CN113699479A - 一种提高热障涂层抗cmas腐蚀能力的方法 - Google Patents

一种提高热障涂层抗cmas腐蚀能力的方法 Download PDF

Info

Publication number
CN113699479A
CN113699479A CN202111010378.6A CN202111010378A CN113699479A CN 113699479 A CN113699479 A CN 113699479A CN 202111010378 A CN202111010378 A CN 202111010378A CN 113699479 A CN113699479 A CN 113699479A
Authority
CN
China
Prior art keywords
layer
thermal barrier
barrier coating
ceramic layer
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111010378.6A
Other languages
English (en)
Inventor
钱伟
花银群
蔡杰
戴峰泽
陈瑞芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Jinhang Nanotechnology Research Co ltd
Original Assignee
Suzhou Jinhang Nanotechnology Research Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Jinhang Nanotechnology Research Co ltd filed Critical Suzhou Jinhang Nanotechnology Research Co ltd
Priority to CN202111010378.6A priority Critical patent/CN113699479A/zh
Publication of CN113699479A publication Critical patent/CN113699479A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及热障涂层表面腐蚀与防护技术领域,具体为一种提高热障涂层抗CMAS腐蚀能力的方法。本发明所述的热障涂层为多层结构,其中包括粘结层、陶瓷层、激光重熔部分陶瓷层形成的重熔层以及采用高温预处理形成的预腐蚀层。利用激光重熔陶瓷层的表面裂纹,在其表面涂覆一层预先设计的混合氧化物。重熔层是利用纳秒脉冲激光对陶瓷层进行表面改性处理,可以优化陶瓷层表面组织,提高致密度,降低孔隙率,封堵CMAS的扩散通道。预腐蚀层为利用预先设计的混合氧化物与锆酸钆类陶瓷层在高温条件下先期反应,形成磷灰石相反应层,从而大幅度提高热障涂层抗CMAS腐蚀能力。

Description

一种提高热障涂层抗CMAS腐蚀能力的方法
技术领域
本发明涉及热障涂层表面腐蚀与防护技术领域,具体为一种提高热障涂层抗CMAS腐蚀能力的方法。
背景技术
热障涂层广泛应用于航空涡轮发动机的高温部件,从而提高发动机的效率及综合性能。随着高推进比、高效率的发展要求,发动机内部的环境温度已经高达1600℃,传统的8YSZ(8%Y2O3-Zr2O3)材料已经不能满足使用需求。稀土锆酸盐类材料,如锆酸钆(Gd2Zr2O3)等,由于其具有更低的热导率、更优异的高温相稳定性、更匹配的膨胀系数以及更好的断裂韧性,有望代替8YSZ成为下一代热障涂层的备选材料。
研究发现,在飞机等航空部件服役时,服役环境中的CMAS(CaO-MgO-Al2O3-SiO2)会沉积到热障涂层表面,导致涂层失效。随着发动机温度的愈来愈高,CMAS对热障涂层的腐蚀日益严重。CMAS对热障涂层的破坏机理包括:一方面,在高温环境下,熔融的CMAS会沉积到热障涂层表面,同时会通过等离子喷涂的固有缺陷而形成的多孔通道扩散到陶瓷层内部,在降温过程中,CMAS形成的不稳定的脆性玻璃相产物会严重降低陶瓷层的应变容限,增大涂层应力加速涂层剥落;另一方面,熔融的CMAS会加速陶瓷层的烧结,增加热导率,导致涂层失效。
如何在陶瓷层表面形成有效阻隔层减缓CMAS腐蚀而又不影响陶瓷层的隔热性能成为抗CMAS腐蚀研究的重点方向。激光重熔是利用高能的激光束对材料表面进行改性处理的技术手段。采用的激光重熔技术对陶瓷层表面进行加工,可以优化表面组织,细化晶粒,提高表面的致密度,减少表面的孔洞以及大颗粒,封堵喷涂固有缺陷的纵向大裂纹以及陶瓷层内部CMAS扩散通道。但是,激光重熔后,表面仍会有出现一些网状结构的细小裂纹,形成了新的CMAS扩散通道。必须采用致密的封堵层进行二次处理。CMAS与稀土锆酸盐类反应生成的磷灰石相,结构致密、熔点高、高温相稳定性好、与陶瓷层的匹配度高、界面相容性好,成为封堵层的理想材料。
发明内容
本发明的所要解决的技术问题是提供一种提高热障涂层抗CMAS腐蚀能力的方法,采用多层热障涂层设计,包括粘结层、陶瓷层、激光重熔层以及预腐蚀层,改善热障涂层表层状态,可以有效解决热障涂层在服役过程中CMAS腐蚀的问题,提高热障涂层的使用寿命。
一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,包括以下步骤:
步骤一:对待加工的高温合金试样表面进行研磨、抛光及喷砂处理;
步骤二:采用等离子喷涂工艺在试样表面制备NiCoCrAlY粘结层,NiCoCrAlY粘结层的厚度在50~100μm;
步骤三:对喷涂过粘结层的试样进行真空热处理及表面喷砂处理;
步骤四:采用等离子喷涂工艺在步骤三处理后的试样表面喷涂陶瓷层,陶瓷层的厚度在100~300μm;
所述陶瓷层为稀土锆酸盐类材料,其化学式为RE2Zr2O7,RE为La或Gd。
步骤五:对步骤四所制备的陶瓷层表面进行研磨以及抛光处理;
步骤六:对步骤五处理后的陶瓷层进行预热处理,温度:200~400℃,保温时间10~20min;
步骤七:将步骤六预热处理后的试样装夹在激光器的工作台,预设激光器的工艺参数为,波长1064nm,脉冲宽度100ns,激光功率100~300W,重复频率10kHz,扫描速度5~30mm/s,焦距300mm,光斑直径30μm,进行激光重熔加工并控制激光重熔层的厚度为10~20μm。
步骤八:称量质量比例为22%CaO、14%Al2O3、10%TiO2、9%La2O3和45%SiO2的混合粉末加入无水乙醇后在球磨机内球磨6~8h后,放在120℃的干燥箱内,烘干10h,得到干燥粉末;
步骤九:将步骤八所述的干燥粉末放入1300℃的高温炉煅烧8h,随炉冷却后,再加入无水乙醇,在球磨机内球磨24h后在120℃的干燥箱内烘干10h,然后将所得粉末研磨,并过200目筛;
步骤十:将步骤九所述的粉末与无水乙醇,按照质量比1:10的比例混合并不断搅拌至均匀,得到所需的悬浮液。
步骤十一:将步骤十所述的悬浮液以20mg/cm2的涂覆密度,涂覆到步骤七得到的激光重熔层表面。
步骤十二:将步骤十一得到的试样放在1150~1250℃的高温炉下,保温0.5h,随后冷却至室温取出,得到5~10μm的磷灰石相预腐蚀层,得到最终的热障涂层。
本发明的优点:
1、本发明采用激光重熔的技术对等离子喷涂后陶瓷层进行表面改性处理,进一步地优化热障涂层陶瓷层表面组织,细化晶粒,提高表面的致密度,减少表面的孔洞以及大颗粒,有效封堵等离子喷涂固有缺陷的纵向大裂纹以及陶瓷层内部CMAS扩散通道;
2、本发明所述的磷灰石相预腐蚀层,结构致密、熔点高、高温相稳定性好、与陶瓷层的匹配度高、界面相容性好,可以有效填补激光重熔后的产生的二次微裂纹及孔洞,进一步提高热障涂层的抗CMAS能力;
3、本发明所述的热障涂层不破坏原热障涂层的结构与性能,增重小,工艺简单、绿色高效污染低。
具体实施方式
现将本发明的实施例叙述于后。
实施例1
(1)在DD6镍基单晶试样表面分别进行研磨、抛光与喷砂处理,并采用等离子喷涂方法制备NiCoCrAlY粘结层,其具体工艺为,喷涂距离110mm,喷涂电压42V,喷涂电流710A,氩气流量80L/min,送粉率60g/min,其厚度为60μm。随后对制备的粘结层进行真空热处理,其具体工艺为,真空度10-3pa,900℃保温10h,随炉冷却至室温,随后进行表面喷砂处理,其具体工艺为:喷砂工作压力0.2Mpa,介质颗粒直径50μm。在制备好粘结层的试样表面喷涂Gd2 Zr2O7陶瓷层,其具体工艺为,喷涂距离110mm,喷涂电压60V,喷涂电流850A,氩气流量80L/min,送粉率80g/min,制备的陶瓷层的厚度为160μm,即得到热障涂层。此外,为了便于对比,同时采用相同工艺制备了实施对比例所需的热障涂层。
(2)对试样进行预热处理,预热温度为200℃,预热时间为20min。随后利用Nd:YAG激光器对陶瓷层表面进行激光重熔处理。具体工艺参数为:波长1064nm,脉冲宽度100ns,激光功率120W,重复频率10kHz,扫描速度8mm/s,焦距300mm,光斑直径30μm。进行激光重熔加工并控制激光重熔层的厚度为10μm。
(3)称量质量比例为22%CaO、14%Al2O3、10%TiO2、9%La2O3和45%SiO2的混合粉末,并加入无水乙醇后,在球磨机内球磨6h,随后放入120℃的干燥箱内烘干10h,得到的干燥粉末放在1300℃的高温炉中煅烧8h后,随炉冷却至室温,然后加入无水乙醇,在球磨机中球磨24h,取出放入120℃的干燥箱内烘干10h,得到干燥粉末。随后将粉末进行研磨。并过200目筛,得到均匀细腻的粉末。将制备的粉末与无水乙醇以质量比1:10的比例混合,并不断搅拌至均匀,得到悬浮液。
(4)将悬浮液以20mg/cm2的涂覆密度涂覆至的激光重熔之后的陶瓷层试样表面。随后将试样放在1150℃的高温炉中,煅烧0.5h,然后随炉冷却至室温,得到厚度为5μm的致密的磷灰石相的预腐蚀层
(5)将制备后的热障涂层和实施对比例的传统热障涂层进行CMAS腐蚀试验。实验表明:在经过5小时,1250℃的CMAS腐蚀试验后,CMAS的扩散的平均深度仅为25.2μm,而作为实施对比例的未经表面处理的传统热障涂层CMAS扩散深度为80μm,有明显的改善。
实施例2
(1)在DD6镍基单晶试样表面分别进行研磨、抛光与喷砂处理,并采用等离子喷涂方法制备NiCoCrAlY粘结层,其具体工艺为,喷涂距离110mm,喷涂电压42V,喷涂电流710A,氩气流量80L/min,送粉率60g/min,其厚度为60μm。随后对制备的粘结层进行真空热处理,其具体工艺为,真空度10-3pa,900℃保温10h,随炉冷却至室温,随后进行表面喷砂处理,其具体工艺为,喷砂工作压力0.2Mpa,介质颗粒直径50μm。在制备好粘结层的试样表面喷涂Gd2 Zr2O7陶瓷层,其具体工艺为,喷涂距离110mm,喷涂电压60V,喷涂电流850A,氩气流量80L/min,送粉率80g/min,制备的陶瓷层的厚度为160μm,即得到热障涂层。此外,为了便于对比,同时采用相同工艺制备了实施对比例所需的热障涂层。
(3)对试样进行预热处理,预热温度为300℃,预热时间为15min。利用Nd:YAG激光器对陶瓷层表面进行激光重熔处理。具体工艺参数为:波长1064nm,脉冲宽度100ns,激光功率220W,重复频率10kHz,扫描速度12mm/s,焦距300mm,光斑直径30μm。进行激光重熔加工并控制激光重熔层的厚度为15μm。
(3)称量质量比例为22%CaO、14%Al2O3、10%TiO2、9%La2O3和45%SiO2的混合粉末,并加入无水乙醇后,在球磨机内球磨6h,随后放入120℃的干燥箱内烘干,得到干燥粉末放在1300℃的高温炉中煅烧8h后,随炉冷却至室温,然后加入无水乙醇,在球磨机中球磨24h后,取出放入120℃的干燥箱内烘干10h,得到干燥粉末。随后将粉末进行研磨。并过200目筛,得到均匀细腻的粉末。将制备的粉末与无水乙醇以质量比1:10的比例混合,并不断搅拌至均匀,得到悬浮液。
(4)将悬浮液以20mg/cm2的涂覆密度涂覆至的陶瓷层试样表面。随后将试样放在1250℃的高温炉中,煅烧0.5h,然后随炉冷却至室温,得到厚度为5μm的致密的磷灰石相的阻挡层。
(5)将制备后的热障涂层和实施对比例的传统热障涂层进行CMAS腐蚀试验。实验表明:在经过5小时,1250℃的CMAS腐蚀试验后,CMAS的扩散的平均深度仅为20.2μm,而作为实施对比例的未经表面处理的传统热障涂层CMAS扩散深度为80μm,有明显的改善。

Claims (9)

1.一种提高热障涂层抗CMAS腐蚀能力的方法,所述的热障涂层为多层结构,包括粘结层、陶瓷层、激光重熔层与预腐蚀层,其特征在于:在进行等离子喷涂粘结层与陶瓷层的步骤之后,采用激光重熔技术对制备的陶瓷层表面进行改性处理得到激光重熔层;然后将预制的氧化物悬浮液均匀涂覆至激光重熔层表面,在高温炉内保温从而形成致密的磷灰石相预腐蚀层,进一步提高热障涂层的抗CMAS腐蚀能力。
2.如权利要求1所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,具体步骤如下:
步骤一:对待加工的高温合金试样表面进行研磨、抛光及喷砂处理;
步骤二:采用等离子喷涂工艺在试样表面制备NiCoCrAlY粘结层;
步骤三:对喷涂过粘结层的试样进行真空热处理及表面喷砂处理;
步骤四:采用等离子喷涂工艺在步骤三处理后的试样表面喷涂陶瓷层;
步骤五:对步骤四所制备的陶瓷层表面进行研磨以及抛光处理;
步骤六:对步骤五处理后的陶瓷层进行预热处理;
步骤七:将步骤六预热处理后的试样装夹在激光器的工作台,进行激光重熔加工得到激光重熔层;
步骤八:称取CaO、Al2O3、TiO2、La2O3和SiO2的氧化物混合粉末加入无水乙醇后在球磨机内第一次球磨后干燥得到干燥粉末;将干燥粉末放入高温炉内高温煅烧,随炉冷却后,再加入无水乙醇,在球磨机内第二次球磨后干燥,然后将所得粉末研磨并过筛;
步骤九:将步骤八过筛后的粉末与无水乙醇混合并不断搅拌至均匀,得到所需的悬浮液,将悬浮液涂覆到步骤七得到的激光重熔层表面;
步骤十:将步骤九得到的试样放在高温炉内保温,随后冷却至室温取出,得到磷灰石相预腐蚀层,得到最终的热障涂层。
3.如权利要求2所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,步骤二中,NiCoCrAlY粘结层的厚度在50~100微米。
4.如权利要求2所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,步骤四中,陶瓷层的厚度在100~300微米;所述陶瓷层为稀土锆酸盐类材料,其化学式为RE2Zr2O7,RE为La或Gd。
5.如权利要求2所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,步骤六中,预热温度:200~400℃,预热时间10~20min。
6.如权利要求2所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,步骤七中,预设激光器的工艺参数为,波长1064nm,脉冲宽度100ns,激光功率100~300W,重复频率10kHz,扫描速度5~30mm/s,焦距300mm,光斑直径30微米,激光重熔层的厚度为10~20微米。
7.如权利要求2所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,步骤八中,混合粉末,按质量比例,22%CaO、14%Al2O3、10%TiO2、9%La2O3和45%SiO2;第一次球磨时间为6~8h,干燥指放在120℃的干燥箱内,烘干10h;高温煅烧温度为1300℃,煅烧时间为8h;第二次球磨时间为24h,过筛指过200目筛。
8.如权利要求2所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,步骤九中,过筛后的粉末与无水乙醇的质量比为1:10,涂覆密度为20mg/cm2
9.如权利要求2所述的一种提高热障涂层抗CMAS腐蚀能力的方法,其特征在于,步骤十中,保温温度为1150~1250℃,保温时间为0.5h;磷灰石相预腐蚀层的厚度为5~10微米。
CN202111010378.6A 2021-08-31 2021-08-31 一种提高热障涂层抗cmas腐蚀能力的方法 Withdrawn CN113699479A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111010378.6A CN113699479A (zh) 2021-08-31 2021-08-31 一种提高热障涂层抗cmas腐蚀能力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111010378.6A CN113699479A (zh) 2021-08-31 2021-08-31 一种提高热障涂层抗cmas腐蚀能力的方法

Publications (1)

Publication Number Publication Date
CN113699479A true CN113699479A (zh) 2021-11-26

Family

ID=78657695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111010378.6A Withdrawn CN113699479A (zh) 2021-08-31 2021-08-31 一种提高热障涂层抗cmas腐蚀能力的方法

Country Status (1)

Country Link
CN (1) CN113699479A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686840A (zh) * 2022-04-01 2022-07-01 北航(四川)西部国际创新港科技有限公司 一种抗cmas涂层及其制备方法
CN115584463A (zh) * 2022-07-22 2023-01-10 山东大学 一种抗熔盐腐蚀的热障涂层及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686840A (zh) * 2022-04-01 2022-07-01 北航(四川)西部国际创新港科技有限公司 一种抗cmas涂层及其制备方法
CN114686840B (zh) * 2022-04-01 2023-11-03 北航(四川)西部国际创新港科技有限公司 一种抗cmas涂层及其制备方法
CN115584463A (zh) * 2022-07-22 2023-01-10 山东大学 一种抗熔盐腐蚀的热障涂层及其制备方法
CN115584463B (zh) * 2022-07-22 2024-05-10 山东大学 一种抗熔盐腐蚀的热障涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN113699479A (zh) 一种提高热障涂层抗cmas腐蚀能力的方法
CN111850454B (zh) 一种抗cmas侵蚀的热障涂层及制备方法
CN109336643B (zh) 一种碳化硅陶瓷表面激光熔覆玻璃膜层的制备方法、及复合材料
WO2002103074A1 (en) Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine
CN112851388A (zh) 一种碳化硅陶瓷连接件及其连接方法和应用
CN108911791B (zh) 环境障涂层及其制备方法
CN112592207A (zh) 一种自愈合ZrB2-SiC-Y2O3涂层及其在SiC包埋碳碳复合材料上的应用
CN109468574A (zh) 一种耐高温环境障碍涂层及制备方法
CN114988895A (zh) 一种抗冲击热循环与耐cmas腐蚀的复相共析环境障涂层及其制备方法
CN114000090B (zh) 一种氧化物/氧化物复合材料表面环境障涂层的制备方法
CN114479531A (zh) 一种导电可磨耗封严涂层材料及其制备方法
CN110205626A (zh) 一种功能梯度热障涂层及其制备方法
CN102674874A (zh) 一种ZrC-SiC-LaB6三元超高温陶瓷复合材料及其制备方法
CN107226700A (zh) 一种Si3N4‑BN‑MAS陶瓷复合材料及其制备方法
CN110872713B (zh) 一种y/y2o3金属陶瓷防护涂层的冷喷涂制备方法
CN114574798B (zh) 一种高应变容限抗烧结热障涂层结构设计与制备方法
CN114457307B (zh) 一种抗cmas粘结仿生热障涂层及其制备方法
CN113275594B (zh) 一种高致密度钼合金的选区激光熔化成型制备方法
CN114086102A (zh) 一种Ba(Mg1/3Ta2/3)O3-YSZ双陶瓷层热障涂层及其制备方法
CN112063966B (zh) 一种提高钼合金表面抗高温烧蚀性能的方法
CN114853494A (zh) 一种具有自修复能力的复合陶瓷粉末及其制备方法和应用
CN109485387B (zh) 一种环境障涂层用空心球形bsas粉末的制备方法
CN114315390A (zh) 一种碳/碳复合材料表面宽温域长寿命抗氧化涂层及低温制备方法
CN113684439A (zh) 一种氧化钇热障涂层的制备方法
CN115354322B (zh) 一种高孔隙热障涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211126

WW01 Invention patent application withdrawn after publication