空间中的车辆等装置中获取的,也可以是车辆在出厂时就自带了导航地图,在此情况下,车辆在进入某半封闭空间前,可以利用自身的GPS定位确定当前距离自身车辆最近的半封闭空间,最后从内置的导航地图中获取半封闭空间的地图。在一些可能的实施例中,车辆也可以在进入半封闭空间后但识别半封闭空间中的颜色装置之前或者车辆开始监测自身是否位于定位系统的预设范围内之前,从服务器上下载半封闭空间的地图或者接收半封闭空间中已获得地图的前方车辆发送的地图,本申请不做具体限定。
需要说明的是,在颜色装置设置于车辆上时,在此情况下,车辆通过接收指示了定位系统的预设范围内的车辆的广播信息(即下文中的第二广播信息)监测自身是否在定位系统的预设范围内,车辆获取半封闭空间的地图的时间点除了可以是上述涉及的情形外,还包括车辆可以在位于某定位系统的预设范围内时才从服务器或者半封闭空间中的其他车辆等处获取或下载半封闭空间的地图。总之,在颜色装置位于车辆上时,车辆获取半封闭空间的地图的时间需在车辆执行S102中获取地图中定位系统在半封闭空间的位置信息的时间点之前即可。
示例性地,半封闭空间设置有至少一组定位系统,每组定位系统包括设置于同一位置不同高度的摄像机和定位装置,且半封闭空间未设置颜色装置,但进入半封闭空间的车辆上设置有颜色装置,不同车辆的颜色装置的颜色或颜色排列顺序不同,车辆监测自身是否位于定位系统的预设范围内的方式还可以是:车辆接收第二广播信息,第二广播信息指示了位于该定位系统的预设范围内的车辆,车辆根据第二广播信息可以确定自身是否位于定位系统的预设范围内。需要说明的是,第二广播信息可以是服务器发送的,在一些可能的实施例中,若摄像机集成有图像处理分析计算等功能,第二广播信息也可以由直接由半封闭空间中的摄像机发送,本申请不做具体限定。
需要说明的是,在定位系统包括摄像机和定位装置时,定位系统中的摄像机和定位装置可以设置在与车辆行驶方向垂直的同一平面上,如同一位置同一高度、同一位置不同高度,其中,同一位置是指在同一平面上;除此之外,摄像机和定位装置还可以设置在与车辆行驶方向垂直的不同平面上,但摄像机和定位装置所在平面之间的距离不应相差太远。本申请对同一定位系统中的摄像机和定位装置在半封闭空间中的安装位置不做具体限定。一具体实施中,第二广播信息指示了颜色装置的颜色或颜色排列顺序,且第二广播信息中所指的颜色装置为位于该定位系统的预设范围内的车辆的颜色装置,本车辆可以根据第二广播信息指示的颜色或顺序与本车辆的颜色装置进行匹配,若匹配成功,即说明本车辆位于该定位系统的预设范围内;若匹配失败,则说明本车辆不位于该定位系统的预设范围内。
需要说明的是,在半封闭空间设置有多个颜色装置的情况下,颜色装置可以设置于半封闭空间中的天花板或墙壁的高处上,以方便车辆的摄像机采集到。半封闭空间的颜色装置的数量与定位装置的数量相同,且颜色装置与定位装置一一对应。为了提高颜色装置的识别度,通常使不同位置处的颜色装置具有不同的颜色或者不同的颜色排列顺序,且相邻的两个或多个颜色装置在视觉上存在明显的差异,从而大大降低识别不同位置处颜色装置的误码率,实现车辆在半封闭空间的定位需求。在一些可能的实施例中,若半封闭空间中有两个颜色装置的颜色或者颜色排列组合相同,则这两个颜色装置常被设置于半封闭空间中间隔较远的两处,例如:隧道的入口和出口。
示例性地,颜色装置可以是标识灯组,每个标识灯组包含至少一个标识灯或其他可发光器件,标识灯或可发光器件可以是白炽灯、卤素灯、荧光灯、节能灯、LED灯、高压钠灯、金卤灯、无极灯、霓虹灯等,且每个标识灯或可发光器件的发光颜色是可以根据颜色编码调控的。因此,不同位置处的颜色装置的显示颜色是预先根据颜色编码设置好的。
示例性地,颜色装置也可以是带颜色的金属板,金属板的数量至少为一个。当金属板的数量为多个时,则该颜色装置即同时显示多种不同的颜色。
需要说明的是,颜色装置都有对应的颜色编码,颜色编码指示了该颜色装置的颜色和/或颜色排列顺序,颜色装置的颜色编码存储于半封闭空间的地图中。除了标识灯组、带颜色的金属板外,颜色装置还可以是其他带颜色的装置,本申请是实施例不做具体限定。
S102、在车辆位于定位系统的预设范围内时,车辆获取地图中定位系统在半封闭空间的位置信息。
本申请实施例中,在车辆确定自身位于某定位系统的预设范围内时,即说明本车辆触发了该定位系统,车辆即可从半封闭空间的地图中获取该定位系统在半封闭空间的位置信息。在此情况下,半封闭空间的地图中存储有定位系统的位置信息。需要说明的是,车辆获取半封闭空间的地图的方式以及时间可参考S101中的相关描述,为了说明书的简洁,在此不再赘述。
需要说明的是,所谓的位置信息可以是该定位系统在任意坐标系下的坐标值,例如,该定位系统在世界大地坐标系(Word Geodetic System 1984,WGS84)中对应的由经度、纬度和海拔组成的三维坐标,也可以是自然坐标系下的X坐标、Y坐标和Z坐标组成的三维坐标或者其他坐标系下的坐标。在一些可能的实施例中,若半封闭空间为笔直的具有两出口的空间(例如,隧道等),在此情况下,位置信息也可以是指示了该定位系统距离半封闭空间入口或者出口处的距离。
本申请的一种实施例中,在半封闭空间中的每组定位系统包括颜色装置和定位装置、摄像机位于车辆的情况下,车辆根据计算出的第一距离(摄像机与颜色装置对应的定位装置之间的距离)确定自身位于定位系统的预设范围内时,即可认为本车辆触发了识别出的颜色装置对应的定位装置,故车辆可从半封闭空间的地图中获取该组定位装置和颜色装置所在的定位系统的位置信息。
需要说明的是,在半封闭空间中设置有多个颜色装置(即有多组定位系统)的情况下,由于半封闭空间中不同位置处的颜色装置的颜色和/或颜色排列顺序不同,即不同位置处的颜色装置的颜色编码不同,因此车辆根据识别出的颜色装置与半封闭空间的地图中各颜色装置进行比对,即可确定识别出的颜色装置在半封闭空间中的编号,若车辆确定自身位于该颜色装置对应的定位装置的预设范围内,即可根据该颜色装置的编号在半封闭空间的地图中获得该编号对应的定位系统的位置信息。
本申请的另一种实施例中,在半封闭空间中的每组定位系统包括摄像机和定位装置、颜色装置位于车辆的情况下,车辆接收的第二广播信息中指示了位于该定位系统的预设范围内的车辆,示例性地,即第二广播信息中携带不仅携带有位于定位系统的预设范围内的车辆的颜色装置的颜色编码,该颜色编码指示了这些车辆上颜色装置的颜色和顺序,第二广播信息中还携带有颜色装置所在的定位系统的编号,以使车辆在与第二广播信息中指示的颜色装置匹配成功后,即说明本车辆位于该定位系统的预设范围内,可以根据该颜色装置所在的定位系统的编号从半封闭空间的地图中获取该定位系统在半封闭空间中位置信息。
在一些可能的实施例中,若车辆确定自身当前位于某定位系统的预设范围内,也可认为是本车辆已接近该定位系统但并未在该定位系统对应的位置处触发该定位系统,当且仅当该车辆接收到该定位系统被触发时发送的第一广播信息时,第一广播信息指示了有车辆在该定位系统对应的位置处触发该定位系统,则本车辆可以确定是自身触发了该定位系统,车辆可从半封闭空间的地图中获取该定位系统的位置信息,以辅助车辆实现精确定位。
需要说明的是,考虑到车辆的车长、车辆之间的安全距离等,对半封闭空间中的每条车道来说,定位系统的预设范围内最多仅能容纳一辆车,因此,对于某个定位系统来说,不会出现同一车道上的多辆车同时触发同一定位系统,即车辆不会误判是否是自身触发该定位系统。
在一些可能的实施例中,半封闭空间中的地图中标注有表征颜色装置和其对应的定位装置所在的定位系统的位置的编号,但没有具体的位置信息,在此情况下,第一广播信息中还可以携带有定位装置的位置信息与该定位装置的编号,以使车辆将识别出的颜色装置对应的编号与第一广播信息中定位装置的编号匹配,若匹配成功,则车辆可以将第一广播信息中定位装置的位置信息作为该定位装置所在的定位系统在半封闭空间中的位置信息。
在一些可能的实施例中,若半封闭空间中的每组定位系统包括定位装置和颜色装置,但定位装置和颜色装置位于相近位置的不同高度,且地图中仅显示了该组定位系统中颜色装置对应的位置信息,在此情况下,在车辆确定位于某定位系统的预设范围内时,车辆还需接收到该定位系统中的定位装置被触发时发送的第一广播信息,第一广播信息中携带有该定位装置的位置信息和编号,车辆即可从第一广播信息中获得该定位装置的位置信息,从而也就获得了该定位装置所在的定位系统在半封闭空间的位置信息。
需要说明的是,定位系统中的定位装置可以是定位光栅或者地磁感应器或者其他可以检测是否有车辆通过的装置。
S103、车辆根据定位系统的位置信息在地图中对自身进行定位。
本申请的一种实施例中,若车辆确定自身位于某定位系统的预设范围内,且车辆获得了该定位系统在半封闭空间中的位置信息,则车辆可以根据该定位系统的位置信息在半封闭空间的地图中对自身进行定位。具体地,车辆将该定位系统的位置信息作为本车辆的位置信息,从而实现车辆在半封闭空间中的定位。
本申请的另一种实施例中,若车辆确定自身位于某定位系统的预设范围内,且车辆接收到该定位系统对应的定位装置被触发时发送的第一广播信息,则车辆可根据第一广播信息确定该定位系统的位置信息,并结合地图实现自身的精确定位。具体地,车辆将该定位系统的位置信息作为本车辆的位置信息,从而实现车辆在半封闭空间中的定位。
本申请的另一实施例中,定位系统也可以在定位系统被触发后的一段时间再发送第一广播信息,则车辆接收到的来自该定位系统的第一广播信息中携带有触发时刻和该定位系统的位置信息,若车辆当前位于该定位系统的预设范围内,则可以根据第一广播信息中的触发时、位置信息、当前时刻以及车辆的运动信息计算车辆当前的位置信息,从而实现车辆在半封闭空间的定位。需要说明的是,触发时刻用于指示定位系统被车辆触发的时刻。
需要说明的是,定位系统发送第一广播信息的时刻和车辆接收到来自该定位系统的第一广播信息的时刻,这两个时刻之间的时间差可以忽略不计。
需要说明的是,第一广播信息中携带有定位装置的编号,由于第一广播信息承载于广播信息中被发送,可能导致当有某辆车触发了某定位装置时,该半封闭空间中的所有车辆都接收到该定位装置发送的第一广播信息,但接收到的第一广播信息对自身车辆来说是否有用还有待判断。例如,若车辆当前位于第一定位装置的预设范围内时接收到第一定位装置发送的第一广播信息,则该第一广播信息对该车辆有用;若车辆当前不位于第一定位装置的预设范围内但接收到第一定位装置发送的第一广播信息,则该第一广播信息对该车辆无用;若当前车辆位于第一定位装置的预设范围内时,同时接收到来自第一定位装置的第一广播信息和来自第二定位装置的第一广播信息,则来自第一定位装置的第一广播信息对该车辆有用,来自第二定位装置的第一广播信息对该车辆无用。需要说明的是,在车辆确定第一广播信息对自身无用时,车辆可直接丢弃对自身无用的第一广播信息。
在车辆实现本次定位后但未到达下一个定位系统的预设范围内的路段中,车辆还可以利用惯性导航技术实现自身在该路段中的导航,相关描述可参考下文图5中的相关描述,在此不再赘述。
可以看到,实施本申请实施例,在卫星信号不佳的半封闭空间中,通过在半封闭空间中设置至少一组定位系统辅助车辆实现在半封闭空间中的精确定位,当车辆位于定位系统的预设范围内和/或接收到指示该定位系统被触发的信息时,车辆即可将对应的定位系统的位置信息作为自身的位置信息实现精确定位,有效解决了在卫星信号被遮挡或者屏蔽的隧道、地下等场景下车辆无法定位或定位不准的问题,提升了车辆在信号不佳的半封闭空间中定位的鲁棒性,降低了半封闭空间中车辆定位的施工成本。
参见图5,基于上文实施所描述的系统架构,下面描述本申请实施例提供的一种车辆定位方法。需要说明的是,图5实施例可以独立于图4实施例,也可以是对图4实施例的补充。该方法包括但不限于一下步骤:
S201、车辆进入半封闭空间前,获取半封闭空间的地图。
本申请实施例中,车辆在进入半封闭空间之前,需先获取半封闭空间的地图,该地图中包含安装于半封闭空间内的定位系统在半封闭空间中的位置信息。需要说明的是,定位系统用于感应是否有车辆通过,定位系统包括定位装置,定位装置可以是定位光栅或者地磁感应器。
需要说明的是,半封闭空间为允许车辆行驶但因屏蔽或遮挡导致卫星信号差的空间。半封闭空间可以是地下隧道、地下停车场、矿井、地下仓库、地下工地等大型空间,还可以是地下管道、下水道、地窖、涵洞、地坑、暗沟等信号遮挡严重的空间,本申请实施例不做具体限定。需要说明的是,本申请实施例中,半封闭空间并不限于指地面以下的空间,也可以指位于地面上的允许车辆行驶且卫星信号差的空间,例如:地上隧道、室内停车场等。
另外,本申请实施例中的车辆是一种运输工具的示例,车辆可以泛指小轿车、汽车、旅游大巴车、自行车、电动车等交通工具。在一些可能的实施例中,车辆还可以是矿车、货车等物流运输工具,本申请实施例不做具体限定。
示例性地,车辆获取半封闭空间的地图的方式可以是从服务器获取。具体地,车辆在进入半封闭空间前,车辆向服务器发送第一请求,第一请求用于请求服务器发送半封闭空间的地图,第一请求中携带有车辆当前所在的位置信息,服务器根据接收到的第一请求确定车辆附近的半封闭空间,并向车辆发送车辆即将进入的半封闭空间的地图。
示例性地,车辆还可以通过自身的导航系统获取半封闭空间的地图。具体地,车辆在进入半封闭空间前,通过自身的导航系统确定当前的位置信息,例如,可以确定自身位置附近的半封闭空间的名称,然后从导航系统的地图中获取对应的半封闭空间的地图即可。
在一些可能的实施例中,车辆也可以从半封闭空间入口处的路侧单元处获取地图,或者还可以通过接收已进入半封闭空间中的其他车辆发送的地图来获取地图。在一些可能的实施例中,半封闭空间的地图还可以是车辆出厂时自带的且存储于车辆的存储器中,本申请实施例不做限定。
S202、在车辆进入半封闭空间后,监测车辆是否位于定位系统的预设范围内。本步骤具体可参考图4实施例中S101的相关描述,这里不再赘述。
S203、在定位系统被触发时,定位系统向外发送第一广播信息。
本申请实施例中,定位系统包括定位装置,所谓定位系统被触发是指有车辆很接近该定位装或有车辆通过该定位装置或有车辆位于该定位装置处,导致该定位装置被触发。在定位系统被触发时,定位系统向半封闭空间中的所有车辆发送第一广播信息,第一广播信息用于指示有车辆触发了该定位系统,例如,在半封闭空间设置有多组定位系统的情况下,第一广播信息中可以携带该定位系统的编号。第一广播信息可用于辅助车辆判断是否是自身触发了该定位系统。需要说明的是,定位系统包括定位装置,定位装置可以是定位光栅或者地磁感应器,定位装置用于感应是否有车辆通过。
需要说明的是,定位系统可以在自身被车辆触发时立即发送第一广播信息,定位系统也可以在定位系统被触发后的一段时间内再发送第一广播信息,本申请不做具体限定。在一些可能的实施例中,第一广播信息中还可以携带触发时刻,触发时刻用于指示定位系统被触发的时刻,以使车辆根据触发时刻、定位系统的位置信息、当前时刻以及运动信息计算车辆当前的位置从而实现定位。
示例性地,定位装置可以是定位光栅,定位光栅可用于发射激光或者红外线,定位光栅通常设置于半封闭空间车道的侧边。具体地,在有车辆经过时,车辆阻挡了定位光栅发射的激光或红外线,定位光栅根据反射的激光或红外线的强度变化判断出有车辆经过,即有车辆触发该定位光栅,定位光栅感应到后,即向附近所有车辆发送第一广播信息。在半封闭空间中设有多个定位光栅时,第一广播信息中携带了被触发的定位光栅的编号。
示例性地,定位装置可以是地磁感应器,地磁感应器可用于检测车辆的存在,地磁感应器一般埋设于半封闭空间设置的车道中。具体地,在有车辆通过时,车辆切割地磁感应器的磁感线引起磁场的变化,地磁传感器会随之感应到有车辆通过,即说明该地磁感应器被触发,地磁感应器感应到后,即向附近所有车辆发送第一广播信息。在半封闭空间中设有多个地磁感应器时,第一广播信息中携带了被触发的地磁感应器的编号。
需要说明的是,在半封闭空间较大时,可以根据实际需要在半封闭空间中间隔设置多个定位系统,相邻两个定位系统之间的距离可以是固定的,也可以根据半封闭空间的内部构造因地制宜,每组定位系统的精确位置预先被测量过,每个定位系统都有唯一的编号,且其编号与其位置一一对应。定位系统的编号以及位置信息可以存储于半封闭空间的地图中,也可以仅定位系统的编号存储于半封闭空间的地图中,而定位装置的位置信息和编号可内含于第一广播信息中被广播。
需要说明的是,第一广播信息除了可由定位装置发送外,在一些可能的实施例中,在有车辆触发某定位系统时,服务器可以直接感应到半封闭空间中的哪一个定位系统被触发,服务器可以向外发送第一广播信息,第一广播信息指示了有车辆触发该定位系统。
本申请的另一种实施例中,在有车辆触发定位系统时,定位系统先向服务器上报自己的编号,服务器再向外发送第一广播信息,第一广播信息指示了有车辆触发该定位系统。
S204、车辆接收第一广播信息,在车辆位于定位系统的预设范围内时,获取地图中该定位系统的位置信息,并根据该位置信息在地图中对车辆进行定位。
本申请实施例中,车辆接收的第一广播信息可以辅助车辆判断是否自身触发了该定位系统,在车辆接收到第一广播信息且车辆位于定位系统的预设范围内时,该车辆触发了该定位系统,则可从地图中获取该定位系统的位置信息,并将该定位系统的位置信息作为车辆的位置信息在地图中对车辆进行定位。车辆从地图中获取定位系统的位置信息的具体操作可参考S102中的相关描述,在此不再赘述。
在一些可能的实施例中,车辆也可能先接收到来自某定位装置的第一广播信息,再判断车辆当前是否位于该定位装置的预设范围内,当车辆确定当前位于该定位装置的预设范围内时,即将该定位装置的位置信息作为车辆的位置信息进行定位;当车辆不位于该定位装置的预设范围内时,则丢弃本次接收的来自该定位装置的第一广播信息。
在一些可能的实施例中,车辆接收到的第一广播信息中携带有定位装置的位置信息和触发时刻,当车辆当前位于该定位装置的预设范围内时,则车辆可根据第一广播信息中该定位装置的位置信息和触发时刻、结合当前时刻以及车辆的运动信息在地图中对车辆进行定位。
需要说明的是,本申请实施例中,对于接收第一广播信息以及车辆监测自身是否位于定位系统的预设范围内的发生或者执行顺序不做具体限定。关于第一广播信息的描述具体可参考S103,为了说明书的剪简洁,在此不在赘述。
S205、在对车辆进行定位后,获取车辆的运动信息,根据车辆的位置信息和运动信息在地图中对车辆进行导航。
本申请实施例中,车辆触发当前的定位系统时,即可将当前定位系统的位置信息作为车辆的位置信息实现车辆在半封闭空间的精确定位。在车辆进行了定位后,车辆还可以获取自身的运动信息,例如,车辆的加速度、速度和行驶方向等,基于获得的精确位置(即当前定位系统的位置信息)以及车辆的运动信息利用自身的惯性导航系统在半封闭空间的地图中对车辆进行导航。
需要说明的是,在半封闭空间设置有多个定位系统时,在车辆进行了一次定位后,且在车辆触发下一个定位系统之前,车辆可根据自身的位置信息和运动信息在地图中对车辆进行导航。需要说明的是,所谓车辆触发下一个定位系统是指车辆位于下一个定位系统的预设范围内且车辆接收到指示了下一个定位系统被触发时的第一广播信息。
需要说明的是,关于惯性导航技术进行导航的方法在车辆的实时定位领域已发展的十分应用且应用广泛,为了说明书的简洁,在此不再赘述。
需要说明的是,由于惯性导航系统是基于对惯性测量单元IMU测量的加速度进行二次积分以及车辆的当前位置进行定位的,因此IMU会累积误差,且累积误差会随着时间显著增大,而由于半封闭空间中间隔设置了多个定位系统,且相邻两个定位系统之间的距离相较于整个半封闭空间的长度要小的多,因此,相邻两个定位系统之间的距离导致的IMU的累积误差可忽略不计。
可以看到,实施本申请实施例,在卫星信号不佳的半封闭空间中,通过在半封闭空间中设置至少一组定位系统辅助车辆实现在半封闭空间中的精确定位,当车辆位于定位系统的预设范围内且收到来自定位系统的触发信息时,车辆可根据对应的定位系统的位置信息实现精确定位,有效解决了在卫星信号被遮挡或者屏蔽的隧道、地下等场景下车辆无法定位或定位不准的问题,提升了信号不佳的半封闭空间下车辆定位的鲁棒性以及节省了车辆定位的施工成本。
参见图6,基于上文图1实施所描述的系统架构,下面描述本申请实施例提供的一种车辆定位方法,其中,半封闭空间不妨以隧道为例、颜色装置不妨以标识灯组为例、定位装置不妨以定位光栅为例进行方案的示例性阐述,但本申请实施例不限定半封闭空间仅为隧道、颜色指示装置仅为标识灯组或者定位装置仅为定位光栅。需要说明的是,图6实施例中,隧道中设置了K组定位系统,每组定位系统包含一个定位光栅和一个标识灯组,即有K个定位光栅和K个标识灯组,K为大于1的整数。另外,图6实施例可以独立于图4和图5实施例,也可以是对图4和图5实施例的补充。该方法包括但不限于以下步骤:
S301、车辆进入目标隧道前,车辆向第三装置发送第一请求。
本申请实施中,车辆在进入目标隧道前,车辆向第三装置发送第一请求以获取目标隧道的地图。第三装置可以是服务器,目标隧道入口处的路侧单元,还可以是已进入目标隧道的其他车辆等,本申请实施例不做具体限定。
一具体实施中,第三装置不妨以服务器为例进行示例性地阐述。车辆在即将进入目标隧道前,向服务器发送第一请求,第一请求中携带有车辆当前的位置信息,以使服务器根据第一请求中携带的位置信息确定距离该车辆最近的隧道为本申请实施例中的目标隧道。
需要说明的是,除了服务器外,车辆还可以从目标隧道入口处的路侧单元或者已进入目标隧道中的其他车辆那里获取目标隧道的地图,本申请实施例不做具体限定。
S302、服务器向车辆发送目标隧道的地图。
本申请实施例中,服务器接收到来自车辆的第一请求后,根据第一请求中携带的车辆的位置确定距离该车辆最近的隧道为目标隧道,然后向车辆发送目标隧道的地图,地图中包含K组定位系统的编号以及位置信息。需要说明的是,同组定位系统中的颜色装置和定位装置共用同一个编号和同一个位置信息。
在一些可能的实施例中,车辆在进入目标隧道前,服务器通过目标隧道入口处的摄像机检测到有车辆,服务器可直接向即将进入目标隧道的车辆发送目标隧道的地图。
需要说明的是,定位光栅用于检测是否有车辆经过,K个定位光栅是被间隔设置于目标隧道中的,这是因为在隧道较长时,将K个定位光栅间隔设置可以将狭长的隧道分成几段,在每一段中车辆通过对应的定位光栅时可以获取到一个精确位置,从而有助于实现车辆在隧道中的精确定位。
S303、在车辆进入目标隧道后,车辆采集第一环境图像。
本申请实施例中,车辆接收获得的目标隧道的地图。在车辆进入目标隧道后,可以利用车载的摄像机采集车辆行驶时前方的第一环境图像,第一环境图像中包含第Ki个标识灯组的图像。需要说明的是,摄像机包括摄像头,也可以包括深度传感器、RGB图像传感器或结构光图像传感器中的一个或多个。示例性地,第一环境图像为RGB图像。
需要说明的是,标识灯组通常安装于目标隧道的天花板上,以使行驶于目标隧道中的车辆的摄像机易于采集到该标识灯组的图像。标识灯组包含至少一个标识灯,每个标识灯的发光颜色是预先根据颜色编码设置好的,该颜色编码指示了标识灯组的颜色和顺序。由于隧道一般较为狭长,为了实现车辆在隧道中的定位,隧道中常设置多个标识灯组,且标识灯组的数量与隧道中定位光栅的数量相同,每个定位光栅的附近设置有一个标识灯组,定位光栅与标识灯组一一对应。不同位置处的标识灯组常被配置显示不同的颜色或者不同的颜色排列组合。
参见图7A,图7A示例性地提供了一组标识灯组的示意图,该组标识灯组包含4个标识灯,4个标识灯都固定在同一根横杆上。4个标识灯从左至右排成一行,位于同一水平线上。由图7A可以看出,每个标识灯的颜色都不相同。在一些可能的实施例中,图7B示例性地提供了又一组标识灯组的示意图,参见图7B,该组标识灯组包含4个标识灯,4个标识灯排列成两行两列,每行各有2个标识灯,4个标识灯的颜色均不相同。由此,标识灯组中的标识灯可以从左至右依次排列,也可以多行排列,另外,对于标识灯组中标识灯的数量,本申请也不做具体限定。
参见图8A,图8A示例性地提供了一种标识灯组在隧道中的部署示意图,可以看到,图8A中每个车道上方都设置有一组标识灯组,每组标识灯组都包含4个标识灯,当然,两组标识灯组显示不同的颜色排列组合(图未示)。每组标识灯组的标识灯沿垂直于车道的方向依次排列,即标识灯组的横杆与地面上的车道线垂直,该方向与车辆的速度方向垂直,如此设置可以有效降低光流现象的干扰,从而减小了对标识灯组的颜色识别的干扰。在一些可能的实施例中,标识灯组的标识灯还可以多行排列,其在隧道中的部署部署方式可参见图8B。
参见图9,图9示例性地提供了一种车辆在隧道中的定位示意图,图9中只是示例性地示出了一组对应的标识灯组和定位光栅。在沿车辆法定行驶的方向上,第Ki个标识灯组与第Ki个定位光栅处于同一位置不同高度,且图9是从侧视图角度展示了车辆的定位示意图,可以看到,第Ki个标识灯组和第Ki个定位光栅位于垂直于地面的同一直线上。标识灯组安装于隧道的天花板,定位光栅安装于隧道的侧壁,车辆上安装有车载摄像机,用于拍摄行驶前方的第Ki个标识灯组。在一些可能的实施例中,定位光栅也可以安装于其对应的标识灯组的前方或者后方。图9中,可以看到,定位光栅向对侧的墙壁发射激光或红外线。在一些可能的实施例中,定位光栅还可以安装于隧道的天花板上,定位光栅向下墙壁发射激光或红外线。
S304、车辆根据第一环境图像识别第Ki个标识灯组,并确定车辆与第Ki个定位光栅之间的第一距离。
本申请实施例中,车辆在获得包含第Ki个标识灯组的第一环境图像后,一方面,车辆需通过图像处理算法识别和解析第一环境图像中第Ki个标识灯组的颜色,计算车辆距离第Ki个标识灯组的第二距离(如图9);另一方面,车辆从地图中获取第Ki个标识灯组的离地高度,根据第Ki个标识灯组的离地高度和车辆距离第Ki个标识灯组的第二距离,获得车辆距离第Ki个定位光栅的第一距离(如图9)。
需要说明的是,第二距离是指摄像机所在的车辆距离第Ki个标识灯组的空间距离,第一距离是指摄像机所在的车辆距离第Ki个定位光栅的距离,具体地,第一距离为摄像机所在的车辆距离垂直平面的距离,该垂直平面为第Ki个定位光栅所在的与车辆行驶方向垂直的平面。
一具体实施中,车辆可通过如下方式获得车辆距离第Ki个标识灯组的距离:车辆对第Ki个标识灯组的颜色进行解析获得解析结果,该解析结果指示了第Ki个标识灯组的颜色和顺序,由于不同位置处的标识灯组的颜色是不同,因此,车辆可将该解析结果和地图中的多个标识灯组的颜色编码进行匹配,从而识别出第Ki个标识灯组;车辆在识别到第Ki个标识灯组后,即可获得第Ki个标识灯组在第一环境图像中的像素位置以及第Ki个标识灯组在第一环境图像中的尺寸大小,再结合地图中第Ki个标识灯组的实际尺寸信息,可以确定车辆距离第Ki个标识灯组的距离。另外,由于第Ki个标识灯组已确定,可以从地图中获取第Ki个标识灯组的离地高度,最后,根据第Ki个标识灯组的离地高度和车辆距离第Ki个标识灯组的距离,且车辆上的摄像机的离地高度已知,根据勾股定理即可获得车辆距离第Ki个定位光栅的第一距离。
在一些可能的实施例中,车辆在获得自身距离第Ki个标识灯组的第二距离后,还可以结合车辆上的摄像机拍摄第Ki个标识灯组时的俯仰角,获得车辆距离第Ki个定位光栅的第一距离。
需要说明的是,在一些可能的实施例中,第Ki组定位系统中的第Ki个定位光栅和第Ki个标识灯组位于相近位置的不同高度,两者可以一前一后安装。示例性地,如图10A所示,从车辆的前进方向来看,第Ki个标识灯组和第Ki个定位光栅分别一前一后安装于半封闭空间中,第一距离如图10A所示;如图10B所示,从车辆的前进方向来看,第Ki个标识灯组和第Ki个定位光栅分别一后一前安装于半封闭空间中,第一距离如图10B所示。在同组定位系统中的定位光栅和标识灯组位于相近位置的不同高度时,车辆在获得车辆距离第Ki个标识灯组的第二距离后,还需要根据车载摄像机与第Ki个标识灯组之间的垂直高度差(即可由车载摄像机的离地高度和第Ki个标识灯组高度获得)、第Ki个标识灯组和第Ki个定位光栅在车辆行驶方向上的距离差计算第一距离。
示例性地,对于标识灯组的识别还可以通过先确定其位置再进行颜色解析来实现。由于标识灯组通常设置在车道的上方,因此标识灯组在第一环境图像中的成像位置有一个确定的区域,倘若利用传统的图像处理算法,可通过裁剪获得标识灯组所在的感兴趣区域(或称目标区域),若标识灯组中的标识灯组从左至右依次排列,则标识灯组的轮廓为矩形,通过轮廓提取算法(例如,canny算子、sift算子等)识别感兴趣区域中各连通域的轮廓,在轮廓的长宽比满足预设条件时,即可识别出对应的标识灯组,从而可以确定标识灯组的长方形轮廓四个顶点在第一环境图像中的像素位置,并将四个顶点的像素位置求平均以作为第Ki个标识灯组的像素位置。在一些可能的实施例中,还可以利用机器视觉领域中的各中目标检测算法(例如,yolo、faster-rcnn等)对第一环境图像中的第Ki个标识灯组进行检测。应理解,目标检测算法在计算机视觉领域已经非常成熟并被广泛使用,本申请在此不再赘述。
为了清楚地说明标识灯组的颜色的解析,先解释下关于标识灯组的颜色编码。可以理解,为了降低识别标识灯组的误码率,通常尽可能地使不同位置处的标识灯组呈现不同的颜色或者颜色排列组合,且相邻的两个或多个标识灯组的颜色差异明显。RGB色彩空间是工业界的一种颜色标准,其通过对红(Red)、绿(Green)和蓝(Blue)三个颜色通道之间不同程度的叠加得到各种颜色。RGB分别代表红、绿、蓝三个通道的颜色,每个通道的取值范围均为[0,255],“0”表示没有刺激量,“255”表示刺激量达到最大值,例如:当R、G、B三者均为0时,三通道合成表示黑色;当R、G、B三者均为255时,三通道合成白光。因此,以标识灯组中的一个标识灯为例,单个标识灯的颜色编码可以表示成(r,g,b),r,g,b分别表示红、绿、蓝三个通道的刺激量数值。由于RGB色彩空间具有三个通道,假设每个通道只取0或255,则单个标识灯就有8种灯光颜色选择。而实际应用中,每个通道可以取0-255中的任意值,标识灯的发光颜色可选的范围更广。
综上,第一环境图像为RGB图像时,所谓车辆对标识灯组的颜色的解析是指获取标识灯组中每个标识灯的三个通道的数值(r,g,b),(r,g,b)也叫做标识灯的颜色编码。车辆获得的解析结果中指示了第Ki个标识灯组中标识灯的数量、颜色的排列顺序以及每个标识灯的颜色。在一些可能的实施例中,也可以采用HSV色彩模式,其中,H表示色度(Hue)、S表示饱和度(Saturation)、V表示明度(Value);还可以采用HSL色彩模式,其中,H表示色度(Hue)、S表示饱和度(Saturation)、L表示亮度(Lightness)。在使用HSV色彩模式、HSL色彩模式时,只需将第一环境图像从RGB空间转换到HSV空间或者HSL空间,再依次获取各通道的数值即可。
需要说明的是,考虑到红色、绿色或者黄色与已有的信号灯的颜色相同,因此为了提高对标识灯组及其色彩的识别率,尤其是在标识灯组中只有一个标识灯的情况下,标识灯的发光颜色常设置成除红色、绿色和黄色等信号灯的颜色之外的颜色。
在一些可能的实施例中,由于目标隧道比较狭长,在一段笔直的目标隧道中,车辆采集的第一环境图像中可能存在两个或多个标识灯组,由于标识灯组距离本车辆的远近明显不同,因此第一环境图像中显示的不同位置处的标识灯组的大小也是不同的,可以通过图像处理算法分割出离车辆最近的那个标识灯组,进一步地,再对分割出的标识灯组的颜色进行色彩解析。
需要说明的是,优选地,尽可能使隧道中的K个标识灯组的颜色或颜色排列组合均不相同。但在一些可能的实施例中,也可能存在某隧道中的K个标识灯组中有多个标识灯组具有相同的颜色或颜色排列组合,在此情况下,具有相同的颜色或颜色排列组合的各标识灯组之间的间隔距离较大。不妨以K(K大于2)个标识灯组中有2个标识灯组的颜色排列组合相同为例,这2个标识灯组具有相同的颜色排列顺序,这两个标识灯组被设置于隧道的两端,当车辆获得其中某个标识灯组的解析结果后将其与地图中各标识灯组进行匹配,发现该解析结果对应的有2个标识灯组,在此情况下,车辆可以根据自身的运动信息(例如:加速度、速度等)和自身进入隧道前的初始位置结合惯性导航系统确定车辆当前距离隧道入口的距离,结合地图中包含的各标识灯组距离隧道入口的距离从而可以确定自身识别出的标识灯组,并在地图中对该标识灯组进行标记,若车辆在当前隧道中再次获得相同的解析结果,则可以确定对应的标识灯组即为这两个标识灯组中未被标记的一个。
S305、根据第一距离判断车辆是否在第Ki个定位光栅的预设范围内。
本申请实施例中,比较第一距离和预设阈值的大小,第一距离为车辆与第Ki个定位光栅之间的距离,当第一距离小于等于预设阈值时,车辆位于第Ki个定位光栅的预设范围内;当第一距离大于预设阈值时,车辆不位于第Ki个定位光栅的预设范围内。需要说明的是,预设阈值可以是1米、1.5米、2.5米、3米或其他值,本申请不做具体限定。
需要说明的是,对于每个定位光栅来说,预设阈值可以是固定的,在一些可能的实施例中,由于半封闭空间存在弯道等情况下,个别定位光栅对应的预设阈值是不同的,在此情况下,车辆在识别出第Ki个标识灯组后,可以确定其对应的定位光栅的预设阈值,再判断第一距离与该预设阈值的大小,确定车辆是否在第Ki个定位光栅的预设范围内。
S306、在有车辆触发第Ki个定位光栅时,第Ki个定位光栅向外发送第一广播信息。本步骤具体可参考图5实施例中S203的相关描述,这里不再赘述。需要说明的是,第Ki个定位光栅即为S203中的定位系统。
S307、车辆接收第一广播信息,在车辆位于第Ki个定位光栅的预设范围内时,获取地图中第Ki个定位光栅的位置信息,并根据该位置信息在地图中对车辆进行定位。本步骤具体可参考图5实施例中S204的相关描述,这里不再赘述。
S308、在车辆触发下一个定位光栅前,获取车辆的运动信息,根据车辆的位置信息和运动信息在地图中对车辆进行导航。本步骤具体可参考图5实施例中S205的相关描述,这里不再赘述。
可以看到,实施本申请实施例,在卫星信号不佳的隧道中,通过在隧道中设置定位光栅和标识灯组辅助车辆实现在隧道中的精确定位,车辆基于标识灯组的颜色和顺序识别隧道中不同位置处的标识灯组,从而确定车辆与该标识灯组对应的定位光栅的位置关系,结合来自该定位光栅的触发信息即可实现车辆在隧道中的精确定位,有效解决了在卫星信号被遮挡或者屏蔽的隧道、地下等场景下车辆无法定位或定位不准的问题,提升了信号不佳的半封闭空间中车辆定位的鲁棒性以及节省了车辆定位的施工成本。
下面以一个具体的应用场景来进一步说明图6实施例所描述的方法。
参见图11,车辆A和车辆B行驶于某隧道中,车辆A和车辆B上均配置有一个摄像机,车辆A和车辆B均已通过第1个定位光栅,且在接近第2个定位光栅的过程中,车辆A通过自身的摄像机A采集隧道中的第2个标识灯组的图像,并对采集到的图像进行处理确定自身距离第2个定位光栅的第一距离是否小于等于预设阈值,在第一距离小于等于预设阈值时则说明本车辆触发第2个定位光栅。车辆B也执行与车辆A相同的动作。因此,在图11中,对于车辆A来说,车辆A距离第2个定位光栅的距离刚好为预设阈值,故车辆A监测到自身触发第2个定位光栅时,则在地图中获取第2个定位光栅在WGS84坐标下下的位置坐标(B2,L2,H2)并更新成自己当前的位置坐标,显示在车辆的显示屏上。对于车辆B来说,车辆B距离第2个定位光栅的距离大于预设阈值,故车辆B未监测到自身触发第2个定位光栅,因此车辆B的显示屏上显示的位置坐标为(B,L,H),并未更新成第2个定位光栅的位置坐标。
需要说明的是,设置于半封闭空间(例如,隧道)中的标识灯若来自不同厂家,即使控制不同的标识灯发出同样颜色的光,也可能导致车辆上的摄像机解析出不同标识灯的三通道数值不一致,另外,考虑到半封闭空间中的照明灯可能对识别标识灯的颜色产生干扰,因此,在半封闭空间安装标识灯后,安排工程车采集所述有标识灯发出不同颜色灯光下的图像,并对其进行颜色解码,将解析结果存储于服务器中作为参照基准,其也是半封闭空间的地图中标识灯组的颜色编码的来源。举例来说,若控制某一标识灯发出红光,工程车采集图像对其进行解码会发现颜色编码(r,g,b三通道的数值)并不是标准的(255,0,0),而是(247,9,13),因此,若标识灯发出红光,则地图中存储的该标识灯对应的颜色编码为(247,9,13),从而有效避免了不同厂家产品带来的差异性。然而,随着标识灯使用时间增长,会发生器件老化,会使解码获得的标识灯的颜色编码超出误差范围,导致与地图中的颜色编码匹配失败,则车辆定位失败。
参见图12,图12是本申请实施例提供的一种标识灯故障检测方法的流程图,该方法包括但不限于以下步骤:
S401、车辆向服务器上报标识灯组的颜色的解析结果。
具体地,车辆的图像采集装置识别出半封闭空间中的某个标识灯组后,解码标识灯组的颜色获得解析结果,根据自己实时位置在地图中确定距离自身最近的定位装置的位置信息,由于标识灯组与定位装置一一对应,从而确定该标识灯组对应的编号。然后,车辆可向服务器发送该标识灯组的解析结果以及其对应的编号。
S402、服务器比对解析结果与数据库中的数据,判断解析结果是否在范围内。
具体地,服务器接收到车辆上报的解析结果以及解析结果对应的标识灯组的编号后,在数据库中根据该标识灯组的编号查找到该标识灯组的基准数据,基于基准数据获得允许的范围,并判断解析结果是否在范围内,若解析结果在范围内,则说明该标识灯组可继续使用,标识灯的故障检测流程结束;若解析结果不在范围内,则执行S303。
举例来说,某一标识灯在地图中存储的三通道基准值为(247,9,13),对应的标准色为红色,其允许的范围为(225~255,0~30,0~30),若解析结果为(220,10,20),则该解析结果不在范围内;若解析结果为(240,10,20),则该解析结果在范围内。
需要说明的是,若服务器发现某处标识灯的解析结果虽然总在允许的范围内,但是大概率地与数据库中的基准数据相差较大,服务器也可以提醒相关人员提前预防标识灯的故障。
S403、更新该标识灯组,并更新服务器的数据。
具体地,误差不在范围内,即说明该标识灯组内的标识灯已发生器件老化,服务器会提醒用户需更换该标识灯组,同时计算已更换的标识灯组的颜色编码,并将其替换数据库中原标识灯组的数据,从而完成了数据库的更新。需要说明的是,若标识灯组仅有某个标识灯老化,则仅需更换这一个标识灯,在数据库中更新对应标识灯的数据即可。
需要说明的是,除了上述标识灯故障检测方法,还可以通过安排工程车定期巡检来解决标识灯的故障检测问题。具体地,安排工程车每隔一段时间对各组标识灯组进行拍摄、识别和解码,将解析结果与数据库内对应的数据进行对比,判断颜色误差是否在规定范围内,若不是,则更换标识灯组或标识灯组中的某个标识灯。
参见图13,基于图2或图3实施例所描述的系统架构,下面描述本申请实施例提供的一种车辆定位方法,其中,半封闭空间不妨以隧道为例、颜色装置不妨以标识灯组为例、定位装置不妨以定位光栅为例进行方案的示例性阐述,但本申请实施例不限定半封闭空间仅为隧道、颜色装置仅为标识灯组或者定位装置仅为定位光栅。需要说明的是,图13实施例中,隧道中设置了K组定位系统,每组定位系统包括一个定位光栅和一个摄像机,即有K个定位光栅和K个摄像机,K为大于1的整数。另外,标识灯组位于车辆上。图13实施例可以独立于图4、图5和图6实施例,也可以是对图4、图5和图6实施例的补充。该方法包括但不限于以下步骤:
S501、车辆进入目标隧道前,车辆获取目标隧道的地图。本步骤具体可参考图4实施例中S201-S202的相关描述,这里不再赘述。
S502、车辆进入目标隧道前,车辆根据颜色编码设置标识灯组的颜色。
具体地,车辆上(例如,车辆的顶部)安装有一个标识灯组,标识灯组包含至少一个标识灯,每个标识灯可发出带颜色的可见光。车辆在进入目标隧道前,需要先根据颜色编码设置自身标识灯组的颜色,该颜色编码指示了本车辆的标识灯组的颜色和顺序。可选地,一具体实施中,该颜色编码可以是车辆从服务器中获取的,即车辆可以向服务器发送第二请求,服务器根据接收到的第二请求分配一个颜色编码给该车辆,以使车辆在进入目标隧道前根据该颜色编码配置该车辆的标识灯组的发光颜色。需要说明的是,不同车辆获得的颜色编码是不同的,以使不同车辆上的标识灯组呈现的颜色或颜色排列顺序不同,换句话说,即每辆车获取的颜色编码具有唯一性。
在一些可能的实施例中,车辆无需请求服务器分配颜色编码,车辆的标识灯组的颜色编码也可以在车辆出厂时就预先设置好的,每辆车的颜色编码具有唯一性。在车辆进入目标隧道时,车辆根据该颜色编码设置标识灯组中各个标识灯的发光颜色即可。
需要说明的是,所谓颜色编码是指光源在RGB色彩空间的红(R)、绿(G)、蓝(B)三基色的混合比例(r,g,b),标识灯组中的每个标识灯都有其对应的颜色编码,车辆通过颜色编码设置标识灯中三基色的混合比例以获得预设的发光颜色。例如,若某个标识灯的颜色编码为(255,0,0),其意味着绿色分量和蓝色分量均为0,红色分量达到最大值,则根据该颜色编码设置后,该标识灯显示红色光。
S503、在车辆进入目标隧道后,服务器获取第Ki个摄像机采集的第二环境图像。
本申请实施例中,服务器接收第Ki个摄像机发送的第二环境图像,第二环境图像包括车辆上的标识灯组的图像,也就是说,车辆进入目标隧道后,目标隧道中的摄像机会采集当前视角下行驶的车辆的图像,并将采集到的图像发送给服务器以进行处理。示例性地,第二环境图像一般为RGB彩色图像或可见光图像。
参见图14A,图14A示例性地提供了一种车辆在隧道中的定位示意图,图14A只示例性地示出了一组对应的摄像机和定位光栅。如图14A所示,车辆的顶部设置有一个标识灯组,第Ki个摄像机与在第Ki个定位光栅处于同一位置的不同高度,即从图14A所示的侧视图角度看,第Ki个定位光栅和第Ki个摄像机位于垂直于地面的同一直线上。摄像机安装于隧道的天花板,定位光栅安装于隧道的侧壁,摄像机用于采集包含车辆上标识灯组的图像。在一些可能的实施例中,定位光栅也可以安装于其对应的摄像机的前方或者后方,但两者位置之间的差异应尽可能地小。
S504、服务器根据第二环境图像识别车辆的标识灯组,确定车辆距离第Ki个定位光栅的第三距离。
本申请实施例中,服务器在获得包含车辆的标识灯组的第二环境图像后,一方面,服务器需先通过图像处理算法识别和解析第二环境图像中车辆上标识灯组的颜色,根据识别出的标识灯组计算该标识灯组所在的车辆距离第Ki个摄像机的第四距离(如图14A);另一方面,服务器结合第Ki个摄像机的离地高度以及第四距离,即可获得车辆距离第Ki个定位光栅的第三距离(如图14A)。
需要说明的是,第四距离是指标识灯组所在的车辆距离第Ki个摄像机的空间距离,第三距离是指标识灯组所在的车辆距离第Ki个定位光栅的距离,具体地,第三距离为标识灯组所在的车辆距离垂直平面的距离,该垂直平面为第Ki个定位光栅所在的与车辆行驶方向垂直的平面。
一具体实施中,服务器可通过如下方式获得车辆距离第Ki个摄像机的距离:即利用图像处理算法或目标检测算法基于车辆的标识灯组的形状(例如,矩形或椭圆形等)识别出标识灯组,并对识别出的标识灯组的颜色进行解析获得解析结果,该解析结果即为该标识灯组对应的颜色编码,该解析结果指示了车辆的标识灯组的颜色和排列顺序;服务器识别出车辆的标识灯组后即可获得该标识灯组在第二环境图像中的像素位置以及该标识灯组在第二环境图像中的尺寸大小,再结合标识灯组实际的尺寸信息,则可确定该标识灯组距离第Ki个摄像机的距离,该距离也近似等同于该标识灯组所在的车辆距离第Ki个摄像机的第四距离。在确定了车辆距离第Ki个摄像机的第四距离后,结合第Ki个摄像机的离地高度(预存储至服务器中)与车辆的标识灯组的离地高度,根据勾股定理即可计算车辆距离第Ki个定位光栅的第三距离。
在一些可能的实施例中,服务器在获得标识灯组所在的车辆距离第Ki个摄像机的第四距离后,还可以结合第Ki个摄像机拍摄该标识灯组时的俯仰角,获得车辆距离第Ki个定位光栅的第三距离。
需要说明的是,在一些可能的实施例中,第Ki个定位光栅和第Ki个摄像机位于相近位置的不同高度,即两者可以一前一后安装,不妨以图14B为例,如图14B中,第Ki个摄像机比第Ki个定位光栅更靠近设置有标识灯组的车辆,在此情况下,从图14B所示的侧视角度看,第Ki个定位光栅和第Ki个摄像机不再位于垂直于地面的同条直线上,那么服务器计算标识灯组所在的车辆与第Ki个定位光栅的第三距离时,除了需要依据图14B所示的第四距离、标识灯组与第Ki个摄像机之间的垂直高度差(即可由标识灯组的离地高度和第Ki个标识灯组高度获得)外,还需要依据第Ki个摄像机和第Ki个定位光栅在车辆行驶方向上的距离差。
需要说明的是,关于获得车辆的标识灯组的离地高度的方式可为如下方式:若车辆的标识灯组的颜色编码是服务器分配的,那么在车辆向服务器发送的第二请求中还携带有本车辆上标识灯组的离地高度;若车辆的标识灯组的颜色编码为车辆出厂时预先设置好的,那么车辆在进入隧道前,需向服务器发送第一信息,第一信息中包括该车辆的标识灯组的颜色编码以及该车辆上的标识灯组的离地高度,第一信息用于指示服务器建立颜色编码与其对应的离地高度之间的映射关系表。因此,服务器根据第二环境图像获得车辆的标识灯组颜色的解析结果后,根据该解析结果查找颜色编码-离地高度映射表获得其对应的标识灯组的离地高度即可。需要说明的是,若车辆的标识灯组的颜色编码为车辆出厂时预先设置好的,且摄像机可直接对采集到的第二环境图像进行处理(例如,识别标识灯组、计算第三距离等),则车辆在进入隧道前,也可直接将第一信息发送给摄像机。
对识别出的标识灯组的颜色进行解析获得的解析结果表征的可以是标识灯组中的各颜色在RGB色彩空间中R、G、B三通道的值,也可以是各颜色在HSV色彩空间、HSL色彩空间或其他色彩空间中各颜色通道的取值,本申请不做限定。但该解析结果对应的颜色空间需与车辆的标识灯组的颜色编码对应的颜色空间一致。
需要说明的是,关于标识灯组的像素位置的获取、标识灯组的颜色的解析等操作可参考S304中相关描述,为了说明书的简洁,在此不再赘述。
S505、服务器根据第三距离判断车辆是否在第Ki个定位光栅的预设范围内。
本申请实施例中,服务器在获得车辆距离第Ki个定位光栅的第三距离后,比较第三距离与预设阈值的大小,当第三距离小于等于预设阈值时,则服务器可以确定该车辆位于第Ki个定位光栅的预设范围内;当第三距离大于预设阈值时,则服务器可以确定该车辆不位于第Ki个定位光栅的预设范围内。需要说明的是,预设阈值可以是1米、1.5米、2.5米、3米或其他值,本申请不做具体限定。
若服务器判断出某车辆在第Ki个定位光栅的预设范围内时,服务器还需记录该车辆的标识灯组的颜色的解析结果,该解析结果指示了标识灯组中各标识灯的颜色和顺序。
需要说明的是,S503-S505是服务器监测车辆是否在第Ki定位光栅的预设范围内的一种方法的示例性说明。在一些可能的实施例中,也可以无需服务器的参与而直接由隧道中各区域的摄像机监测车辆是否位于其对应的定位光栅的预设范围内。以第Ki摄像机为例进行说明,第Ki个摄像机采集到第二环境图像后,第Ki个摄像机直接对第二环境图像进行处理(例如,识别车辆的标识灯组,解压标识灯组的颜色等),并计算车辆距离第Ki个定位光栅的第三距离,在第三距离小于等于预设范围时,即说明该车辆在第Ki个定位光栅的预设范围内,同时记录该车辆上标识灯组的颜色的解析结果,此解析结果指示了车辆上标识灯组的颜色和顺序。
需要说明的是,无论是服务器还是摄像机处理第二环境图像,在一些可能的实施例中,在隧道中具有多车道的情况下,可能出现多辆车并排行驶,在对第Ki个摄像机采集的第二环境图像进行处理后发现有多个车道上的车同时位于第Ki个定位光栅的预设范围内,则对这些车辆的标识灯组的颜色依次进行解析并记录获得的多个解析结果。
S506、在车辆位于第Ki个定位光栅的预设范围内时,服务器向外发送第二广播信息。
本申请实施例中,服务器在确定车辆位于第Ki个定位光栅的预设范围内时,服务器向外发送第二广播信息,第二广播信息携带指示信息,该指示信息指示了一个或多个标识灯的颜色和顺序,由于一个标识灯组包括至少一个标识灯,故指示信息也相当于指示了该车辆上的标识灯组颜色和顺序。第二广播信息用于指示车辆根据第二广播信息确定自身是否在第Ki个定位光栅的预设范围内。
在一些可能的实施例中,若由摄像机直接监测车辆是否位于其对应的定位装置的预设范围内,不妨以第Ki个摄像机为例,若第Ki个摄像机监测到车辆位于第Ki个定位装置的预设范围内,第Ki摄像机可以直接向外发送第二广播信息,第二广播信息指示了该车辆上标识灯组的颜色和顺序,以使车辆根据第二广播信息判断自身是否在第Ki个定位光栅的预设范围内。
在一些可能的实施例中,在隧道中具有多个车道的情况下,可能出现多辆并排行驶的车辆均位于第Ki个定位光栅的预设范围内,在此情况下,第二广播信息携带的指示信息指示了至少一个标识灯组的颜色和顺序,这些标识灯组为位于第Ki个定位光栅的预设范围内的多辆车的标识灯组。
S507、车辆接收第二广播信息,根据第二广播信息确定自身是否在第Ki个定位光栅的预设范围内。
本申请实施例中,车辆接收到第二广播信息后,根据第二广播信息确定自身是否在第Ki个定位光栅的预设范围内。具体地,车辆根据第二广播信息中指示的标识灯组中各标识灯的颜色和顺序匹配自身车辆上的标识灯组,即比较第二广播信息携带的颜色编码与车辆自身的标识灯组的颜色编码是否相同,若相同,则匹配成功,说明本车辆即为或者属于第二广播信息指示的标识灯组所在的车辆,即本车辆当前位于第Ki个定位光栅的预设范围内;若不相同,则匹配失败,说明本车辆当前不位于第Ki个定位光栅的预设范围内。
S508、在第Ki个定位光栅被触发时,第Ki个定位光栅向外发送第一广播信息。本步骤具体可参考图3实施例中S103的相关描述,这里不再赘述。需要说明的是,第Ki个定位光栅即为S103中的定位系统。
S509、车辆接收第一广播信息,在车辆位于第Ki个定位光栅的预设范围内时,获取地图中第Ki个定位光栅的位置信息,并根据该位置信息在地图中对车辆进行定位。本步骤具体可参考图5实施例中S204的相关描述,这里不再赘述。
S510、在车辆触发下一个定位光栅前,获取车辆的运动信息,根据车辆的位置信息和运动信息在地图中对车辆进行导航。本步骤具体可参考图5实施例中S205的相关描述,这里不再赘述。
可以看到,实施本申请实施例,在卫星信号不佳的隧道中,通过在隧道中设置定位光栅和摄像机辅助车辆实现在隧道中的精确定位,摄像机通过识别车辆上的标识灯组确定车辆与该标识灯组对应的定位光栅的位置关系,结合来自该定位光栅的触发信息即可实现车辆在隧道中的精确定位,有效解决了在卫星信号被遮挡或者屏蔽的隧道、地下等场景下车辆无法定位或定位不准的问题,提升了车辆定位的鲁棒性,降低了信号不佳的半封闭空间中车辆定位的施工成本。
下面以一些具体的应用场景来进一步说明图13实施例所述的方法。
参见图15,车辆A和车辆B行驶于某隧道中,车辆A和车辆B均设置有一个标识灯组,标识灯组A的颜色以及顺序和标识灯组B的颜色以及顺序不同,车辆A和车辆B均已通过第1个定位光栅,且在接近第2个定位光栅的过程中。隧道中的第2个摄像机采集该视角下的车辆上标识灯组的图像,并将采集到的标识灯组的图像发送给服务器,服务器对接收到的图像进行处理,监测到车辆A距离第2个定位光栅的距离等于预设阈值,即说明车辆A当前位于第2个定位光栅的预设范围内,因此,服务器向外发送指示了标识灯组A以及摄像机编号2的广播信息。对车辆A来说,车辆A接收到该广播信息后,将广播信息中指示的标识灯组与自身的标识灯组A匹配,匹配成功,则车辆A可以确定自身位于第2个定位光栅的预设范围内,故车辆A在地图中获取第2个定位光栅在WGS84坐标系下的位置坐标(B2,L2,H2)并更新成自己当前的位置坐标,显示在车辆的显示屏上。对于车辆B来说,车辆B接收到该广播信息后,将广播信息中指示的标识灯组与自身的标识灯组B匹配,匹配失败,故车辆B可以确定自身不位于第2个定位光栅的预设范围内,因此车辆B的显示屏上显示的位置坐标为(B,L,H),并未更新成第2个定位光栅的位置坐标。
参见图16,车辆A和车辆B行驶于某隧道中,车辆A和车辆B均设置有一个标识灯组,标识灯组A的颜色以及顺序和标识灯组B的颜色以及顺序不同,车辆A和车辆B均已通过第1个定位光栅,且在接近第2个定位光栅的过程中。隧道中的第2个摄像机采集该视角下的车辆上标识灯组的图像,并对采集到的标识灯组的图像进行处理,监测到标识灯组A所在的车辆A距离第2个定位光栅的距离等于预设阈值,即说明车辆A当前位于第2个定位光栅的预设范围内,因此,第2个摄像机向外发送指示了标识灯组A以及摄像机编号2的广播信息。对车辆A来说,车辆A接收到该广播信息后,将广播信息中指示的标识灯组与自身的标识灯组A匹配,匹配成功,则车辆A可以确定自身位于第2个定位光栅的预设范围内,故车辆A在地图中获取第2个定位光栅在WGS84坐标系下的位置坐标(B2,L2,H2)并更新成自己当前的位置坐标显示在车辆的显示屏上。对于车辆B来说,车辆B接收到该广播信息后,将广播信息中指示的标识灯组与自身的标识灯组B匹配,匹配失败,故车辆B可以确定自身不位于第2个定位光栅的预设范围内,因此车辆B的显示屏上显示的位置坐标为(B,L,H),并未更新成第2个定位光栅的位置坐标。
参见图17,图17是本申请实施例提供的一种装置的结构示意图,装置30至少包括处理器110、存储器111、接收器112、发送器113、图像采集装置114和惯性测量元件115,该接收器112和发送器113也可以替换为通信接口,用于为处理器110提供信息输入和/或输出。可选的,存储器111、接收器112、发送器113、图像采集装置114、惯性测量元件115和处理器110通过总线连接或耦合。装置30可为图1中的车辆。
接收器112用于接收来自服务器/路侧单元/其他车辆的半封闭空间(例如,隧道)的地图,接收器112还用于接收定位系统(即定位光栅)被触发时发送的第一广播信息。发送器113用于向服务器发送第一请求以获取半封闭空间的地图。接收器112和发送器113可包括用于直接或通过空中接口与车内的设备、传感器或其它实体设备通信的天线和芯片集。发送器113和收发器112组成通信模块,通信模块可被配置为根据一个或多个其它类型的无线通信(例如,协议)来接收和发送信息,所述无线通信诸如蓝牙、IEEE 802.11通信协议、蜂窝技术、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)或LTE(Long Term Evolution,长期演进)、ZigBee协议、专用短程通信(DedicatedShort Range Communications,DSRC)以及RFID(Radio Frequency Identification,射频识别)通信,等等。
图像采集装置114用于拍摄车辆行驶前方的第一环境图像,第一环境图像中包含半封闭空间中颜色装置的图像。图像采集装置114包括摄像头,也可以包括深度传感器、RGB图像传感器或结构光图像传感器中的一个或多个。图像采集装置114可以是摄像机、相机或其他具有图像采集功能的装置。
惯性测量元件115用于获取车辆的运动信息,例如,车辆的速度、加速度和运动方向等,以使处理器110根据惯性测量元件115获得的信息进行导航。惯性测量元件115包括加速度计和陀螺仪,其中,加速度计用于测量车辆当前的加速度,陀螺仪用于检测车辆运动的方向和速度。
处理器110执行各操作的具体实现可参考上述方法实施例中识别第一环境图像中的颜色装置、计算车辆距离定位系统的第一距离、对车辆进行定位等具体操作。处理器110可以由一个或者多个通用处理器构成,例如中央处理器(Central Processing Unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-SpecificIntegrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-Programmable Gate Array,FPGA)、通用阵列逻辑(GenericArray Logic,GAL)或其任意组合。
存储器111可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器111也可以包括非易失性存储器(Non-VolatileMemory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器111还可以包括上述种类的组合。存储器111可以存储程序以及数据,其中,存储的程序包括:目标识别程序、颜色解析程序、惯性导航程序等,存储的数据包括:半封闭空间的地图、颜色装置(例如,标识灯组)的解析结果、车辆的运动信息等。存储器111可以单独存在,也可以集成于处理器110内部。
本申请实施例中,装置30用于实现上述图4实施例所描述的车辆侧的方法。
参见图18,图18是本申请实施例提供的又一种装置的结构示意图,装置40至少包括处理器210、存储器211、接收器212、发送器213、颜色装置214和惯性测量元件215,该接收器212和发送器213也可以替换为通信接口,用于为处理器210提供信息输入和/或输出。可选的,存储器211、接收器212、发送器213、惯性测量元件215和处理器210通过总线连接或耦合。装置40可为图2和图3中的车辆。
发送器213用于向服务器发送第一请求以获得半封闭空间的地图,在一些可能的实施例中,发送器214还用于向服务器发送第一信息,第一信息中携带有装置40的颜色装置214的颜色编码以及颜色装置214的离地高度。接收器212用于接收服务器发送的半封闭空间的地图,接收器212还用于接收第二广播信息以及来自定位系统(如,定位光栅)的第一广播信息。在一些可能的实施例中,接收器212还可以接收来自其他车辆或者路侧单元发送的半封闭空间的地图。
接收器212和发送器213可包括用于直接或通过空中接口与车内的设备、传感器或其它实体设备通信的天线和芯片集。发送器213和收发器212组成通信模块,通信模块可被配置为根据一个或多个其它类型的无线通信(例如,协议)来接收和发送信息,所述无线通信诸如蓝牙、IEEE 802.11通信协议、蜂窝技术、全球微波互联接入(WorldwideInteroperability for Microwave Access,WiMAX)或LTE(Long Term Evolution,长期演进)、ZigBee协议、专用短程通信(Dedicated Short Range Communications,DSRC)以及RFID(Radio Frequency Identification,射频识别)通信,等等。
颜色装置214用于供半封闭空间中的图像采集装置(例如,摄像机)拍摄以获得车辆上的颜色装置214的图像。颜色装置214可以是一个或多个标识灯或其他带颜色的可发光器件,也可以是带颜色的金属板或者其他有颜色的装置。
惯性测量元件215用于获取车辆的运动信息,例如,车辆的速度、加速度和运动方向等,以使处理器210根据惯性测量元件215获得的信息进行导航。惯性测量元件215包括加速度计和陀螺仪,其中,加速度计用于测量车辆当前的加速度,陀螺仪用于检测车辆运动的方向和速度。
处理器210执行各操作的具体实现可参考上述方法实施例中根据第二广播信息确定自身是否在定位光栅的预设范围内、对车辆进行定位等具体操作、对车辆进行导航等具体操作。处理器210可以由一个或者多个通用处理器构成,例如中央处理器(CentralProcessing Unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC)、可编程逻辑器件(ProgrammableLogic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(ComplexProgrammable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-Programmable GateArray,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
存储器211可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器211也可以包括非易失性存储器(Non-VolatileMemory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器211还可以包括上述种类的组合。存储器211可以存储程序以及数据,其中,存储的程序包括:颜色装置匹配程序、惯性导航程序等,存储的数据包括:半封闭空间的地图、颜色装置(例如,标识灯组)的颜色编码、车辆的运动信息等。存储器211可以单独存在,也可以集成于处理器210内部。
本申请实施例中,装置40用于实现上述图13实施例所描述的车辆侧的方法。
参见图19,图19是本申请实施例提供的一种装置的结构示意图,装置50至少包括处理器310、存储器311、接收器312和发送器313,该接收器312和发送器313也可以替换为通信接口,用于为处理器310提供信息输入和/或输出。可选的,存储器311、接收器312、发送器313和处理器310通过总线连接或耦合。装置50可为图2中的服务器或者图3中的摄像机。可选地,在装置50为图3中的摄像机时,装置50还包括摄像头314,用于采集装置40的颜色装置214的图像,摄像头314通过总线与处理器310、接收器312等连接或耦合。
接收器312还用于接收装置40发送的第一信息,第一信息中携带有装置40的颜色装置214的颜色编码以及颜色装置214的离地高度。在装置50为图2中的服务器时,接收器312还用于接收图2中摄像机发送的采集的装置40颜色装置214的图像,在一些可能的实施例中,接收器312还用于接收装置30或者装置40发送的第一请求,第一请求用于指示装置50发送半封闭空间的地图。在装置50为图3中的摄像机时,接收器312还用于从摄像头314处获取其采集的颜色装置214的图像以供处理器310进行处理。
发送器313用于向装置40发送第二广播信息,第二广播信息携带的指示信息指示了位于定位光栅的预设范围内的车辆上颜色装置的颜色和顺序,以便于装置40根据第二广播信息确定自身是否在定位系统(如,定位光栅)的预设范围内。在一些可能的实施例中,发送器313还用于向装置30或装置40发送半封闭空间的地图。
接收器312和发送器313可包括用于直接或通过空中接口与车辆内的设备、传感器或其它实体设备通信的天线和芯片集。发送器313和收发器312组成通信模块,通信模块可被配置为根据一个或多个其它类型的无线通信(例如,协议)来接收和发送信息,所述无线通信诸如蓝牙、IEEE 802.11通信协议、蜂窝技术、全球微波互联接入(WorldwideInteroperability for Microwave Access,WiMAX)或LTE(Long Term Evolution,长期演进)、ZigBee协议、专用短程通信(Dedicated Short Range Communications,DSRC)以及RFID(Radio Frequency Identification,射频识别)通信,等等。
存储器311可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器311也可以包括非易失性存储器(Non-VolatileMemory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器311还可以包括上述种类的组合。存储器311可以存储程序以及数据,其中,存储的程序包括:目标识别算法、颜色解析程序等,存储的数据包括:半封闭空间的地图、颜色装置(例如,标识灯组)的颜色编码、摄像机的离地高度、颜色装置的离地高度、颜色装置的颜色解析结果、颜色装置所在车辆距离定位系统的第三距离等。存储器311可以单独存在,也可以集成于处理器310内部。
处理器310由一个或者多个通用处理器构成,例如中央处理器(CentralProcessing Unit,CPU),图形处理器(Graphics Processing Unit,GPU),微处理器(Microcontroller Unit,MCU)或者CPU、GPU、MCU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-Programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。处理器310被配置调用存储器310中的程序和数据以实现上述实施例中识别第二环境图像中装置40的颜色装置214、解析颜色装置214的颜色、确定装置40是否在定位系统的预设范围内等具体操作。
本申请实施例中,装置50用于实现上述图9实施例所描述的服务器侧的方法。
参见图20,图20是本申请实施例提供的一种监测装置的结构示意图,监测装置60至少包括:处理器410、存储器411和接收器412。该接收器412也可以替换为通信接口,用于为处理器410提供信息输入。可选的,存储器411、接收器412和处理器410通过总线连接或耦合。在此情况下,监测装置60可以集成于装置30的图像采集装置114中或者处理器110中,也可以独立存在于装置30中,本申请不做具体限定。此时对应的车辆定位场景为:车辆上设置有图像采集装置(例如,摄像机),半封闭空间中设置有一一对应的颜色装置和定位装置,监测装置60可以集成于车辆的图像采集装置中,也可以集成于车辆中独立于图像采集装置而存在。例如,监测装置60可以集成于装置30的图像采集装置114中,也可以集成于装置30的处理器110中,本申请不做具体限定。
接收器412用于获取包含颜色装置的环境图像,该环境图像可以是装置30的图像采集装置114采集的,在此情况下,接收器412可包括用于直接或通过空中接口与车内图像采集装置通信的天线和芯片集。
处理器410由一个或者多个通用处理器和/或专用处理器构成,具体地,处理器410可以是中央处理器、微处理器、单片机、数字信号处理器、图像处理器等中的一个或多个。处理器410调用存储器411中的数据和程序用于实现根据环境图像、采集该环境图像的图像采集装置与颜色装置的位置关系获得颜色装置与图像采集装置之间的水平距离,并根据该水平距离确定车辆是否位于半封闭空间中定位装置的预设范围内,以便于车辆在确定自身位于定位装置的预设范围内时根据该定位装置的位置信息实现定位。
存储器411可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器411也可以包括非易失性存储器(Non-VolatileMemory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器411还可以包括上述种类的组合。存储器411可以存储程序以及数据,其中,存储的程序包括:颜色解析算法、目标检测算法等,存储的数据包括:颜色装置的颜色编码-离地高度映射信息、图像采集装置的离地高度、颜色装置的图像、颜色装置的解析结果、各种距离(例如,颜色装置与摄像机的距离、颜色装置与图像采集装置的水平距离、颜色装置与图像采集装置之间的垂直高度差等)等。存储器411可以单独存在,也可以集成于处理器410内部。
在一些可能的实施例中,监测装置60还包括发送器413,发送器413也可以替换为通信接口,用于为处理器410提供信息输出。可选的,发送器413与存储器411、接收器412和处理器410通过总线连接或耦合。在此情况下,监测装置60可以集成于装置50中。此时对应的车辆定位场景为:车辆上设置颜色装置,半封闭空间中设置有一一对应的图像采集装置和定位装置,监测装置60可以集成于半封闭空间的图像采集装置中或服务器中。
发送器413用于在处理器410经处理确定车辆在定位装置的预设范围内时,向外发送第二广播信息,第二广播信息指示了位于定位装置的预设范围内的车辆上颜色装置的颜色和顺序,以使车辆根据第二广播信息确定自身在该定位装置的预设范围内时,根据该定位装置的位置信息进行定位。发送器413可包括用于直接或通过空中接口与车内的设备、传感器或其它实体设备通信的天线和芯片集。
接收器412和发送器413组成通信模块,通信模块可被配置为根据一个或多个其它类型的无线通信(例如,协议)来接收和发送信息,所述无线通信诸如蓝牙、IEEE 802.11通信协议、蜂窝技术、全球微波互联接入(Worldwide Interoperability for MicrowaveAccess,WiMAX)或LTE(Long Term Evolution,长期演进)、ZigBee协议、专用短程通信(Dedicated Short Range Communications,DSRC)以及RFID(Radio FrequencyIdentification,射频识别)通信,等等。
需要说明的是,当监测装置60集成于服务器时,接收器412用于获取包含颜色装置的环境图像是指接收器412接收设置于半封闭空间中的图像采集装置发送的包含颜色装置的环境图像。在此情况下,接收器412可包括用于直接或通过空中接口与半封闭空间内的图像采集装置通信的天线和芯片集。
参见图21,图21是本申请实施例提供的一种装置的功能结构示意图,装置32包括监测单元320、获取单元321和定位单元322。该装置32可以通过硬件、软件或者软硬件结合的方式来实现。装置32可以是图1或图2中的车辆。
其中,监测单元320,用于在车辆进入半封闭空间后,监测车辆是否位于半封闭空间中定位系统的预设范围内;获取单元321,用于在车辆位于定位系统的预设范围内的情况下,获取地图中定位系统在半封闭空间中的位置信息;定位单元322,用于根据位置信息在地图中对车辆进行定位。
该装置32的各功能模块可用于实现图6实施例所描述的车辆侧的方法,即装置32为图1中的车辆。在此情况下,可选地,装置32还包括采集单元323,用于采集设置于半封闭空间中的颜色装置的图像。在图6的实施例中,获取单元321可用于执行S301、S302和S306,采集单元323可用于执行S303,监测单元320可用于执行S304和S305,定位单元322可用于执行S307和S308。
该装置32的各功能模块还可用于实现图13实施例所描述的车辆侧的方法,即装置52为图2中的车辆。在图6的实施例中,获取单元321可用于执行S501和S502,监测单元320可用于执行S507,定位单元322可用于执行S509和S510。
该装置32的各功能模块还可以用于执行图4和图5中车辆侧的方法,为了说明书的简洁,本申请在此不再赘述。
参见图22,图22是本申请实施例提供的一种装置的功能结构示意图,装置52包括监测单元520、广播单元521和获取单元522。该装置52可以通过硬件、软件或者软硬件结合的方式来实现。装置52可以是图2中的服务器。
其中,监测单元520,在车辆进入半封闭空间后,监测车辆是否位于半封闭空间中定位系统的预设范围内;广播单元521,用于在监测到车辆位于定位系统的预设范围内的情况下,发送第二广播信息,第二广播信息用于指示车辆位于定位系统的预设范围内,以便于车辆根据定位系统的位置信息进行定位。
该装置32的各功能模块可用于实现图13实施例所描述的服务器侧的方法,在图13的实施例中,获取单元522可用于执行S503,监测单元520可用于执行S504和S505,广播单元521可用于执行S506。
在一些可能的实施例中,装置52还可以是图3中的摄像机,在此情况下,以图13实施例为例,即图13中的服务器可由图像采集装置(例如,摄像机)替代。为了说明书的简洁,在此不再赘述。
参见图23,图23是本申请实施例提供的一种装置的功能结构示意图,装置62包括获取单元620和处理单元621。在此情况下,装置62可以集成于图1车辆的摄像机中或图1中的车辆里且独立于摄像机存在。可选地,在一些可能的实施例中,装置62还包括广播单元622,在此情况下,装置62可以集成于图2中的服务器或者图3中设置于半封闭空间中的摄像机。需要说明的是,上述中的摄像机仅是图像采集装置的一种示例,摄像机还可由相机或其他图像采集装置代替,本申请不做具体限定。该装置62可以通过硬件、软件或者软硬件结合的方式来实现。
其中,获取单元620,用于获取图像采集装置采集的环境图像,环境图像包含颜色装置的图像;处理单元621,用于根据环境图像确定颜色装置与图像采集装置之间的距离;根据图像采集装置和颜色装置之间的位置关系以及颜色装置与图像采集装置之间的距离,确定图像采集装置与颜色装置之间的水平距离;根据图像采集装置与颜色装置之间的水平距离,确定在车辆进入半封闭空间后车辆位于半封闭空间中定位装置的预设范围内,以便于车辆根据定位装置的位置信息进行定位;在一些可能的实施例中,广播单元622用于在车辆位于定位装置的预设范围内时,发送第二广播信息,以使车辆根据第二广播信息确定车辆是否位于定位装置的预设范围内。
该装置62的各功能模块可用于实现图6实施例所描述的车辆侧的方法,在图6的实施例中,获取单元620可用于执行S303,处理单元621可用于执行S304和S305。
该装置62的各功能模块还可用于实现图13实施例所描述的服务器侧的方法,在图13的实施例中,获取单元620可用于执行S503,处理单元621可用于执行S504和S505,广播单元622可用于执行S506。
装置62的各功能模块还可用于执行图4的S101以及图5的S202,为了说明书的简洁,在此不再赘述。
在本文上述的实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
需要说明的是,本领域普通技术人员可以看到上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random AccessMemory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是个人计算机,服务器,或者网络设备、机器人、单片机、芯片、机器人等)执行本申请各个实施例所述方法的全部或部分步骤。

Claims (24)

1.一种车辆定位方法,应用于车辆,其特征在于,所述方法包括:
在车辆进入半封闭空间后,监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内;
在所述车辆位于所述定位系统的预设范围内的情况下,获取地图中所述定位系统在所述半封闭空间中的位置信息;
根据所述位置信息在所述地图中对所述车辆进行定位。
2.根据权利要求1所述的方法,其特征在于,所述监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内,包括:
确定所述车辆与所述定位系统之间的第一距离;
根据所述第一距离确定所述车辆是否位于所述定位系统的预设范围内。
3.根据权利要求2所述的方法,其特征在于,所述定位系统包括第一颜色装置和定位装置,所述地图还包括指示所述第一颜色装置的离地高度的信息;所述定位装置用于在所述车辆位于所述定位装置处时触发第一广播信息;
所述确定所述车辆与所述定位系统之间的第一距离,包括:
拍摄第一环境图像,所述第一环境图像包含所述第一颜色装置的图像;
根据所述第一环境图像确定所述车辆与所述第一颜色装置之间的第二距离;
根据所述第二距离和所述第一颜色装置的离地高度,获得所述第一距离。
4.根据权利要求1所述的方法,其特征在于,所述定位系统包括第一颜色装置和定位装置,所述定位装置用于在所述车辆位于所述定位装置处时触发第一广播信息;所述第一广播信息包括所述定位装置的位置信息;
所述获取地图中所述定位系统在所述半封闭空间中的位置信息,包括:
根据所述定位装置发送的第一广播信息获得所述定位装置的位置信息;
根据所述定位装置的位置信息确定所述定位系统在所述半封闭空间中的位置信息。
5.根据权利要求3所述的方法,其特征在于,所述根据所述第一环境图像确定所述车辆与所述第一颜色装置之间的第二距离,包括:
从所述第一环境图像中识别出所述第一颜色装置;
根据所述第一颜色装置的图像确定所述第二距离。
6.根据权利要求5所述的方法,其特征在于,
所述第一颜色装置包括一个或多个标识灯;
所述从所述第一环境图像中识别出所述第一颜色装置,包括:
通过识别所述一个或多个标识灯的颜色和顺序来识别出所述第一颜色装置。
7.根据权利要求3-6任一项所述的方法,其特征在于,所述定位装置包括定位光栅或地磁感应器。
8.根据权利要求3-7任一项所述的方法,其特征在于,所述方法还包括:
在所述车辆不位于所述定位系统的预设范围内时,丢弃所述第一广播信息。
9.根据权利要求1所述的方法,其特征在于,所述监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内,包括:
接收第二广播信息,所述第二广播信息用于指示位于所述定位系统的预设范围内的车辆;
根据所述第二广播信息确定所述车辆是否位于所述定位系统的预设范围内。
10.根据权利要求9所述的方法,其特征在于,所述车辆设置有第二颜色装置,所述第二颜色装置包括一个或多个标识灯;所述第二广播信息携带指示信息,所述指示信息指示了一个或多个标识灯的颜色和顺序;
所述根据所述第二广播信息确定所述车辆是否位于所述定位系统的预设范围内,包括:
根据所述第二广播信息指示的一个或多个标识灯的颜色和顺序是否与所述第二颜色装置匹配,来确定所述车辆是否位于所述定位系统的预设范围内。
11.根据权利要求1-10任一项所述的方法,其特征在于,在所述根据所述位置信息在所述地图中对所述车辆进行定位之后,所述方法还包括:
获取所述车辆的运动信息;
根据所述车辆的位置信息和所述车辆的运动信息在所述地图中对所述车辆进行导航。
12.一种车辆定位方法,其特征在于,所述方法包括:
在车辆进入半封闭空间后,监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内;
在监测到所述车辆位于所述定位系统的预设范围内的情况下,发送第二广播信息,所述第二广播信息用于指示所述车辆位于所述定位系统的预设范围内,以便于所述车辆根据所述定位系统的位置信息进行定位。
13.根据权利要求12所述的方法,其特征在于,所述监测所述车辆是否位于所述半封闭空间中定位系统的预设范围内包括:
监测所述车辆与所述定位系统之间的第三距离;
根据所述第三距离确定所述车辆是否位于所述定位系统的预设范围内。
14.根据权利要求13所述的方法,其特征在于,所述定位系统包括图像采集装置和定位装置,所述地图还包括指示所述图像采集装置的离地高度的信息;所述定位装置用于在所述车辆位于所述定位装置处时触发包含所述定位装置的位置信息的第一广播信息;所述车辆上设置有第二颜色装置;
所述监测所述车辆与所述定位系统之间的第三距离,包括;
获取所述图像采集装置拍摄的第二环境图像,所述第二环境图像包含所述第二颜色装置的图像;
根据所述第二环境图像确定所述车辆与所述图像采集装置之间的第四距离;
根据所述第四距离和所述图像采集装置的离地高度,获得所述第三距离。
15.根据权利要求14所述的方法,其特征在于,所述根据所述第二环境图像确定所述车辆与所述图像采集装置之间的第四距离,包括:
从所述第二环境图像中识别出所述第二颜色装置;
根据所述第二颜色装置的图像确定所述第四距离。
16.根据权利要求15所述的方法,其特征在于,所述第二颜色装置包括一个或多个标识灯;
所述从所述第二环境图像中识别出所述第二颜色装置,包括:
通过识别所述一个或多个标识灯的颜色和顺序来识别出所述第二颜色装置。
17.根据权利要求16所述的方法,其特征在于,所述第二广播信息携带了指示信息,所述指示信息指示了所述一个或多个标识灯的颜色和顺序,所述指示信息用于指示所述车辆根据所述指示信息指示的颜色和顺序确定所述车辆是否位于所述定位系统的预设范围内。
18.根据权利要求14-17任一项所述的方法,其特征在于,所述定位装置包括定位光栅或地磁感应器。
19.一种监测装置,其特征在于,所述监测装置包括接收器和处理器,其中,所述接收器用于获取图像采集装置采集的环境图像,所述环境图像包含颜色装置的图像;所述处理器用于:
根据所述环境图像确定所述颜色装置与所述图像采集装置之间的距离;
根据所述图像采集装置和所述颜色装置之间的位置关系以及所述图像采集装置与所述颜色装置之间的距离确定所述图像采集装置与所述颜色装置之间的水平距离;
根据所述图像采集装置与所述颜色装置之间的水平距离,确定在车辆进入所述半封闭空间后所述车辆位于所述半封闭空间中定位装置的预设范围内,以便于所述车辆根据所述定位装置的位置信息进行定位。
20.根据权利要求19所述的装置,其特征在于,所述处理器具体用于:
从所述环境图像中识别出所述颜色装置;
根据所述颜色装置的图像确定所述颜色装置与所述图像采集装置之间的距离。
21.根据权利要求20所述的装置,其特征在于,所述颜色装置包括一个或多个标识灯;所述处理器具体用于:
通过识别所述一个或多个标识灯的颜色和顺序来识别出所述颜色装置。
22.根据权利要求19-21任一项所述的装置,其特征在于,
所述监测装置还包括:发送器,用于在所述车辆位于所述定位装置的预设范围内时,发送第二广播信息,以使所述车辆根据所述第二广播信息确定所述车辆是否位于所述定位装置的预设范围内。
23.根据权利要求19-21任一项所述的装置,其特征在于,
所述接收器具体用于:接收所述图像采集装置发送的所述环境图像;
所述监测装置还包括:发送器,用于在所述车辆位于所述定位装置的预设范围内时,发送第二广播信息,以使所述车辆根据所述第二广播信息确定所述车辆是否位于所述定位装置的预设范围内。
24.根据权利要求22或23所述的装置,其特征在于,所述第二广播信息携带了指示信息,所述指示信息指示了所述一个或多个标识灯的颜色和顺序,所述指示信息用于指示所述车辆根据所述指示信息指示的颜色和顺序确定所述车辆是否位于所述定位装置的预设范围内。
CN202010438125.8A 2020-05-21 2020-05-21 一种车辆定位方法及装置 Pending CN113701738A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010438125.8A CN113701738A (zh) 2020-05-21 2020-05-21 一种车辆定位方法及装置
PCT/CN2021/085478 WO2021232971A1 (zh) 2020-05-21 2021-04-03 一种车辆定位方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010438125.8A CN113701738A (zh) 2020-05-21 2020-05-21 一种车辆定位方法及装置

Publications (1)

Publication Number Publication Date
CN113701738A true CN113701738A (zh) 2021-11-26

Family

ID=78645944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010438125.8A Pending CN113701738A (zh) 2020-05-21 2020-05-21 一种车辆定位方法及装置

Country Status (2)

Country Link
CN (1) CN113701738A (zh)
WO (1) WO2021232971A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440874A (zh) * 2021-12-31 2022-05-06 深圳市云鼠科技开发有限公司 基于光流和光栅的融合定位方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240380A (ja) * 2006-03-09 2007-09-20 Alpine Electronics Inc トンネル内位置検出装置
WO2009098319A2 (en) * 2008-02-09 2009-08-13 Trw Limited Navigational device for a vehicle
CN104517457A (zh) * 2013-09-30 2015-04-15 鸿富锦精密工业(深圳)有限公司 定位光源装置、定位装置及定位方法
CN104748754A (zh) * 2013-12-31 2015-07-01 财团法人车辆研究测试中心 车辆定位方法及其系统
CN104748736A (zh) * 2013-12-26 2015-07-01 电信科学技术研究院 一种定位方法及装置
CN107907897A (zh) * 2017-10-31 2018-04-13 平潭诚信智创科技有限公司 一种基于lifi的智能隧道导航装置及导航系统
CN108535753A (zh) * 2018-03-30 2018-09-14 北京百度网讯科技有限公司 车辆定位方法、装置及设备
CN110164166A (zh) * 2018-02-11 2019-08-23 北京图森未来科技有限公司 一种车辆定位系统、方法和装置
CN110164135A (zh) * 2019-01-14 2019-08-23 腾讯科技(深圳)有限公司 一种定位方法、定位装置及定位系统
CN111161449A (zh) * 2020-01-07 2020-05-15 东南大学 基于行车记录仪图像的车辆大型停车场内部定位方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240380A (ja) * 2006-03-09 2007-09-20 Alpine Electronics Inc トンネル内位置検出装置
WO2009098319A2 (en) * 2008-02-09 2009-08-13 Trw Limited Navigational device for a vehicle
CN104517457A (zh) * 2013-09-30 2015-04-15 鸿富锦精密工业(深圳)有限公司 定位光源装置、定位装置及定位方法
CN104748736A (zh) * 2013-12-26 2015-07-01 电信科学技术研究院 一种定位方法及装置
CN104748754A (zh) * 2013-12-31 2015-07-01 财团法人车辆研究测试中心 车辆定位方法及其系统
CN107907897A (zh) * 2017-10-31 2018-04-13 平潭诚信智创科技有限公司 一种基于lifi的智能隧道导航装置及导航系统
CN110164166A (zh) * 2018-02-11 2019-08-23 北京图森未来科技有限公司 一种车辆定位系统、方法和装置
CN108535753A (zh) * 2018-03-30 2018-09-14 北京百度网讯科技有限公司 车辆定位方法、装置及设备
CN110164135A (zh) * 2019-01-14 2019-08-23 腾讯科技(深圳)有限公司 一种定位方法、定位装置及定位系统
CN111161449A (zh) * 2020-01-07 2020-05-15 东南大学 基于行车记录仪图像的车辆大型停车场内部定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440874A (zh) * 2021-12-31 2022-05-06 深圳市云鼠科技开发有限公司 基于光流和光栅的融合定位方法和装置
CN114440874B (zh) * 2021-12-31 2022-11-01 深圳市云鼠科技开发有限公司 基于光流和光栅的融合定位方法和装置

Also Published As

Publication number Publication date
WO2021232971A1 (zh) 2021-11-25

Similar Documents

Publication Publication Date Title
CN107161141B (zh) 无人驾驶汽车系统及汽车
KR102027408B1 (ko) 디지털 맵을 생성하기 위한 방법 및 시스템
CN110430401B (zh) 车辆盲区预警方法、预警装置、mec平台和存储介质
CN105793669B (zh) 车辆位置推定系统、装置、方法以及照相机装置
JP2020115136A (ja) 自律車両ナビゲーションのための疎な地図
US20170025008A1 (en) Communication system and method for communicating the availability of a parking space
EP3647734A1 (en) Automatic generation of dimensionally reduced maps and spatiotemporal localization for navigation of a vehicle
CN110945320B (zh) 车辆定位方法和系统
CN111105640A (zh) 用于确定停车场中的车辆位置的系统和方法
US10917808B2 (en) Extra-vehicular communication device, onboard device, onboard communication system, communication control method, and communication control program
JP5365792B2 (ja) 車両用位置測定装置
US11025865B1 (en) Contextual visual dataspaces
KR100976964B1 (ko) 네비게이션 시스템 및 이의 주행 차선 구분 방법
US20190196499A1 (en) System and method for providing overhead camera-based precision localization for intelligent vehicles
CN116601681A (zh) 基于3d地图的相关输入通过优先处理感兴趣物体估计摄像机的自动曝光值
CN113156935A (zh) 用于交通灯检测的系统和方法
KR102418051B1 (ko) 차선별 교통상황 판단 장치, 시스템, 및 방법
WO2021136970A1 (en) Systems and methods for detecting traffic lights
CN110717438A (zh) 一种交通信号灯识别方法及装置
CN108335507B (zh) 利用摄像头的拍摄影像的驾驶引导提供方法及装置
WO2021232971A1 (zh) 一种车辆定位方法及装置
WO2021261228A1 (ja) 障害物情報管理装置、障害物情報管理方法、車両用装置
KR20150055278A (ko) 차량용 레이더를 이용한 실시간 교통정보 측정 시스템 및 방법
CN114449481A (zh) 基于v2x技术确定所在车道当前信号灯灯色的方法及系统
KR20200052868A (ko) 자율주행 차량 항법 장치 및 항법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220209

Address after: 550025 Huawei cloud data center, jiaoxinggong Road, Qianzhong Avenue, Gui'an New District, Guiyang City, Guizhou Province

Applicant after: Huawei Cloud Computing Technology Co.,Ltd.

Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen

Applicant before: HUAWEI TECHNOLOGIES Co.,Ltd.