CN113697797B - 一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电化学应用 - Google Patents

一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电化学应用 Download PDF

Info

Publication number
CN113697797B
CN113697797B CN202111027509.1A CN202111027509A CN113697797B CN 113697797 B CN113697797 B CN 113697797B CN 202111027509 A CN202111027509 A CN 202111027509A CN 113697797 B CN113697797 B CN 113697797B
Authority
CN
China
Prior art keywords
cnts
ldhs
nico
solution
tree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111027509.1A
Other languages
English (en)
Other versions
CN113697797A (zh
Inventor
申聪聪
陈粤华
党坦
冯北斗
崔景强
仉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202111027509.1A priority Critical patent/CN113697797B/zh
Publication of CN113697797A publication Critical patent/CN113697797A/zh
Application granted granted Critical
Publication of CN113697797B publication Critical patent/CN113697797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种N‑CNT@NiCo‑LDHs树状纳米花材料及其制备方法和光电化学应用,属于生物传感技术领域。本发明在室温下,先将无水三氯化铁加入甲基橙溶液中,形成纤维状复合物悬浊液,备用;向纤维状复合物悬浊液加入吡咯单体,搅拌过夜、过滤、洗涤、干燥得到聚吡咯空心纳米管,然后在氮气氛围下高温碳化制得N‑CNTs;以N‑CNTs为导电基底,超声分散在乙醇中,制备得到溶液A;Co(NO3)2·6H2O和Ni(NO3)2·6H2O作为金属源,六亚甲基四胺作为均相沉淀剂,溶解于水中制备得到溶液B,将溶液A和溶液B混合,进行均相沉淀反应,洗涤、干燥后制备得到N‑CNTs@NiCo‑LDHs树状纳米花材料。本发明提供的制备方法所用原料廉价易得、成本低、环境友好、合成过程简单、反应条件易于实现,可广泛用于光电化学领域。

Description

一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电 化学应用
技术领域
本发明涉及生物传感技术领域,更具体的涉及一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和用途。
背景技术
H2O2作为生命体内许多生物过程的副产物以及最具代表性的活性氧(ROS)之一,在细胞分裂、信号传导、细胞凋亡等生命过程中至关重要,因此,H2O2的高灵敏检测在生物分析中具有重要的意义。传统的H2O2检测技术有细胞成像、荧光光谱法、电化学法等,其中电化学法由于灵敏度高、检测速度快、用量少、成本低等优势被一致认为是一种强有力的检测手段,同时电化学发光技术结合了电化学的高灵敏性及光信号多重输出的优势广泛应用于生物标志物的检测。而且,H2O2具有良好氧化还原活性,开发具有高活性的微/纳尺寸电化学界面及简单高效的催化剂成为研究的热点。传统H2O2催化剂主要基于铂、钯、金、银等贵金属纳米材料以及H2O2酶复合物等,具有成本高、酶易失活等局限性。另外,过渡金属镍(Ni),钴(Co),铁等及其复合物具有良好的催化活性,成本低,环境友好,尤其是层状双氢氧化物,如NiCo-LDHs广泛用于储能器件的开发及催化裂解水等应用,对其生物催化性能研究及生物标志物检测仍鲜有报道。
基于此,本发明制备了一种具有H2O2模拟酶N-CNTs@NiCo-LDHs树状纳米花材料,结合灵敏度高、选择性好的电化学及电化学发光检测体系开发了一种光电双模传感器检测细胞内的H2O2
发明内容
针对现有技术存在的不足,本发明提供了一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,该制备方法所用原料廉价易得、成本低、环境友好、合成过程简单、反应条件易于实现,具有良好催化性能的N-CNTs@NiCo-LDHs树状纳米花材料在电化学领域具有广泛应用。
本发明的第一个目的是提供一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,按照以下步骤进行:
步骤(1)、室温下,将无水三氯化铁加入甲基橙溶液中,搅拌形成纤维状复合物悬浊液,以纤维状复合物作为自降解模板,备用;
步骤(2)、室温下,向纤维状复合物悬浊液加入吡咯单体,搅拌过夜、过滤、洗涤、干燥得到聚吡咯空心纳米管,然后在氮气氛围下高温碳化制得N-CNTs;
步骤(3)、以步骤(2)制得的N-CNTs为导电基底,超声分散在乙醇中,制备得到溶液A;
Co(NO3)2·6H2O和Ni(NO3)2·6H2O作为金属源,六亚甲基四胺作为均相沉淀剂,溶解于水中制备得到溶液B,将溶液A和溶液B混合,进行均相沉淀反应,洗涤、干燥后制备得到N-CNTs@NiCo-LDHs树状纳米花材料。
优选的,步骤(1)的纤维状复合物悬浊液中,甲基橙和无水三氯化铁的摩尔浓度比为1:2~2:1,甲基橙的浓度为20~80mM,无水三氯化铁的浓度为20~80mM,搅拌转速为500~2000r/min,搅拌时间为10~60min。
优选的,步骤(1)中,甲基橙和无水三氯化铁的摩尔浓度比为1:1,甲基橙的浓度为48mM,无水三氯化铁的浓度为48mM,搅拌转速为1200r/min,搅拌时间为30min。
优选的,步骤(2)中,吡咯单体加入量为50~200mM,室温为15~40℃,搅拌转速为500~2000r/min,搅拌时间为12~48h,减压抽滤后用水和乙醇洗涤3~5遍,至滤液变为无色,干燥温度为50~80℃,干燥时间为10~24h。
优选的,步骤(2)中,吡咯单体加入量为120mM,室温为25℃,搅拌转速为1200r/min,搅拌时间为24h,干燥温度为60℃,干燥时间为12h。
优选的,步骤(2)中,高温碳化条件为:以2~6℃/min的速率从室温升温至700~900℃,恒温1~3h。
优选的,步骤(2)中,高温碳化条件为:以5℃/min的速率从室温升温至800℃,恒温2h。
优选的,步骤(3)中,取15~60mg的N-CNTs超声分散在10-100mL乙醇中,制备得到溶液A;
溶液B中,水的体积为30ml,HMT浓度为75mM,Ni(NO3)2·6H2O、Co(NO3)2·6H2O中Ni和Co的摩尔比为1:1~1:4。
优选的,步骤(3)中,取40mg的N-CNTs超声分散在30mL乙醇中,制备得到溶液A;
溶液B中,水的体积为30ml,HMT浓度为75mM,Ni(NO3)2·6H2O、Co(NO3)2·6H2O中Ni和Co的摩尔比为1:2。
优选的,步骤(3)中,均相反应条件为:在60~95℃反应3~8h,自然冷却到室温。用水和乙醇洗涤,除去多余的反应物,干燥温度为50~80℃,干燥时间为10~24h。
优选的,步骤(3)中,均相反应条件为:在90℃反应5h,干燥温度为60℃,干燥时间为12h。
本发明的第二个目的是根据上述方法制备得到N-CNTs@NiCo-LDHs树状纳米花材料。
本发明的第三个目的是提供上述N-CNTs@NiCo-LDHs树状纳米花材料在光电化学中检测H2O2的应用,第一个检测方法为:将N-CNTs@NiCo-LDHs树状纳米花材料均匀分散在水中,通过直接滴涂法将核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料滴加在玻碳电极表面修饰电极构建电化学生物传感器测定H2O2
具体的,将N-CNTs@NiCo-LDHs树状纳米花材料均匀分散在二次水中,制得的N-CNTs@NiCo-LDHs溶液,取0~3mg/mL的核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料5~10μL滴加在直径为3mm的玻碳电极表面,用0.2~1%的nafion溶液进一步将材料固定在电极表面,在烤灯下烤10~30min,即完成电极修饰。将上述修饰好的电极放入pH为6~8的磷酸盐缓冲溶液中,进行循环伏安扫描,根据循环伏安的特征峰位置,以-0.4~-0.6V为起始电压,用I-t曲线定量测定H2O2的含量。
第二个检测方法是:将N-CNTs@NiCo-LDHs树状纳米花材料与鲁米诺混合均匀,将鲁米诺负载在核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料表面,构建电化学发光生物传感器测定H2O2
具体的,将核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料与50μM、100μM、150μM、200μM的电化学发光试剂鲁米诺(Luminol)在室温下震荡10~20h混合均匀,使得大量的Luminol负载在其表面,由于H2O2能够显著增强Luminol的发光强度,以此构建电化学发光生物传感器测定H2O2
与现有技术相比,本发明具有以下有益效果:
本发明以N-CNTs为模板诱导过渡金属Ni和Co在其表面原位生成NiCo-LDHs核壳树状纳米花材料,结合灵敏度高、选择性好的电化学及电化学发光检测体系开发了一种光电双模传感器检测细胞内的H2O2。N-CNTs的引入不仅为电子的传输提供高速的通道,同时作为模板诱导NiCo-LDHs在其表面均匀生长为树状纳米花。具有H2O2拟酶性质的N-CNTs@NiCo-LDHs合成简单、性质稳定、价格低廉,能过代替传统的H2O2氧化酶,降低H2O2的氧化过电位,并催化其分解。同时具有类H2O2酶的核壳结构的N-CNTs@NiCo-LDHs树状纳米花具有较大的比表面积大、能够吸附大量的Luminol,形成N-CNTs@NiCo-LDHs-luminol复合物,避免了生物酶失活及包覆不均造成的酶活性降低的缺陷。H2O2作为传统的电化学发光试剂luminol的共反应剂,其氧化得到的活性氧能够显著增强luminol的电化学发光强度。N-CNTs@NiCo-LDHs直接催化H2O2产生活性氧如·O2 -,溶液中溶解O2进一步促进活性氧的产生,且N-CNTs@NiCo-LDHs-luminol缩短了活性氧的扩散距离使得电化学发光传感器的灵敏度得到了进一步提高。因此,结合灵敏度高、选择性好、操作简单的电化学及电化学发光传感体系实现光电双模检测,有望为活细胞内H2O2的实时检测提供一定的理论指导。
本发明制备的核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料不仅能够用于常规的储能产品开发,其高速的电子传递效率、大比表面积及模拟酶的催化性能在疾病诊断、疗效监测等生命分析中也具有广泛的应用前景。
附图说明
图1为本发明提供的制备及测试流程图;
图2为实施例1制备的N-CNTs@NiCo-LDHs的电镜表征图;其中图2A为SEM图,图2B为TEM图;
图3为实施例1-3制备的材料修饰电极电化学测定2mM H2O2的循环伏安图;
图4为实施例1和对比例1-3制备的材料修饰电极电化学测定H2O2的电流-时间图;
图5为实施例1中不同量的N-CNTs@NiCo-LDHs修饰电极电化学测定H2O2的循环伏安图;
图6为电化学法和电化学发光法测定H2O2的可行性图,其中,图6A为电化学法测定H2O2的可行性图,图6B为电化学发光法测定H2O2的可行性图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。同时下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。另外,需要说明的是,Py单体表示吡咯单体,PPy表示聚吡咯,PBS溶液表示磷酸盐缓冲液,其中磷酸盐缓冲液的制备方法是:将5mM磷酸氢二钠,5mM磷酸二氢钠及100mM氯化钠溶于水中,混合后得到pH为7.3的磷酸盐缓冲液。Luminol表示鲁米诺,化学名称为3-氨基-苯二甲酰肼,Luminol溶液配制方法为:将3-氨基-苯二甲酰肼溶于0.1M的NaOH溶液中,配制得到10mM的Luminol溶液。HMT表示六亚甲基四胺,二次水表示经过第二次蒸馏的水。Nafion溶液表示全氟磺酸型聚合物溶液。
实施例1
称取1.5710g的甲基橙溶于100mL水中形成透明溶液,迅速加入0.7780g的无水FeCl3,以1200r/min保持30min形成均匀的纤维状复合物悬浊液,以纤维状复合物作为自降解模板。
将0.84mL的Py单体逐滴加入到上述纤维状复合物悬浊液中,25℃的温度条件下,转速1200r/min磁力搅拌保持24h,使得Py均匀聚合在其表面,用布氏漏斗减压抽滤后用二次水和无水乙醇多次洗涤至滤液变为无色,以除去多余的甲基橙,再将过滤后的产物于60℃的烘箱中干燥12h即得PPy。最后将PPy固体于N2氛围下,以5℃/min的速率升温至800℃,保温2h,即制得黑色的N-CNTs。
称取40mg上述合成的N-CNTs,加入30mL的乙醇中,超声分散均匀,得到溶液A。以Ni/Co摩尔比为1:2来制备片层双氢氧化物,即将0.1454g的Ni(NO3)2·6H2O,0.2910g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,得到溶液B,然后将溶液A和溶液B这两种溶液混合于90℃条件下均相沉淀5h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于60℃的鼓风干燥箱中干燥12h得到核壳结构的N-CNTs@Ni1Co2-LDHs树状纳米花材料。
实施例2
称取1.5710g的甲基橙溶于100mL水中形成透明溶液,迅速加入0.7780g的无水FeCl3,以1200r/min保持30min形成均匀的纤维状复合物悬浊液,以纤维状复合物作为自降解模板。
将0.84mL的Py单体逐滴加入到上述纤维状复合物悬浊液中,25℃的温度条件下,转速1200r/min磁力搅拌保持24h,使得Py均匀聚合在其表面,用布氏漏斗减压抽滤后用二次水和无水乙醇多次洗涤至滤液变为无色,以除去多余的甲基橙,再将过滤后的产物于60℃的烘箱中干燥12h即得PPy。最后将PPy固体于N2氛围下,以5℃/min的速率升温至800℃,保温2h,即制得黑色的N-CNTs。
称取40mg上述合成的N-CNTs,加入30mL的乙醇中,超声分散均匀,得到溶液A。以Ni/Co摩尔比为1:1来制备片层双氢氧化物,即将0.2181g的Ni(NO3)2·6H2O,0.2183g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,得到溶液B,然后将溶液A和溶液B这两种溶液混合于90℃条件下均相沉淀5h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于60℃的鼓风干燥箱中干燥12h得到核壳结构的N-CNTs@Ni1Co1-LDHs树状纳米花材料。
实施例3
称取1.5710g的甲基橙溶于100mL水中形成透明溶液,迅速加入0.7780g的无水FeCl3,以1200r/min保持30min形成均匀的纤维状复合物悬浊液,以纤维状复合物作为自降解模板。
将0.84mL的Py单体逐滴加入到上述纤维状复合物悬浊液中,25℃的温度条件下,转速1200r/min磁力搅拌保持24h,使得Py均匀聚合在其表面,用布氏漏斗减压抽滤后用二次水和无水乙醇多次洗涤至滤液变为无色,以除去多余的甲基橙,再将过滤后的产物于60℃的烘箱中干燥12h即得PPy。最后将PPy固体于N2氛围下,以5℃/min的速率升温至800℃,保温2h,即制得黑色的N-CNTs。
称取40mg上述合成的N-CNTs,加入30mL的乙醇中,超声分散均匀,得到溶液A。以Ni/Co摩尔比为1:4来制备片层双氢氧化物,即将0.0873g的Ni(NO3)2·6H2O,0.3492g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,得到溶液B,然后将溶液A和溶液B这两种溶液混合于90℃条件下均相沉淀5h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于60℃的鼓风干燥箱中干燥12h得到核壳结构的N-CNTs@Ni1Co4-LDHs树状纳米花材料。
实施例4
称取0.6546g的甲基橙溶于100mL水中形成透明溶液,迅速加入0.6480g的无水FeCl3,以500r/min保持60min形成均匀的纤维状复合物悬浊液,以纤维状复合物作为自降解模板。
将0.35mL的Py单体逐滴加入到上述纤维状复合物悬浊液中,15℃的温度条件下,转速500r/min磁力搅拌保持48h,使得Py均匀聚合在其表面,用布氏漏斗减压抽滤后用二次水和无水乙醇多次洗涤至滤液变为无色,以除去多余的甲基橙,再将过滤后的产物于50℃的烘箱中干燥24h即得PPy。最后将PPy固体于N2氛围下,以2℃/min的速率升温至900℃,保温1h,即制得黑色的N-CNTs。
称取60mg上述合成的N-CNTs,加入100mL的乙醇中,超声分散均匀,得到溶液A。以Ni/Co摩尔比为1:1来制备片层双氢氧化物,即将0.2181g的Ni(NO3)2·6H2O,0.2183g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,得到溶液B,然后将溶液A和溶液B这两种溶液混合于60℃条件下均相沉淀8h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于50℃的鼓风干燥箱中干燥24h得到核壳结构的N-CNTs@Ni1Co1-LDHs树状纳米花材料。
实施例5
称取2.6184g的甲基橙溶于100mL水中形成透明溶液,迅速加入0.6480g的无水FeCl3,以2000r/min保持10min形成均匀的纤维状复合物悬浊液,以纤维状复合物作为自降解模板。
将1.40mL的Py单体逐滴加入到上述纤维状复合物悬浊液中,40℃的温度条件下,转速2000r/min磁力搅拌保持12h,使得Py均匀聚合在其表面,用布氏漏斗减压抽滤后用二次水和无水乙醇多次洗涤至滤液变为无色,以除去多余的甲基橙,再将过滤后的产物于80℃的烘箱中干燥10h即得PPy。最后将PPy固体于N2氛围下,以6℃/min的速率升温至700℃,保温3h,即制得黑色的N-CNTs。
称取15mg上述合成的N-CNTs,加入10mL的乙醇中,超声分散均匀,得到溶液A。以Ni/Co摩尔比为1:3来制备片层双氢氧化物,即将0.1454g的Ni(NO3)2·6H2O,0.0.4362g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,得到溶液B,然后将溶液A和溶液B这两种溶液混合于95℃条件下均相沉淀3h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于80℃的鼓风干燥箱中干燥10h得到核壳结构的N-CNTs@Ni1Co3-LDHs树状纳米花材料。
实施例6
称取1.3092g的甲基橙溶于100mL水中形成透明溶液,迅速加入1.296g的无水FeCl3,以1500r/min保持25min形成均匀的纤维状复合物悬浊液,以纤维状复合物作为自降解模板。
将0.7mL的Py单体逐滴加入到上述纤维状复合物悬浊液中,30℃的温度条件下,转速1500r/min磁力搅拌保持20h,使得Py均匀聚合在其表面,用布氏漏斗减压抽滤后用二次水和无水乙醇多次洗涤至滤液变为无色,以除去多余的甲基橙,再将过滤后的产物于70℃的烘箱中干燥15h即得PPy。最后将PPy固体于N2氛围下,以5℃/min的速率升温至800℃,保温3h,即制得黑色的N-CNTs。
称取30mg上述合成的N-CNTs,加入50mL的乙醇中,超声分散均匀,得到溶液A。以Ni/Co摩尔比为1:4来制备片层双氢氧化物,即将0.0873g的Ni(NO3)2·6H2O,0.3492g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,得到溶液B,然后将溶液A和溶液B这两种溶液混合于80℃条件下均相沉淀6h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于70℃的鼓风干燥箱中干燥20h得到核壳结构的N-CNTs@Ni1Co4-LDHs树状纳米花材料。
实施例7
称取1.3092g的甲基橙溶于100mL水中形成透明溶液,迅速加入0.3240g的无水FeCl3,以1200r/min保持30min形成均匀的纤维状复合物悬浊液,以纤维状复合物作为自降解模板。
将1.05mL的Py单体逐滴加入到上述纤维状复合物悬浊液中,25℃的温度条件下,转速1000r/min磁力搅拌保持30h,使得Py均匀聚合在其表面,用布氏漏斗减压抽滤后用超纯水和无水乙醇多次洗涤至滤液变为无色,以除去多余的甲基橙,再将过滤后的产物于60℃的烘箱中干燥12h即得PPy。最后将PPy固体于N2氛围下,以4℃/min的速率升温至750℃,保温1h,即制得黑色的N-CNTs。
称取40mg上述合成的N-CNTs,加入30mL的乙醇中,超声分散均匀,得到溶液A。以Ni/Co摩尔比为1:2来制备片层双氢氧化物,即将0.1454g的Ni(NO3)2·6H2O,0.2910g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL超纯水中,得到溶液B,然后将溶液A和溶液B这两种溶液混合于70℃条件下均相沉淀7h,再用超纯水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于60℃的鼓风干燥箱中干燥15h得到核壳结构的N-CNTs@Ni1Co2-LDHs树状纳米花材料。
对比例1
在无N-CNTs模板下,以Ni/Co摩尔比为1:1来制备片层双氢氧化物,即将0.2181g的Ni(NO3)2·6H2O,0.2183g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,然后将上述两种溶液混合于90℃条件下均相沉淀5h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于60℃鼓风干燥箱中干燥12h得到Ni1Co1-LDHs。
对比例2
在无N-CNTs模板下,以Ni/Co摩尔比为1:2来制备片层双氢氧化物,即将0.1454g的Ni(NO3)2·6H2O,0.2910g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,然后将上述两种溶液混合于90℃条件下均相沉淀5h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于60℃鼓风干燥箱中干燥12h得到Ni1Co2-LDHs。
对比例3
在无N-CNTs模板下,以Ni/Co摩尔比为1:4来制备片层双氢氧化物,即将0.0873g的Ni(NO3)2·6H2O,0.3492g的Co(NO3)2·6H2O和0.3154g的HMT完全溶解在30mL二次水中,然后将上述两种溶液混合于90℃条件下均相沉淀5h,再用二次水和无水乙醇离心洗涤各三次以除去多余的反应物,最后于60℃鼓风干燥箱中干燥12h得到Ni1Co4-LDHs。
图1为本发明中N-CNTs@NiCo-LDHs树状纳米花材料的制备及测试流程图;
图2为实施例1制备的N-CNTs@NiCo-LDHs的扫描电镜和透射电镜图,从图2中可以看出非常薄的NiCo-LDH二维纳米片有序组装在管状N-CNTs的表面,表现出极大的表面积。
将实施例1-3和对比例1-3制备的材料用于在光电化学中检测H2O2
检测方法1:
分别称取2mg上述实施例1-3和对比例1-3制备的树状纳米花材料分散在1mL二次水中,超声3min使其均匀分散,用移液枪吸取7.5μL分散液滴加在用α-Al2O3打磨干净的玻碳电极表面,于烤灯下烤15min使其成膜,再取质量分数为0.5%的Nafion溶液7.5μL进一步将树状纳米花材料固定在电极表面。最后在pH为7.3的PBS溶液(5mM磷酸氢二钠,5mM磷酸二氢钠及100mM氯化钠的混合液),在-1.0~0V的电压范围内,0.1mV/s的中对H2O2进行检测。
如图3所示,在-0.5V左右出现明显的特征峰,且Ni和Co的摩尔比为1:2时,峰电流强度最高。且峰电流大小随着H2O2浓度的增大呈梯度增大的趋势(图6A)。并以-0.5V为起始电压扫电流-时间曲线(图4),电流强度随着H2O2浓度的增大呈最大的增大趋势。
检测方法2
分别称取2mg上述合成的上述实施例1和对比例1-3制备的树状纳米花材料与15μL10mM的Luminol溶液(提前用0.1M的NaOH溶液配成10mM)分散在1mL二次水中,室温下震荡12h形成载有大量Luminol的树状纳米花材料-Luminol复合体,用二次水离心洗涤3次,除去多余的Luminol溶液,最终分散在1mL二次水中。为增强Luminol复合物的导电性及稳定性,在3mm的玻碳电极表面镀一层聚苯胺(在-0.2~1.0V的电压范围内,以100mV/s的扫速,扫30圈循环伏安),然后用移液枪吸取7.5μL分散液滴加在用α-Al2O3打磨干净的玻碳电极表面,于避光状态干燥使其成膜,再取质量分数为0.5%的Nafion溶液7.5μL进一步将复合物固定在电极表面。最后在pH为8.3的PBS溶液对H2O2进行定量测定。如图6B所示,即使H2O2浓度低至微摩尔级别,随其浓度的增加,电化学发光强度明显增大,表明基于N-CNTs@NiCo-LDHs-Luminol构建的电化学发光传感器在H2O2高灵敏检测方面具有较大的应用潜力。
为了研究不同量的N-CNTs@NiCo-LDHs修饰电极电化学测定H2O2的影响,本发明分别称取1mg、2mg、3mg实施例1中制备的N-CNTs@NiCo-LDHs,通过检测方法1制备得到检测试样,具体为,分别称取1mg,2mg,3mg上述合成的N-CNTs@NiCo-LDHs树状纳米花材料分散在1mL二次水中,超声3min使其均匀分散,用移液枪吸取7.5μL分散液滴加在用α-Al2O3打磨干净的玻碳电极表面,于烤灯下烤15min使其成膜,再取质量分数为0.5%的Nafion溶液7.5μL进一步将复合物固定在电极表面。最后在pH为7.3的PBS溶液(5mM磷酸氢二钠,5mM磷酸二氢钠及100mM氯化钠的混合液),在-1.0~0V的电压范围内,0.05mV/s的中对H2O2进行检测。如图5所示,其中图5中0mg、1mg、2mg、3mg分别指称取N-CNTs@NiCo-LDHs树状纳米花材料的质量,峰电流强度在材料修饰量为2mg/mL,即称取N-CNTs@NiCo-LDHs树状纳米花材料的质量为2mg时,表现出最大的峰强度。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,其特征在于,按照以下步骤进行:
步骤(1)、室温下,将无水三氯化铁加入甲基橙溶液中,搅拌形成纤维状复合物悬浊液,备用;甲基橙和无水三氯化铁的摩尔浓度比为1:2~2:1;
步骤(2)、室温下,向纤维状复合物悬浊液加入吡咯单体,搅拌过夜、过滤、洗涤、干燥得到聚吡咯空心纳米管,然后在氮气氛围下高温碳化制得N-CNTs;吡咯单体加入量为50~200mM;高温碳化条件为:700~900℃下恒温1~3h进行碳化;
步骤(3)、以步骤(2)制得的N-CNTs为导电基底,超声分散在乙醇中,制备得到溶液A;N-CNTs与乙醇的比例为15~60mg:10-100mL;
Co(NO3)2·6H2O和Ni(NO3)2·6H2O作为金属源,六亚甲基四胺作为均相沉淀剂,溶解于水中制备得到溶液B,将溶液A和溶液B混合,进行均相沉淀反应,洗涤、干燥后制备得到N-CNTs@NiCo-LDHs树状纳米花材料;Ni(NO3)2·6H2O、Co(NO3)2·6H2O中Ni和Co的摩尔比为1:1~1:4;
均相反应条件为:在60~95℃反应3~8h。
2.根据权利要求1所述的一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,其特征在于,步骤(1)的纤维状复合物悬浊液中甲基橙的浓度为20~80mM,无水三氯化铁的浓度为20~80mM,搅拌转速为500~2000r/min,搅拌时间为10~60min。
3.根据权利要求2所述的一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,其特征在于,步骤(2)中,室温为15~40℃,搅拌转速为500~2000r/min,搅拌时间为12~48h,减压抽滤后用水和乙醇洗涤至滤液变为无色,干燥温度为50~80℃,干燥时间为10~24h。
4.根据权利要求3所述的一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,其特征在于,步骤(2)中,高温碳化条件为:以2~6℃/min的速率从室温升温至700~900℃,恒温1~3h。
5.根据权利要求4所述的一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,其特征在于,步骤(3)中,溶液B中,水的体积为30mL ,六亚甲基四胺的浓度为75mM。
6.根据权利要求5所述的一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,其特征在于,步骤(3)中,均相反应后,自然冷却到室温;用水和乙醇洗涤,除去多余的反应物,干燥温度为50~80℃,干燥时间为10~24h。
7.根据权利要求6所述的一种N-CNTs@NiCo-LDHs树状纳米花材料的制备方法,其特征在于,步骤(3)中,均相反应条件为:90℃反应5h,干燥温度为60℃,干燥时间为12h。
8.一种权利要求1-7任一项所述的方法制备的N-CNTs@NiCo-LDHs树状纳米花材料。
9.一种权利要求8所述的N-CNTs@NiCo-LDHs树状纳米花材料在光电化学中检测H2O2的应用,其特征在于,将核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料均匀分散在水中,通过直接滴涂法将核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料滴加在玻碳电极表面修饰电极构建电化学生物传感器测定H2O2
10.一种权利要求8所述的N-CNTs@NiCo-LDHs树状纳米花材料在光电化学中检测H2O2的应用,其特征在于:将核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料与鲁米诺溶液混合均匀,将鲁米诺负载在核壳结构的N-CNTs@NiCo-LDHs树状纳米花材料表面,构建电化学发光生物传感器测定H2O2
CN202111027509.1A 2021-09-02 2021-09-02 一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电化学应用 Active CN113697797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111027509.1A CN113697797B (zh) 2021-09-02 2021-09-02 一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电化学应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111027509.1A CN113697797B (zh) 2021-09-02 2021-09-02 一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电化学应用

Publications (2)

Publication Number Publication Date
CN113697797A CN113697797A (zh) 2021-11-26
CN113697797B true CN113697797B (zh) 2022-11-08

Family

ID=78657523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111027509.1A Active CN113697797B (zh) 2021-09-02 2021-09-02 一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电化学应用

Country Status (1)

Country Link
CN (1) CN113697797B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619531B (zh) * 2022-04-02 2023-07-21 北京林业大学 一种以层状双氢氧化物与聚吡咯为光热超疏水表面的储能木材及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665248A (zh) * 2009-09-11 2010-03-10 清华大学 基于层状双羟基金属氢氧化物制备单双壁碳纳米管的方法
GB201122199D0 (en) * 2011-12-22 2012-02-01 Bio Nano Consulting Carbon nanotube aerogels/xerogels/gels for CO2 capture
CN102784648A (zh) * 2012-08-16 2012-11-21 西南石油大学 三维碳纳米管/石墨烯复合材料生长用催化剂及制备方法
WO2015044964A1 (en) * 2013-09-30 2015-04-02 Council Of Scientific & Industrial Research Magnetic nanoparticles decorated activated carbon nanocomposites for purification of water
CN105513819A (zh) * 2016-01-03 2016-04-20 复旦大学 一种镍钴双金属氢氧化物纳米片/氮掺杂碳纤维杂化材料及其制备方法
JP2016166856A (ja) * 2015-03-06 2016-09-15 アークレイ株式会社 血液検査装置および血液検査方法
CN108766780A (zh) * 2018-05-16 2018-11-06 陕西科技大学 一种核壳结构的铁酸锂@PPy超级电容器电极材料及其制备方法
CN109433234A (zh) * 2018-12-04 2019-03-08 浙江理工大学 镍铁磷化物/碳纳米管复合材料及其制备方法和应用
CN109735283A (zh) * 2018-12-29 2019-05-10 平潭智汇畅城科技有限公司 一种抗氧化耐摩擦的粘结剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350279A (zh) * 2011-06-22 2012-02-15 浙江大学 一种制备碳纳米管/层状双金属氢氧化物复合物的方法
CN105197913A (zh) * 2015-10-15 2015-12-30 张家港博威新能源材料研究所有限公司 一种长阵列碳纳米管及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665248A (zh) * 2009-09-11 2010-03-10 清华大学 基于层状双羟基金属氢氧化物制备单双壁碳纳米管的方法
GB201122199D0 (en) * 2011-12-22 2012-02-01 Bio Nano Consulting Carbon nanotube aerogels/xerogels/gels for CO2 capture
CN102784648A (zh) * 2012-08-16 2012-11-21 西南石油大学 三维碳纳米管/石墨烯复合材料生长用催化剂及制备方法
WO2015044964A1 (en) * 2013-09-30 2015-04-02 Council Of Scientific & Industrial Research Magnetic nanoparticles decorated activated carbon nanocomposites for purification of water
JP2016166856A (ja) * 2015-03-06 2016-09-15 アークレイ株式会社 血液検査装置および血液検査方法
CN105513819A (zh) * 2016-01-03 2016-04-20 复旦大学 一种镍钴双金属氢氧化物纳米片/氮掺杂碳纤维杂化材料及其制备方法
CN108766780A (zh) * 2018-05-16 2018-11-06 陕西科技大学 一种核壳结构的铁酸锂@PPy超级电容器电极材料及其制备方法
CN109433234A (zh) * 2018-12-04 2019-03-08 浙江理工大学 镍铁磷化物/碳纳米管复合材料及其制备方法和应用
CN109735283A (zh) * 2018-12-29 2019-05-10 平潭智汇畅城科技有限公司 一种抗氧化耐摩擦的粘结剂及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review;Baig, N et al.;《TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY》;20171031;全文 *
Decoration of nickel hydroxide nanoparticles onto polypyrrole nanotubes with enhanced electrochemical performance for supercapacitors;Zhang, J et al.;《JOURNAL OF ALLOYS AND COMPOUNDS》;20171015;全文 *
Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors;Bai, CH et al.;《JOURNAL OF COLLOID AND INTERFACE SCIENCE》;20161015;全文 *
Homologous NiCoP/CoP hetero-nanosheets supported on N-doped carbon nanotubes for high-rate hybrid supercapacitors;Dang, T et al.;《ELECTROCHIMICA ACTA》;20200501;全文 *
Preparation of CNTs/MgAl-LDHs Composites and their Adsorption Properties for Chloride Ions;Ke Guojun et al.;《MATERIALS SCIENCE FORUM》;20191231;全文 *
碳材料复合镍钴氢氧化物电极用于超级电容器;邱恒睿;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20201215;全文 *
碳纳米管(石墨烯)/铁氧体复合材料的制备及性能研究;张申力;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20180615;全文 *

Also Published As

Publication number Publication date
CN113697797A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
Biswas et al. Ultrasmall Au (0) inserted hollow PCN-222 MOF for the high-sensitive detection of estradiol
Yang et al. Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol–dissolved O2 system for ultrasensitive biomarkers immunoassay
Medetalibeyoglu et al. Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification
Jia et al. NiCo2O4 spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene
Feng et al. AuPt nanocrystals/polydopamine supported on open-pored hollow carbon nanospheres for a dual-signaling electrochemical ratiometric immunosensor towards h-FABP detection
Ma et al. Electrochemical immunosensors for sensitive detection of neuron-specific enolase based on small-size trimetallic Au@ Pd^ Pt nanocubes functionalized on ultrathin MnO2 nanosheets as signal labels
Zhao et al. Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose
Yan et al. Photoelectrochemical competitive immunosensor for 17β-estradiol detection based on ZnIn2S4@ NH2-MIL-125 (Ti) amplified by PDA NS/Mn: ZnCdS
CN112285174B (zh) 一种无酶葡萄糖传感器及其制备方法和用途
Zou et al. CuO–ZnO heterojunction derived from Cu2+-doped ZIF-8: A new photoelectric material for ultrasensitive PEC immunoassay of CA125 with near-zero background noise
Feng et al. Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranoldetection
CN112129940B (zh) 一种利用胆红素氧化酶放大检测信号的阴极光电化学免疫传感器及其制备方法与应用
Duan et al. A molecularly imprinted electrochemical sensors based on bamboo-like carbon nanotubes loaded with nickel nanoclusters for highly selective detection of cortisol
Cui et al. In-situ synthesis of covalent organic polymer thin film integrates with palladium nanoparticles for the construction of a cathodic photoelectrochemical cytosensor
US11733199B2 (en) Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same
Wei et al. Grain-like chiral metal-organic framework/multi-walled carbon nanotube composited electrosensing interface for enantiorecognition of Tryptophan
Yan et al. Fabrication of N-GQDs and AgBiS2 dual-sensitized ZIFs-derived hollow ZnxCo3-xO4 dodecahedron for sensitive photoelectrochemical aptasensing of ampicillin
CN111965355B (zh) 一种阴极光电化学免疫传感器及其制备方法与应用
Liu et al. MOF-derivated MnO@ C nanocomposite with bidirectional electrocatalytic ability as signal amplification for dual-signal electrochemical sensing of cancer biomarker
CN113697797B (zh) 一种N-CNTs@NiCo-LDHs树状纳米花材料及其制备方法和光电化学应用
Liu et al. Detection of exosomes via an electrochemical biosensor based on C60-Au-Tb composite
Li et al. Coaxial electrospinning synthesis of size-tunable CuO/NiO hollow heterostructured nanofibers: Towards detection of glucose level in human serum
Lu et al. Electrospun nanofibers modified with Ni-MOF for electrochemiluminescent determination of glucose
Zhao et al. CoFe-(oxy) hydroxide as a novel electrocatalytic tag in immunosensing for ultra-sensitive detection of procalcitonin based on the oxygen evolution reaction
Dong et al. Au Nanoparticle/CoFc/Metal–Organic Framework as Enzyme-Free Dual-Signal Ratiometric Electrochemical Sensor for In-Situ Determination of Cell-Secreted H2O2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant