CN113694887A - 一种以米粉废弃物为原料联产活性炭和碳量子点的方法 - Google Patents

一种以米粉废弃物为原料联产活性炭和碳量子点的方法 Download PDF

Info

Publication number
CN113694887A
CN113694887A CN202110871179.8A CN202110871179A CN113694887A CN 113694887 A CN113694887 A CN 113694887A CN 202110871179 A CN202110871179 A CN 202110871179A CN 113694887 A CN113694887 A CN 113694887A
Authority
CN
China
Prior art keywords
rice flour
waste
carbon
quantum dots
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110871179.8A
Other languages
English (en)
Inventor
陈俞辛
陈硕平
金新艳
苏筱峥
欧晓丹
周宇巧
王雷
柳雁
周雨晴
覃迎喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202110871179.8A priority Critical patent/CN113694887A/zh
Publication of CN113694887A publication Critical patent/CN113694887A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种以米粉废弃物为原料联产活性炭和碳量子点的方法,其制备过程为:将米粉废弃物粉碎后,进行水热法处理,将其分离成溶液和固体两部分,固体部分(水热碳粉)进一步加工处理获得活性炭,可以用于水处理剂、吸附剂和催化剂载体,液体部分获得具有荧光特性的碳量子点,可以用于检测Fe3+等金属离子。从而可以一次性以米粉餐饮废弃物为原料,联产活性炭和碳量子点两种产品,实现米粉废弃物100%充分利用,过程无废弃物排放,避免二次污染,且所得产品质量好、附加值高、合成过程便捷环保,能为餐饮废弃物的回收利用和功能碳材料技术的发展提供一条新途径。

Description

一种以米粉废弃物为原料联产活性炭和碳量子点的方法
技术领域
本发明具体涉及一种以米粉废弃物为原料联产活性炭和碳量子点的方法,属于餐饮废弃物回收利用和功能碳材料领域。
背景技术
作为餐饮大国,我国每年产出大量的餐饮废弃物,且随着外卖行业的兴起,我国餐饮废弃物的年产量以10%以上的速度增加。不加处理的餐饮废弃物会对水体、大气、土壤和其他环境体系带来严重污染,对我国生态坏境和人民身心健康带来巨大的潜在威胁。目前,我国餐饮废弃物的商业化处理方法主要包括以下几种:(1)厌氧消化:该法通过产生沼气的细菌联合体对餐饮废弃物进行厌氧分解,能生产沼气等可再生能源,但设备场地成本高,占地面积大,在温带和寒带地区应用受限(Nallathambi Gunaseelan V.AnaerobicDigestion of Biomass for Methane Production:A Review[J].Biomass andBioenergy,1997,13(1):83-114;Pham T P T,Kaushik R,Parshetti G K,et al.FoodWaste-to-Energy Conversion Technologies:Current Status and Future Directions[J].Waste Management,2015,38:399-408);(2)好氧堆肥:该法通过微生物好氧作用降解食物垃圾,获得无病原生物肥料以及土壤改良剂,然而,该过程的可持续性依赖于有机物降解产生的氨、硫化氢和其他挥发性有机化合物等温室气体,会造成大气污染并加剧温室效应(Cerda A,Artola A,Font X,et al.Composting of Food Wastes:Status andChallenges[J].Bioresource Technology,2018,248:57-67);(3)垃圾填埋:将餐厨垃圾收运集中到指定处理场进行填埋处理。填埋具有工艺简单、操作方便、成本低等优势。但在填埋期间会产生甲烷和渗滤液,甲烷进入大气中会加剧温室效应,餐饮废弃物中含有的重金属等有害物质,会通过渗滤液渗入地下及周边水土,从而造成水和土壤资源的污染,基于此,有些国家已禁止使用填埋法处理餐饮废弃物(Zhang G M,Li Q Y;Cai Z J.PresentSituation and Development Trend of Kitchen Waste Treatment Technology[J].Intelligent City,2020,6(12):164-165);(4)焚烧:利用高温(900℃~1000℃)将餐饮废弃物直接进行焚烧处理。这种方法可以快速减少餐饮废弃物的体积,同时可以从这些废弃物中回收能量。但同时,焚烧产生的有毒有害气体会造成严重的大气污染,从而破坏生态环境(Nayak A,Bhushan B.An Overview of the Recent Trends on the WasteValorization Techniques for Food Wastes[J].Journal of EnvironmentalManagement,2018,233:352-370);(5)饲料化:将餐饮废弃物通过生物法和物理法制作成蛋白质饲料,但是这种方法的安全隐患很大,会产生病原微生物,引起传染病,对人民群众身心健康造成潜在威胁。
水热碳化技术是一种新型的处理有机废弃物的有效方法,具有操作流程简单,合成条件温和,产品附加值高的优点,能为大规模生产功能碳材料提供有效途径(Wang J X,Feng S S,Song Y F,et al.Synthesis of Hierarchically Porous Carbon Sphereswith Yolk-Shell Structure for High Performance Supercapacitors[J].CatalysisToday,2015,243:199-208;Hao Z Q,Cao J P,Wu Y,et al.Preparation of PorousCarbon Sphere from Waste Sugar Solution for Electric Double-Layer Capacitor[J].Journal of Power Sources,2017,361:249-258)。不过,当前水热碳化所得产品比较单一,制备过程有大量废水、废渣产生,不能充分利用餐饮废弃物,并容易造成二次污染,因此难以实现商业化应用。
米粉(包括桂林米粉、螺蛳粉和其他粉类)是桂林市当地人的传统日常饮食,因此,桂林地区每天产生大量的米粉废弃物,产量超过70吨/日,然而,由于桂林经济并不发达,在餐饮废弃物回收利用方面的基础设施、政策支持和资金投入都很有限,大部分米粉废弃物被用作低度发酵饲料的原料,另一部分则被直接废弃,从而对土壤和水环境造成潜在和长期的污染。因此,有必要探索一条回收利用废弃米粉的有效途径。废弃米粉中的有机组分主要为淀粉,在水热条件下容易碳化,具有制备功能碳材料的潜质。但到目前为止,尚未见到以米粉废弃物为原料制备碳材料的报道。
发明内容
为了解决上述餐饮废弃物技术存在的不足,并获得新型低成本的功能碳材料。本发明提供一种以米粉废弃物为原料联产活性炭和碳量子点的方法,可以一次性联产具有良好吸附性能的活性炭和能作为荧光探针的碳量子点,整个过程能够充分利用米粉废弃物,不产生二次污染。
本发明采用的技术方案为:
一种以米粉废弃物为原料联产活性炭和碳量子点的方法,可以一次性联产能作为水污染处理剂的活性炭和能作为荧光探针的碳量子点。
所述的活性炭具有多孔球形形貌,粒径分布在5-15微米之间,分散性好,比表面积大于1200m2/g,平均孔径4.5~6.0nm,对亚甲基蓝的饱和吸附量大于370mg/g,对六价铬的饱和吸附量大于3.5mg/g,能够作为污水处理剂使用。
所述碳量子点具有球形形貌,粒径分布在1.5nm~2.5nm之间,分散性好,几乎不团聚,在紫外光激发下显示出强的蓝荧光,最大发射波长450nm,量子产率大于19%,该量子点的荧光能够在三价铁离子(Fe3+)的存在下发生显著猝灭,并只对三价铁离子产生选择性响应。在三价铁离子离子浓度为4×10-5mol/L~16×10-5mol/L范围内,Fe3+离子浓度与所得碳量子点的荧光猝灭响应呈现线性相关,检出限为不大于3.5×10-5mol/L,能够作为定量检测三价铁离子的荧光探针使用。
以米粉废弃物为原料联产活性炭和碳量子点的具体步骤为:
称取一定量的米粉废弃物,粉碎并搅拌成糊状后,放入有聚四氟乙烯内衬的不锈钢反应釜中,加入相当于废弃米粉质量1.5~2倍的去离子水,在190~200℃下反应10~12小时,此时获得棕色沉淀和棕黄液体的混合物,冷却到室温,过滤。收集固体,50~60℃烘干10~12小时得到水热碳,用于后续制备活性炭,滤液用于制备碳量子点。
取所得水热碳、1%羧甲基纤维素钠水溶液与氢氧化钾以质量比1:2:(1~3)混合,以手或模具挤压成型,在50~60℃烘干20~24小时,而后将成型后的碳粒送入以氮气保护的管式炉中,700~800℃活化1~2小时,冷却取出所得黑色产物,加入相当于产物质量2~3倍的10%盐酸,搅拌20~30分钟,洗去活性炭上的碱,过滤后,滤纸上的产物以热蒸馏水洗3~5次,直到洗出液至中性,随后在50~60℃再次烘干20~24小时,获得黑色的废弃米粉基活性炭,可以直接作为水处理剂使用。
同时,取所得滤液,用1000~3500D的透析袋在暗处透析24~48小时,可以得到废弃米粉基碳量子点溶液,该溶液中碳量子点浓度为40~50mg/100ml,可以直接作为三价铁离子探针使用。
所采用的米粉废弃物包括但不限于:米粉店顾客吃剩的米粉,米粉店或米粉加工企业废弃的下脚料米粉。所述米粉废弃物中的淀粉含量在20%以上。
本发明的有益效果是:首先通过将米粉废弃物进行水热法处理,将其分离成溶液和固体两部分,固体部分(水热碳粉)进一步加工处理获得活性炭,可以用于水处理剂、吸附剂和催化剂载体,液体部分获得具有荧光特性的碳量子点,可以用于检测Fe3+等金属离子。从而可以一次性以米粉餐饮废弃物为原料,联产活性炭和碳量子点两种产品,从而实现米粉废弃物100%充分利用,过程无废弃物排放,避免二次污染,且所得产品质量好、附加值高、合成过程便捷环保,能为餐饮废弃物的回收利用和功能碳材料技术的发展提供一条新途径,对保障人民身心健康,保护生态环境,促进社会经济可持续发展方面也具有重要价值。
附图说明
附图1.所得废弃米粉基活性炭扫描电镜图
附图2.所得废弃米粉基碳量子点透射电镜图(a)和粒径分布(b)
具体实施方式
下面列举具体实施例对本发明进行说明:
实施例1:称取米粉废弃物100g,用绞肉机搅拌成糊状,放入有聚四氟乙烯内衬的不锈钢反应釜中,加入去离子水200g,在200℃的烘箱中反应10小时,此时获得棕色沉淀和棕黄液体的混合物,冷却到室温,过滤。收集固体,60℃烘干12小时得到水热碳13g,加入1%羧甲基纤维素钠水溶液26g,氢氧化钠26g,搅拌成糊状,在手套保护下,以手捏制成型,放入60℃烘箱干燥24小时,得到球形颗粒,将所得球形碳粒送入管式炉中,氮气保护下,在800℃活化1.5小时,冷却,加入30g 10%盐酸,搅拌20分钟,过滤,滤纸上的产物以热蒸馏水洗5次,随后在60℃再次烘干24小时,可以获得黑色的废弃米粉基活性炭。同时,将所得滤液,用1000D的透析袋在暗处透析24小时,可以得到废弃米粉基碳量子点溶液,该溶液中碳量子点浓度为45mg/100ml。
将所得活性炭以场发射扫描电子显微镜观察其微观形貌,发现其具有多孔球形形貌,粒径分布在5-15微米之间,分散性好(见附图1)。通过BET等温吸附仪,测得所得比表面积1250.3m2/g,平均孔径4.96nm。该活性炭对水体中的染料有很好的吸附作用,对亚甲基蓝的饱和吸附量为377.7mg/g,对50mL浓度为1000mg/L亚甲基蓝溶液,投入0.3g活性炭,可以在4分钟内除去溶液中99.8%的亚甲基蓝。该活性炭对水体中的有害重金属也有很好的吸附作用,对六价铬的饱和吸附量为3.514mg/g,对50mL质量浓度为25mg/L的六价铬溶液,投入0.3g活性炭,可以在80分钟内除去溶液中99%的六价铬。
将所得碳量子点以透射电子显微镜观察其微观形貌,发现其具有球形形貌,粒径分布在1.5nm~2.5nm之间,分散性好,几乎不团聚(见附图2)。在紫外光激发下显示出强的蓝荧光,最大发射波长450nm,量子产率19.24%,该量子点的荧光能够在三价铁离子(Fe3+)的存在下发生显著猝灭,并只对铁产生选择性响应,在Fe3+离子浓度为4×10-5mol/L~16×10-5mol/L范围内,Fe3+离子浓度与所得RCQDs的荧光猝灭响应(F/F0)呈现线性相关,拟合后线性方程为F/F0=0.986-0.00174CFe,R2=0.9971,检出限为3.34×10-5mol/L。
实施例2:称取米粉废弃物100g,用绞肉机搅拌成糊状,放入有聚四氟乙烯内衬的不锈钢反应釜中,加入去离子水200g,在200℃的烘箱中反应12小时,此时获得棕色沉淀和棕黄液体的混合物,冷却到室温,过滤。收集固体,60℃烘干12小时得到水热碳11.5g,加入1%羧甲基纤维素钠水溶液23g,氢氧化钠27g,搅拌成糊状,在手套保护下,以手捏制成型,放入60℃烘箱干燥24小时,得到球形颗粒,将所得球形碳粒送入管式炉中,氮气保护下,在800℃活化1.5小时,冷却,加入25g 10%盐酸,搅拌20分钟,过滤,滤纸上的产物以热蒸馏水洗5次,随后在60℃再次烘干24小时,可以获得黑色的废弃米粉基活性炭。同时,将所得滤液,用3500D的透析袋在暗处透析24小时,可以得到废弃米粉基碳量子点溶液,该溶液中碳量子点浓度为48mg/100ml。
将所得活性炭以场发射扫描电子显微镜观察其微观形貌,发现其具有多孔球形形貌,粒径分布在5-15微米之间,分散性好。通过BET等温吸附仪,测得所得比表面积1288.4m2/g,平均孔径5.05nm。该活性炭对水体中的染料有很好的吸附作用,对亚甲基蓝的饱和吸附量为383.0mg/g,对50mL浓度为1000mg/L亚甲基蓝溶液,投入0.3g活性炭,可以在4分钟内除去溶液中99.8%的亚甲基蓝。该活性炭对水体中的有害重金属也有很好的吸附作用,对六价铬的饱和吸附量为3.23mg/g,对50mL质量浓度为25mg/L的六价铬溶液,投入0.3g活性炭,可以在80分钟内除去溶液中99%的六价铬。
将所得碳量子点以透射电子显微镜观察其微观形貌,发现其具有球形形貌,粒径分布在1.5nm~2.5nm之间,分散性好,几乎不团聚。在紫外光激发下显示出强的蓝荧光,最大发射波长450nm,量子产率19.37%,该量子点的荧光能够在三价铁离子(Fe3+)的存在下发生显著猝灭,并只对铁产生选择性响应,在Fe3+离子浓度为4×10-5mol/L~16×10-5mol/L范围内,Fe3+离子浓度与所得RCQDs的荧光猝灭响应(F/F0)呈现线性相关,拟合后线性方程为F/F0=0.543-0.00166CFe,R2=0.9915,检出限为3.27×10-5mol/L。

Claims (4)

1.一种以米粉废弃物为原料联产活性炭和碳量子点的方法,其特征在于具体步骤为:
称取一定量的米粉废弃物,粉碎并搅拌成糊状后,放入有聚四氟乙烯内衬的不锈钢反应釜中,加入相当于废弃米粉质量1.5~2倍的去离子水,在190~200℃下反应10~12小时,此时获得棕色沉淀和棕黄液体的混合物,冷却到室温,过滤;收集固体,50~60℃烘干10~12小时得到水热碳,用于后续制备活性炭,滤液用于制备碳量子点;
取所得水热碳、1%羧甲基纤维素钠水溶液与氢氧化钾以质量比1:2:(1~3)混合,以手或模具挤压成型,在50~60℃烘干20~24小时,而后将成型后的碳粒送入以氮气保护的管式炉中,700~800℃活化1~2小时,冷却取出所得黑色产物,加入相当于产物质量2~3倍的10%盐酸,搅拌20~30分钟,洗去活性炭上的碱,过滤后,滤纸上的产物以热蒸馏水洗3~5次,直到洗出液至中性,随后在50~60℃再次烘干20~24小时,获得黑色的废弃米粉基活性炭,可以直接作为水处理剂使用;
同时,取所得滤液,用1000~3500D的透析袋在暗处透析24~48小时,可以得到废弃米粉基碳量子点溶液,该溶液中碳量子点浓度为40~50mg/100ml,可以直接作为三价铁离子探针使用。
2.根据权利要求1所述的一种以米粉废弃物为原料联产活性炭和碳量子点的方法,其特征在于所述的活性炭具有多孔球形形貌,粒径分布在5-15微米之间,分散性好,比表面积大于1200m2/g,平均孔径4.5~6.0nm,对亚甲基蓝的饱和吸附量大于370mg/g,对六价铬的饱和吸附量大于3.5mg/g,能够作为污水处理剂使用。
3.根据权利要求1所述的一种以米粉废弃物为原料联产活性炭和碳量子点的方法,其特征在于所述碳量子点具有球形形貌,粒径分布在1.5nm~2.5nm之间,分散性好,几乎不团聚,在紫外光激发下显示出强的蓝荧光,最大发射波长450nm,量子产率大于19%,该量子点的荧光能够在三价铁离子(Fe3+)的存在下发生显著猝灭,并只对三价铁离子产生选择性响应;在三价铁离子离子浓度为4×10-5mol/L~16×10-5mol/L范围内,Fe3+离子浓度与所得碳量子点的荧光猝灭响应呈现线性相关,检出限为不大于3.5×10-5mol/L,能够作为定量检测三价铁离子的荧光探针使用。
4.根据权利要求1所述的一种以米粉废弃物为原料联产活性炭和碳量子点的方法,其特征在于所采用的米粉废弃物包括但不限于:米粉店顾客吃剩的米粉,米粉店或米粉加工企业废弃的下脚料米粉;所述米粉废弃物中的淀粉含量在20%以上。
CN202110871179.8A 2021-07-30 2021-07-30 一种以米粉废弃物为原料联产活性炭和碳量子点的方法 Withdrawn CN113694887A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110871179.8A CN113694887A (zh) 2021-07-30 2021-07-30 一种以米粉废弃物为原料联产活性炭和碳量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110871179.8A CN113694887A (zh) 2021-07-30 2021-07-30 一种以米粉废弃物为原料联产活性炭和碳量子点的方法

Publications (1)

Publication Number Publication Date
CN113694887A true CN113694887A (zh) 2021-11-26

Family

ID=78650996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110871179.8A Withdrawn CN113694887A (zh) 2021-07-30 2021-07-30 一种以米粉废弃物为原料联产活性炭和碳量子点的方法

Country Status (1)

Country Link
CN (1) CN113694887A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059147A (zh) * 2017-12-27 2018-05-22 重庆文理学院 一种利用废弃向日葵制备碳材料的方法
CN108069414A (zh) * 2017-12-19 2018-05-25 重庆文理学院 一种利用废弃松树塔制备碳纳米材料的方法
CN109385275A (zh) * 2018-11-27 2019-02-26 合肥工业大学 一种利用有机质厌氧发酵中间产物作为碳基材料制备荧光碳量子点的方法
JP2019193926A (ja) * 2018-05-04 2019-11-07 广州大学 磁性水熱炭の製造方法及びその応用
US20200006588A1 (en) * 2017-01-30 2020-01-02 Ohio University Electrochemical UV Sensor Using Carbon Quantum Dots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200006588A1 (en) * 2017-01-30 2020-01-02 Ohio University Electrochemical UV Sensor Using Carbon Quantum Dots
CN108069414A (zh) * 2017-12-19 2018-05-25 重庆文理学院 一种利用废弃松树塔制备碳纳米材料的方法
CN108059147A (zh) * 2017-12-27 2018-05-22 重庆文理学院 一种利用废弃向日葵制备碳材料的方法
JP2019193926A (ja) * 2018-05-04 2019-11-07 广州大学 磁性水熱炭の製造方法及びその応用
CN109385275A (zh) * 2018-11-27 2019-02-26 合肥工业大学 一种利用有机质厌氧发酵中间产物作为碳基材料制备荧光碳量子点的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨洁: ""基于米粉废弃物的活性炭和3D打印材料的合成与性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Essner et al. Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine
Lyu et al. Application of biochar and its composites in catalysis
Rambabu et al. Ferric oxide/date seed activated carbon nanocomposites mediated dark fermentation of date fruit wastes for enriched biohydrogen production
da Silva Veiga et al. Production of high-performance biochar using a simple and low-cost method: optimization of pyrolysis parameters and evaluation for water treatment
Chen et al. Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste
Lu et al. Dark fermentation production of volatile fatty acids from glucose with biochar amended biological consortium
Leichtweis et al. Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4/biochar photocatalyst
Qiu et al. Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst
CN111437825B (zh) 一种铁锰生物炭催化剂及调理污泥脱水的应用
Ribeiro et al. Hybrid magnetic graphitic nanocomposites towards catalytic wet peroxide oxidation of the liquid effluent from a mechanical biological treatment plant for municipal solid waste
CN109675581B (zh) 铁锰双金属氧化物改性生物炭光芬顿复合材料及其制备方法
CN111921536B (zh) 一种基于天然矿物和生物质制备的新型催化吸附材料
Pérez et al. Acid-induced phosphorus release from hydrothermally carbonized sewage sludge
Ma et al. Design of Z-scheme g-C3N4/BC/Bi25FeO40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste
Zhang et al. The key role of persistent free radicals on the surface of hydrochar and pyrocarbon in the removal of heavy metal-organic combined pollutants
CN108178246A (zh) 一种环保型微电解陶粒及其制备方法
Hong et al. Urchin-like CuO microspheres: Synthesis, characterization, and properties
Yusuf et al. ; Valorisation of banana peels by hydrothermal carbonisation: Potential use of the hydrochar and liquid by-product for water purification and energy conversion
CN114939394A (zh) 一种铁改性水热炭的制备方法及其在降解ddt中的应用
Fregolente et al. New proposal for sugarcane vinasse treatment by hydrothermal carbonization: an evaluation of solid and liquid products
CN102897895B (zh) 催化臭氧氧化降解水中腐殖质类有机污染物的方法
CN102513108A (zh) 负载TiO2光电催化深度处理污泥的催化剂、装置与方法
CN106362754A (zh) 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法
Cao et al. Reductive removal of Cr (VI) by citric acid promoted by ceramsite particles: Kinetics, influential factors, and mechanisms
Wang et al. Facile fabrication of Fe3O4-Biochar hybrid nanomaterials as catalysts for Photo-Fenton degradation of tetracycline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20211126