CN113698194A - 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米结构及其制备方法 - Google Patents
柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米结构及其制备方法 Download PDFInfo
- Publication number
- CN113698194A CN113698194A CN202110667604.1A CN202110667604A CN113698194A CN 113698194 A CN113698194 A CN 113698194A CN 202110667604 A CN202110667604 A CN 202110667604A CN 113698194 A CN113698194 A CN 113698194A
- Authority
- CN
- China
- Prior art keywords
- self
- cfo
- bto
- multiferroic
- supporting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2666—Other ferrites containing nickel, copper or cobalt
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62218—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/95—Products characterised by their size, e.g. microceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Semiconductor Memories (AREA)
Abstract
本申请涉及柔性多铁磁电材料领域,更具体地说,涉及一种柔性自支撑BaTiO3‑CoFe2O4多铁自组装纳米材料及其制备方法。柔性自支撑BaTiO3‑CoFe2O4多铁自组装纳米材料包括磁性CoFe2O4(CFO)子体和铁电性BaTiO3(BTO)母体,CFO子体以纳米柱的形式嵌入BTO母体中构成1‑3型复合磁电多铁自组装纳米材料,BTO‑CFO多铁自组装纳米材料为柔性自支撑结构且可摆脱衬底束缚独立存在。本申请柔性自支撑BaTiO3‑CoFe2O4多铁自组装纳米材料摆脱了衬底束缚,在自支撑状态既保持了室温铁电、铁磁性能,而且具有优异的机械柔性,可以自发卷曲成管状,也可以经过操控进行弯曲变形。
Description
技术领域
本申请涉及柔性多铁磁电材料领域,更具体地说,它涉及一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料及其制备方法。
背景技术
磁电多铁材料由于具有铁电序和铁磁序,且两种铁序之间能够相互作用,使其在多态存储器、换能器、传感器等方面具有广阔的应用前景。与单相磁电多铁材料相比,复合磁电多铁材料通过相与相之间以应力为媒介的“乘积相互作用”来实现磁电效果,因而存在更高的磁电耦合系数。经过几十年的研究目前虽已能够实现块体复合材料中的巨大磁电响应,但是随着器件的小型化、微型化发展,制备纳米尺度复合磁电多铁材料成为研究热点。
目前,对于复合磁电多铁纳米材料结构的研究主要有三种类型,分别是0-3型、2-2型及1-3型。其中,0-3型复合磁电多铁材料由于其多晶性质表现出较低的磁电耦合;2-2型复合磁电多铁材料由于受衬底的约束,难以达到理想的磁电耦合系数;而自组装垂直排列的1-3型复合磁电多铁纳米材料拥有独特的柱状阵列形态和更大的体积-界面比,大大降低衬底的束缚作用。
随着柔性电子器件的发展,将磁电多铁材料柔性化的研究是推动柔性电子器件发展的一个重要方向,然而目前研究的1-3型自组装复合磁电多铁纳米材料主要在单晶衬底上制备,成本较高且为刚性衬底,仍然会对其磁电耦合性能造成影响。因此,研究出一种自支撑1-3型复合磁电多铁纳米材料对于推动柔性多铁材料及柔性电子器件的发展具有重要意义。
发明内容
为了改善1-3型自组装复合磁电多铁纳米材料的柔性化以用于柔性电子器件,本申请提供一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料及其制备方法。
第一方面,本申请提供一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,采用如下的技术方案:
一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,包括磁性CoFe2O4(CFO)子体和铁电性BaTiO3(BTO)母体,所述CFO子体以纳米柱的形式嵌入所述BTO母体中构成1-3型复合磁电多铁自组装纳米材料,所述BTO-CFO多铁自组装纳米材料为柔性自支撑材料且可摆脱衬底束缚独立存在。
通过采用上述技术方案,制备得到的柔性自支撑BTO-CFO多铁自组装纳米材料摆脱了衬底束缚,在自支撑状态既保持了优异的室温铁电、铁磁性能,而且具有优异的机械柔性,可以自发卷曲成管状,也可以经过操控进行弯曲变形,其弯曲半径可小至4.23μm,且能够恢复至初始状态,有助于推动柔性多铁材料及柔性电子器件的发展。
优选的,所述BTO-CFO多铁自组装纳米材料的厚度为60~100nm。
优选的,所述CFO子体为矩形纳米柱结构,所述CFO子体的横向直径为25~70nm,所述CFO子体呈有序阵列分布于所述BTO母体中。
优选的,所述CFO子体和所述BTO母体在界面处为外延生长,其外延生长关系为BTO[001]-CFO[001]。
第二方面,本申请提供一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料的制备方法,采用如下的技术方案:
一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料的制备方法,包括以下步骤:
(1)选取特定晶面取向的基片;
(2)在选取的特定晶面取向的基片上制备预溶层;
(3)在预溶层上制备BaTiO3-CoFe2O4(BTO-CFO)层,形成基片/水溶层/BTO-CFO层的多层外延结构;
(4)将制得的多层外延结构浸泡于溶剂中溶解预溶层,基片与BTO-CFO层分离,制得柔性自支撑BTO-CFO多铁自组装纳米材料。
通过采用上述技术方案,整个制备方法简单且环保,产物质量稳定,大大降低了生产成本和后期处理成本,有利于柔性自支撑BTO-CFO多铁自组装纳米材料生产的推广,且制得的产品具有优异的柔性和自支撑特性,有助于推动柔性电子器件的发展。
优选的,包括以下步骤:
(1)选取特定晶面取向的SrTiO3(STO)基片;
(2)在选取的特定晶面取向的STO基片上制备Sr3Al2O6(SAO)层;
(3)在SAO层上制备BaTiO3-CoFe2O4(BTO-CFO)层,形成STO/SAO/BTO-CFO多层外延结构;
(4)将制得的STO/SAO/BTO-CFO多层外延结构浸泡于溶剂中溶解SAO层,STO基片与BTO-CFO层分离,制得柔性自支撑BTO-CFO多铁自组装纳米材料。
通过采用上述技术方案,SAO具有优异的水溶性,其晶格常数与4倍STO衬底晶格常数非常匹配,从而确保SAO能够外延生长,产生平滑的表面,同时确保在其上生长的BTO-CFO多铁自组装纳米材料能够很好地外延生长并产生两相分离的特征结构。
优选的,步骤(2)中制备SAO层、步骤(3)中制备BTO-CFO层均采用脉冲激光沉积方法。
优选的,步骤(2)中SAO层的沉积温度为650~750℃,动态氧分压为1×10-6~5×10- 6Torr。
优选的,步骤(3)中BTO-CFO层的沉积温度为800~850℃,动态氧分压为3×10-2~1×10-1Torr。
优选的,沉积过程中激光能量为280~380mJ,激光脉冲频率独立为8~10Hz,沉积时间独立为10~90min。
通过对脉冲激光法制备SAO层以及BTO-CFO复合多铁自组装纳米材料过程中的沉积温度、动态氧分压、激光能量、激光脉冲频率和沉积时间等进行了优化,制备出择优取向生长、平滑的表面和优异的水溶性的SAO层以及两相分离、特征结构明显的BTO-CFO外延自组装纳米结构。
优选的,步骤(1)中选择的STO基片晶面取向为(001)。
优选的,步骤(1)中特定晶面取向的基片需要经过预处理,预处理包括以下步骤:
a、将特定晶面取向的基片浸于丙酮中,在40~70 ℃下超声清洗3~20 min;
b、再将特定晶面取向的基片浸于无水乙醇中,超声清洗1~6 min;
c、接着将特定晶面取向的基片浸于去离子水中,超声清洗1~6 min;
d、最后使用氮气对特定晶面取向的基片进行干燥。
通过对基片进行清理预处理,可以保证基片表面平整干净,从而有利于制备得到高质量单晶预溶层,也为后续的高质量BTO-CFO多铁自组装纳米材料的制备提供了一个好的基础。
优选的,所述步骤(4)具体包括以下步骤:
(A)用有机聚合物支撑板与基片/水溶层/ BTO-CFO多层外延结构进行紧密贴合;
(B)再将上述处理的样品放在80~100 ℃的加热台上,加热10~20 min;
(C)然后将样品在去离子水中浸泡30~60 min,使预溶层完全溶解;
(D)最后将贴合有BTO-CFO多铁自组装纳米材料的有机聚合物支撑板取出,制备得到柔性自支撑BTO-CFO多铁自组装纳米材料。
通过采用上述技术方案,将有机聚合物支撑板与BTO-CFO多铁自组装纳米材料紧密贴合并加热能够在SAO层溶于水后使有机聚合物支撑板与BTO-CFO多铁自组装纳米材料更加紧密贴合,防止BTO-CFO多铁自组装纳米材料从有机聚合物支撑板上脱落,从而保证BTO-CFO多铁自组装纳米材料的完整性,另外,使用去离子水既能溶解SAO层,又不会破坏BTO-CFO多铁自组装纳米材料。
优选的,所述有机聚合物支撑板是PDMS或者PET中的一种。
通过采用上述技术方案,PDMS和PET都具有较好的化学稳定性以及优越的可伸展性,能够很好地与BTO-CFO多铁自组装纳米材料贴合,防止BTO-CFO多铁自组装纳米材料从有机聚合物支撑板上脱落。
综上所述,本申请包括以下至少一种有益技术效果:
1、本申请柔性自支撑BTO-CFO多铁自组装纳米材料摆脱了衬底束缚,在自支撑状态既能够保持优异的室温铁电、铁磁性能,而且具有优异的机械柔性,可以自发卷曲成管状,也可以经过操控进行弯曲变形,其弯曲半径可小至4.23μm,且能够恢复至初始状态,有助于推动柔性多铁材料及柔性电子器件的发展。
2、本申请的制备方法简单且环保,产物质量稳定,大大降低了生产成本和后期处理成本,有利于柔性自支撑BTO-CFO多铁自组装纳米材料生产的推广,且制得的产品具有优异的柔性和自支撑特性,有助于推动柔性电子器件的发展。
3、采用SAO具有优异的水溶性,其晶格常数与4倍STO衬底晶格常数非常匹配,从而确保SAO能够外延生长,产生平滑的表面,同时确保在其上生长的BTO-CFO多铁自组装纳米材料能够很好地外延生长并产生两相分离的特征结构。
4、本申请中刻蚀法的制备过程十分简单,易于生产,仅仅通过使用去离子水就能使溶解SAO水溶层,同时又不会破坏BTO-CFO多铁自组装纳米材料,产物质量稳定,制得的BTO-CFO多铁自组装纳米材料的质量优异。
附图说明
图1是本申请实施例1制得的柔性自支撑BTO-CFO多铁自组装纳米材料的结构示意图;
图2是本申请实施例1制备柔性自支撑BTO-CFO多铁自组装纳米材料的流程示意图;
图3是本申请实施例1制得的柔性自支撑BTO-CFO多铁自组装纳米材料扫描电子显微镜(SEM)及透射电子显微镜(TEM)结构图;
图4是本申请实施例2制得的柔性自支撑BTO-CFO多铁自组装纳米材料扫描电子显微镜(SEM);
图5是本申请实施例3制得的柔性自支撑BTO-CFO多铁自组装纳米材料扫描电子显微镜(SEM);
图6是本申请实施例1制得的柔性自支撑BTO-CFO多铁自组装纳米材料转移至PDMS上弯曲状态下的实物图;
图7是本申请实施例1制得的柔性自支撑BTO-CFO多铁自组装纳米材料原位SEM弯曲测试图;
图8是本申请实施例1制得的柔性自支撑BTO-CFO多铁自组装纳米材料X射线倒易空间图(RSM);
图9是本申请实施例1制得的柔性自支撑BTO-CFO多铁自组装纳米材料压电力显微镜(PFM)图;
图10是本申请实施例1制得的柔性自支撑BTO-CFO多铁自组装纳米材料磁滞回线图(M-H)。
具体实施方式
复合磁电多铁材料相比于单相磁电多铁材料存在更高的磁电耦合系数,广泛应用于多态存储器、换能器、传感器等方面,为适应器件小型化、微型化的发展,复合磁电多铁材料的研究主要在纳米尺度上。目前复合磁电多铁纳米材料结构的研究主要有三种类型,分别是0-3型、2-2型及1-3型,其中自组装垂直排列的1-3型复合磁电多铁纳米材料因拥有独特的柱状阵列形态和更大的体积-界面比,大大降低了衬底束缚作用的特点而更受欢迎。
而随着柔性电子器件的发展,将磁电多铁材料柔性化的研究是推动柔性电子器件发展的一个重要方向,然而目前研究的1-3型自组装复合磁电多铁纳米材料主要在单晶衬底上制备,成本较高且为刚性衬底,仍然会对其磁电耦合性能造成影响。基于此,本申请研究出了一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,对于推动柔性多铁材料及柔性电子器件的发展具有重要意义。
为了更方便理解本申请的技术方案,以下结合附图和实施例对本申请作进一步详细说明,但不作为本申请限定的保护范围。
实施例1
一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,参照图1,包括磁性CoFe2O4(CFO)子体和铁电性BaTiO3(BTO)母体,CFO子体为矩形纳米柱结构且横向直径为50nm,CFO子体以纳米柱的形式嵌入BTO母体中构成1-3型复合多铁自组装纳米材料,CFO子体呈有序阵列分布于BTO母体中。
BTO-CFO多铁自组装纳米材料为柔性自支撑材料且可摆脱衬底束缚独立存在,BTO-CFO多铁自组装纳米材料的厚度为85nm。
参照图2,上述柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料的制备方法包括以下步骤:
(1)选择晶面取向为001的STO(001)基片,对其进行预处理,具体包括以下步骤:
a、将STO(001)基片浸于丙酮中,在55℃下超声清洗10min;
b、再将STO(001)基片浸于无水乙醇中,超声清洗5min;
c、接着将STO(001)基片浸于去离子水中,超声清洗5min;
d、最后使用氮气对STO(001)基片进行干燥。
(2)采用脉冲激光沉积方法通过脉冲激光沉积系统在预处理的STO(001)基片上选择SAO靶材进行沉积,调整脉冲激光沉积系统生长腔体内的沉积温度为700℃,动态氧分压为3×10-6Torr,控制激光能量为300mJ,激光脉冲频率为10Hz,沉积时间为20min,制得STO/SAO材料。
(3)保持脉冲激光沉积系统生长腔体内的温度为700℃,将动态氧分压调整为8×10-2Torr,待动态氧分压稳定后将温度升高至830℃,待温度稳定后,选择0.65BTO-0.35CFO靶材,在STO/SAO材料上进行沉积,控制激光能量为350mJ,激光脉冲频率为10Hz,沉积时间为40min,制得STO/SAO/BTO-CFO多铁纳米材料;
其中0.65BTO-0.35CFO靶材是由BTO和CFO组成的混合靶材,BTO占据整个靶材成分的65%,CFO占据35%。
(4)将制得的STO/SAO/BTO-CFO多铁纳米材料浸泡于去离子水中以溶解SAO层,从而得到柔性自支撑BTO-CFO自组装纳米结构,具体包括如下步骤:
(A)用PDMS支撑板与STO/SAO/BTO-CFO多铁纳米材料进行紧密贴合;
(B)再将上述处理的样品放在90℃的加热台上,加热10min;
(C)然后将样品在去离子水中浸泡50min,使SAO层完全溶解;
(D)最后将贴合有BTO-CFO多铁自组装纳米材料的PDMS支撑板取出,制备得到柔性自支撑BTO-CFO多铁自组装纳米材料。
实施例2
与实施例1的区别在于,步骤(3)中,动态氧分压调整为5×10-2Torr,控制激光能量为380mJ。
实施例3
与实施例1的区别在于,步骤(3)中,沉积时间为30min。
结合图3a、图4和图5可以看出,制得的柔性自支撑BTO-CFO多铁自组装纳米材料具有特征结构,但实施例2中制得的柔性自支撑BTO-CFO多铁自组装纳米材料的形貌相比于实施例1更散乱且形状不规则,可推断改变动态氧分压和激光能量会对材料的形貌有影响。实施例3中制得的柔性自支撑BTO-CFO多铁自组装纳米材料相比于实施例1其厚度不均匀,可推断沉积时间会对材料的厚度产生影响。
经对比,可见实施例1中制得的柔性自支撑BTO-CFO多铁自组装纳米材料性能和结构更好,对实施例1中制得的柔性自支撑BTO-CFO多铁自组装纳米材料进行后续检测分析,如下。
通过图3b可以看出在自支撑状态BTO-CFO多铁自组装纳米材料可以自发卷曲成管状,证明制得的柔性自支撑BTO-CFO多铁自组装纳米材料具有优异的柔韧性;通过图3c可以看出在自支撑状态BTO-CFO多铁自组装纳米材料也可以平铺在Si衬底上,且转移至Si衬底后仍能保持良好的完整性,推断柔性自支撑BTO-CFO多铁自组装纳米材料也可以平铺在其他衬底上。
如图6所示,通过光学图片可以看出转移至PDMS上的自支撑BTO-CFO多铁自组装纳米材料在弯曲状态下的能够保持完整性和优异的柔性。
如图7所示,通过原位SEM可以看出柔性自支撑BTO-CFO多铁自组装纳米材料能够进行弯曲变形,其弯曲半径可小至4.23μm,且能够恢复至初始状态,证实其具有优异的柔性性能。
如图8所示,通过RSM可以看出沿STO(002)峰附近仅存在BTO(002)与CFO(004)衍射峰,说明柔性自支撑BTO-CFO多铁自组装纳米材料具有高质量的结晶性。
如图9所示,通过PFM形貌图(图9a)可以看出样品具有与图3a相同的形貌,且从震幅图(图9b)可以看出图示纳米柱区域压电响应基本为零,而母体区域压电响应较强,表明样品中母体区域为铁电BTO,而纳米柱区域为磁性CFO,同时也证实样品存在压电性能。
如图10所示,通过M-H可以看出柔性自支撑BTO-CFO自组装纳米结构存在室温磁性能。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。
Claims (14)
1.一种柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,其特征在于,包括磁性CoFe2O4(CFO)子体和铁电性BaTiO3(BTO)母体,所述CFO子体以纳米柱的形式嵌入所述BTO母体中构成1-3型复合磁电多铁自组装纳米材料,所述BTO-CFO多铁自组装纳米材料为柔性自支撑材料且可摆脱衬底束缚独立存在。
2.根据权利要求1所述的柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,其特征在于,所述BTO-CFO多铁自组装纳米材料的厚度为60~100nm。
3.根据权利要求1所述的柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,其特征在于,所述CFO子体为矩形纳米柱结构,所述CFO子体的横向直径为25~70nm,所述CFO子体呈有序阵列分布于所述BTO母体中。
4.根据权利要求1所述的柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料,其特征在于,所述CFO子体和所述BTO母体在界面处为外延生长,其外延生长关系为BTO[001]-CFO[001]。
5.权利要求1~4任一项所述的柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料的制备方法,其特征在于,包括以下步骤:
(1)选取特定晶面取向的基片;
(2)在选取的特定晶面取向的基片上制备预溶层;
(3)在预溶层上制备BaTiO3-CoFe2O4(BTO-CFO)层,形成基片/水溶层/BTO-CFO层的多层外延结构;
(4)将制得的多层外延结构浸泡于溶剂中溶解预溶层,基片与BTO-CFO层分离,制得柔性自支撑BTO-CFO多铁自组装纳米材料。
6.根据权利要求5所述的制备方法,其特征在于,包括以下步骤:
(1)选取特定晶面取向的SrTiO3(STO)基片;
(2)在选取的特定晶面取向的STO基片上制备Sr3Al2O6(SAO)层;
(3)在SAO层上制备BaTiO3-CoFe2O4(BTO-CFO)层,形成STO/SAO/BTO-CFO多层外延结构;
(4)将制得的STO/SAO/BTO-CFO多层外延结构浸泡于溶剂中溶解SAO层,STO基片与BTO-CFO层分离,制得柔性自支撑BTO-CFO多铁自组装纳米材料。
7.根据权利要求6所述的制备方法,其特征在于,步骤(2)中制备SAO层、步骤(3)中制备BTO-CFO层均采用脉冲激光沉积方法。
8.根据权利要求7所述的制备方法,其特征在于,步骤(2)中SAO层的沉积温度为650~750℃,动态氧分压为1×10-6~5×10-6Torr。
9.根据权利要求7所述的制备方法,其特征在于,步骤(3)中BTO-CFO层的沉积温度为800~850℃,动态氧分压为3×10-2~1×10-1Torr。
10.根据权利要求7~9任一项所述的制备方法,其特征在于,沉积过程中激光能量为280~380mJ,激光脉冲频率独立为8~10Hz,沉积时间独立为10~90min。
11.根据权利要求6所述的制备方法,其特征在于,步骤(1)中选择的STO基片晶面取向为(001)。
12.根据权利要求5所述的制备方法,其特征在于,步骤(1)中特定晶面取向的基片需要经过预处理,预处理包括以下步骤:
a、将特定晶面取向的基片浸于丙酮中,在40~70℃下超声清洗3~20min;
b、再将特定晶面取向的基片浸于无水乙醇中,超声清洗1~6min;
c、接着将特定晶面取向的基片浸于去离子水中,超声清洗1~6min;
d、最后使用氮气对特定晶面取向的基片进行干燥。
13.根据权利要求5~12任一项所述的制备方法,其特征在于,所述步骤(4)具体包括以下步骤:
(A)用有机聚合物支撑板与基片/水溶层/BTO-CFO多层外延结构进行紧密贴合;
(B)再将上述处理的样品放在80~100℃的加热台上,加热10~20min;
(C)然后将样品在去离子水中浸泡30~60min,使预溶层完全溶解;
(D)最后将贴合有BTO-CFO多铁自组装纳米材料的有机聚合物支撑板取出,制备得到柔性自支撑BTO-CFO多铁自组装纳米材料。
14.根据权利要求13所述的一种柔性自支撑BaTiO3-CoFe2O4多铁自组装结构的制备方法,其特征在于,所述有机聚合物支撑板是PDMS或者PET中的一种。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110667604.1A CN113698194A (zh) | 2021-06-16 | 2021-06-16 | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米结构及其制备方法 |
PCT/CN2021/139297 WO2022262235A1 (zh) | 2021-06-16 | 2021-12-17 | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110667604.1A CN113698194A (zh) | 2021-06-16 | 2021-06-16 | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米结构及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113698194A true CN113698194A (zh) | 2021-11-26 |
Family
ID=78648107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110667604.1A Pending CN113698194A (zh) | 2021-06-16 | 2021-06-16 | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米结构及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113698194A (zh) |
WO (1) | WO2022262235A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022262235A1 (zh) * | 2021-06-16 | 2022-12-22 | 中国科学院深圳先进技术研究院 | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110023056A (ko) * | 2009-08-28 | 2011-03-08 | 한국세라믹기술원 | 다강성 구조체 및 그 제조방법 |
US20140197910A1 (en) * | 2013-01-14 | 2014-07-17 | The Regents Of The University Of California | Magnetoelectric control of superparamagnetism |
CN106654001A (zh) * | 2016-06-06 | 2017-05-10 | 青海民族大学 | 一种柔性BaTiO3-CoFe2O4磁电复合薄膜 |
CN107910436A (zh) * | 2017-12-14 | 2018-04-13 | 中国计量大学 | 一种复相多铁材料的制备方法 |
CN109994315A (zh) * | 2019-02-19 | 2019-07-09 | 湖北大学 | 由磁性纳米纤维铁电薄膜组合的磁电复合材料及其制备方法 |
CN111446363A (zh) * | 2020-04-09 | 2020-07-24 | 西安交通大学 | 一种自支撑的三维自组装磁电复合薄膜结构及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6835463B2 (en) * | 2002-04-18 | 2004-12-28 | Oakland University | Magnetoelectric multilayer composites for field conversion |
US8647814B2 (en) * | 2006-05-24 | 2014-02-11 | Northwestern University | Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials |
JP2013236014A (ja) * | 2012-05-10 | 2013-11-21 | Toshiba Corp | 多値不揮発性半導体メモリ |
CN111129286B (zh) * | 2019-12-25 | 2022-06-07 | 西安交通大学 | 一种柔性磁电异质结及其制备方法 |
CN112410880B (zh) * | 2020-11-19 | 2022-04-19 | 中国科学院深圳先进技术研究院 | 自调控生长取向的柔性自支撑单晶Fe3O4薄膜材料的制备、薄膜材料及单晶结构 |
CN113698194A (zh) * | 2021-06-16 | 2021-11-26 | 中国科学院深圳先进技术研究院 | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米结构及其制备方法 |
-
2021
- 2021-06-16 CN CN202110667604.1A patent/CN113698194A/zh active Pending
- 2021-12-17 WO PCT/CN2021/139297 patent/WO2022262235A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110023056A (ko) * | 2009-08-28 | 2011-03-08 | 한국세라믹기술원 | 다강성 구조체 및 그 제조방법 |
US20140197910A1 (en) * | 2013-01-14 | 2014-07-17 | The Regents Of The University Of California | Magnetoelectric control of superparamagnetism |
CN106654001A (zh) * | 2016-06-06 | 2017-05-10 | 青海民族大学 | 一种柔性BaTiO3-CoFe2O4磁电复合薄膜 |
CN107910436A (zh) * | 2017-12-14 | 2018-04-13 | 中国计量大学 | 一种复相多铁材料的制备方法 |
CN109994315A (zh) * | 2019-02-19 | 2019-07-09 | 湖北大学 | 由磁性纳米纤维铁电薄膜组合的磁电复合材料及其制备方法 |
CN111446363A (zh) * | 2020-04-09 | 2020-07-24 | 西安交通大学 | 一种自支撑的三维自组装磁电复合薄膜结构及其制备方法 |
Non-Patent Citations (1)
Title |
---|
喻秋山: "2-2型多层BaTiO_3/CoFe_2O_4磁电复合薄膜的制备及其性能表征", 《长江大学学报(自科版)》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022262235A1 (zh) * | 2021-06-16 | 2022-12-22 | 中国科学院深圳先进技术研究院 | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2022262235A1 (zh) | 2022-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6890505B2 (en) | Fine carbon wires and methods for producing the same | |
US20100078628A1 (en) | Universal method for selective area growth of organic molecules by vapor deposition | |
CN103789741B (zh) | 一种基于褶皱的金属表面纳米结构制备方法 | |
JP5136982B2 (ja) | ZnOウィスカー膜、ZnOウィスカー膜形成のためのシード層及びそれらの作製方法 | |
CN112410880B (zh) | 自调控生长取向的柔性自支撑单晶Fe3O4薄膜材料的制备、薄膜材料及单晶结构 | |
Bourlier et al. | Transfer of epitaxial SrTiO3 nanothick layers using water-soluble sacrificial perovskite oxides | |
CN111733452B (zh) | 柔性自支撑单晶磁性Fe3O4薄膜材料的制备、薄膜材料及应用、单晶结构 | |
CN113698194A (zh) | 柔性自支撑BaTiO3-CoFe2O4多铁自组装纳米结构及其制备方法 | |
KR20040059300A (ko) | 자성체/나노소재 이종접합 나노구조체 및 그 제조방법 | |
CN114014253B (zh) | 一种直径可控的管状单晶钙钛矿氧化物薄膜及其制备方法 | |
KR102601094B1 (ko) | 전자 현미경 관찰용 그래핀 복합체 및 시료 기판의 제조방법 | |
KR101767236B1 (ko) | 나노다공성 고분자 멤브레인 및 그 제조방법 | |
Zhao et al. | Large-scale template-assisted growth of LiNbO3 one-dimensional nanostructures for nano-sensors | |
CN103864460A (zh) | 一种有序氧化钨纳米线阵列结构的制备方法 | |
CN115216748B (zh) | 碲薄膜的制备方法和半导体器件 | |
KR20080104455A (ko) | 인장응력을 이용한 단결정 열전 나노선 제조 방법 | |
CN110283346B (zh) | 聚合物薄膜及其制备方法和电容器 | |
KR100821267B1 (ko) | 압축 응력을 이용한 Bi 나노와이어 제조방법 | |
Wei Wang et al. | Controllable synthesis and magnetic properties of ferromagnetic nanowires and nanotubes | |
Mun et al. | Magnetic property modulation of Ni thin films transferred onto flexible substrates | |
JP2009536688A (ja) | 基板上に多数のナノシリンダーを有する部材の製造方法および該部材の使用 | |
US20100119708A1 (en) | Filling structures of high aspect ratio elements for growth amplification and device fabrication | |
KR101406646B1 (ko) | 기상증착중합을 이용한 다차원적 전도성 고분자 나노튜브의 제조방법 | |
TW201223862A (en) | Carbon nanotube structure and fabrication thereof | |
Zhang et al. | Vertically free-standing ordered Pb (Zr 0.52 Ti 0.48) O 3 nanocup arrays by template-assisted ion beam etching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |