CN113687402A - 一种顾及卫星轨道误差的低轨导航增强实时定位方法 - Google Patents

一种顾及卫星轨道误差的低轨导航增强实时定位方法 Download PDF

Info

Publication number
CN113687402A
CN113687402A CN202111040836.0A CN202111040836A CN113687402A CN 113687402 A CN113687402 A CN 113687402A CN 202111040836 A CN202111040836 A CN 202111040836A CN 113687402 A CN113687402 A CN 113687402A
Authority
CN
China
Prior art keywords
satellite
orbit
navigation
low
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111040836.0A
Other languages
English (en)
Other versions
CN113687402B (zh
Inventor
杨轩
谢松
孙一雄
刘晓旭
王刚
韩双林
刘天立
伍蔡伦
易卿武
蔚保国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN202111040836.0A priority Critical patent/CN113687402B/zh
Publication of CN113687402A publication Critical patent/CN113687402A/zh
Application granted granted Critical
Publication of CN113687402B publication Critical patent/CN113687402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/425Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between signals derived from different satellite radio beacon positioning systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种顾及卫星轨道误差的低轨导航增强实时定位方法,属于低轨卫星导航增强定位领域。该方法采用两步法减弱轨道误差的影响,其使用地面接收机接收观测数据与导航电文,计算导航卫星和低轨卫星各自的轨道和钟差;按照常规方式进行定位,待定位收敛后,估计轨道误差参数,通过给定适当的权重,吸收低轨卫星和导航卫星轨道误差,从而达到提高定位精度的作用。本发明利用低轨导航增强PPP收敛速度快的特性,通过快速收敛载波相位模糊度,进而引入轨道误差参数,用以削弱卫星轨道误差对定位的影响,提高低轨导航增强定位的精度。

Description

一种顾及卫星轨道误差的低轨导航增强实时定位方法
技术领域
本发明属于卫星导航定位技术领域,尤其涉及一种顾及卫星轨道误差的低轨导航增强实时定位方法。
背景技术
随着北斗三号全球定位系统的建成,目前包括北斗、GPS、GLONASS、Galileo在内有四大全球定位系统,以及日本QZSS和印度IRNSS等区域卫星导航系统。这些导航系统的基本定位服务精度为米级,无法满足高精度定位如无人驾驶、无人机、机器人导航定位的需求。为了提高导航系统的服务精度,各国均研发了地基增强系统和星基增强系统。地基增强系统采用差分定位技术,实现一定区域范围内的高精度瞬时定位,但是由于单基站服务范围较小,需要布设大量地面基站,难以实现偏远地区、沙漠及海洋区域的覆盖,且投资巨大,建设周期冗长,业务范围有限。星基增强系统一般依托GEO卫星,投入较小,易于实现,已先后有美国的WAAS、俄罗斯的SDCM、欧洲的EGNOS以及日本的MSAS等投入运行,但受相关物理规律和技术水平的约束,该体制存在链路损耗大、地面终端难以小型化等问题,不能满足当前用户对快速高精度导航服务的要求,且目前的高轨星基增强系统仍是一个区域增强系统,不能满足全球范围内的高精度实时应用需求。利用精密单点定位技术虽然能够实现全球厘米级定位精度,但是需要相对比较长的收敛时间分离载波相位模糊度参数。目前单系统精密单点定位的收敛时间在30-40分钟,四系统的收敛时间也需要10分钟以上,严重影响了定位的应用场景。
低轨卫星距离地面较近,卫星运行速度迅速,相同时间间隔内,低轨卫星将比中高轨导航卫星在天空中划过更长的轨迹,因此观测几何构型变化相对较为剧烈,将有助于快速分离载波相位模糊度参数、定位坐标以及对流层参数,解决当前高精度定位服务的瓶颈,实现精密单点定位的快速收敛。
实现低轨导航增强精密单点定位,首先需要获得低轨卫星的精密轨道和钟差。在事后处理中,可获得较高精度的低轨卫星的精密轨道和钟差,但是低轨导航增强精密单点定位需要实时获得精密轨道和钟差,采用地面上注预报轨道,星上实时钟差计算的方式,可向地面终端播发相应的星历与钟差。然而低轨星历不可避免的会存在误差,因此会对地面用户终端定位时带来较大影响。
发明内容
针对现有低轨导航定位技术存在的问题,本发明提供了一种顾及卫星轨道误差的低轨导航增强实时定位方法,其通过构造正弦或余弦函数,可最大程度的吸收卫星轨道误差对定位结果的影响。
为了实现上述目的,本发明所采用的技术方案如下:
一种顾及卫星轨道误差的低轨导航增强实时定位方法,包括如下步骤:
步骤1,地面接收机接收来自导航卫星和低轨导航增强卫星的观测数据;
步骤2,获得导航卫星和低轨导航增强卫星的导航电文,计算导航卫星和低轨导航增强卫星的广播星历和钟差,获取卫星状态空间表示的改正信息,对广播星历和钟差进行改正,得到高精度的轨道和钟差;
步骤3,对步骤1获得的观测数据进行预处理,剔除粗差;
步骤4,进行传统单点定位计算;
步骤5,进行精密单点定位计算;
步骤6,待精密单点定位结果收敛后,固定载波相位模糊度,引入附加轨道误差参数,吸收卫星轨道误差的影响;
步骤7,若下一历元发生周跳、观测失锁的情况,则暂停轨道误差参数估计,重新估计载波相位模糊度,重复步骤5;若定位成功,则返回步骤1,进行下一时刻定位。
进一步的,步骤4中,传统单点定位计算的计算方程为:
Figure BDA0003249148450000031
式中,
Figure BDA0003249148450000032
为卫星s发射接收机r接收到的第j频点伪距观测值,单位为米;
Figure BDA0003249148450000033
表示卫星s和接收机r之间的几何距离;c表示真空中光速;dtr为接收机钟差,dts为卫星钟差;
Figure BDA0003249148450000034
表示倾斜电离层延迟;朘为对流层映射函数,ZWDr表示接收机r处天顶对流层延迟;εr表示伪距观测值的观测噪声。
进一步的,步骤5中,精密单点定位计算的计算方程为:
Figure BDA0003249148450000035
Figure BDA0003249148450000036
式中,
Figure BDA0003249148450000037
为卫星s发射接收机r接收到的第j频点载波相位观测值,单位为米;
Figure BDA0003249148450000041
Figure BDA0003249148450000042
分别为接收机和卫星的伪距硬件延迟;
Figure BDA0003249148450000043
Figure BDA0003249148450000044
表示接收机和卫星的载波相位硬件延迟;Ns为载波相位模糊度;ξr表示载波相位观测值的观测噪声。
进一步的,步骤6中,引入附加轨道误差参数后的定位方程为:
Figure BDA0003249148450000045
Figure BDA0003249148450000046
式中,
Figure BDA0003249148450000047
表示低轨导航增强卫星和导航卫星轨道误差在视向方向的影响:
Figure BDA0003249148450000048
式中,(Xs,Ys,Zs)为导航卫星和低轨导航增强卫星的真实位置,
Figure BDA0003249148450000049
为计算所得的导航卫星和低轨导航增强卫星带有误差的位置;卫星轨道误差呈现近似三角函数类特征,周期与卫星运行周期一致,因此卫星轨道误差可简单表示为:
Figure BDA00032491484500000410
进一步的,低轨卫星和导航卫星轨道误差在视向方向的影响可表示为:
Figure BDA00032491484500000411
式中,θ表示低轨导航增强卫星和导航卫星轨道误差与视向方向的夹角,随卫星运动而不断变化,
Figure BDA00032491484500000412
不是一个完全的正弦或余弦函数,但考虑到一般预报轨道较短,故而把
Figure BDA00032491484500000413
简化为三角函数:
Figure BDA0003249148450000051
此时方程(4)和方程(5)的未知数个数为5+N,观测方程数量为2N,冗余度为N-5,N为卫星个数,需要同时观测5颗卫星才可求解。
进一步的,步骤6中误差的方程为:
V=Hx-L (10)
其中,V为伪距和载波相位观测值的残差向量,H表示待估参数的雅可比矩阵,若采用消电离层组合,待估参数包括接收机位置坐标改正量、钟差改正、天顶对流层湿延迟、载波相位模糊度,若采用非差非组合方式建立观测方程,则还包括倾斜电离层延迟参数;L表示观测量与计算量之差组成的向量;观测值权重根据卫星高度角定权方式确定:
Figure BDA0003249148450000052
其中,a和b均为经验常数,E为卫星高度角;
观测值的噪声方差矩阵R为:
Figure BDA0003249148450000053
系统噪声方差矩阵Q为:
Figure BDA0003249148450000054
其中,
Figure BDA0003249148450000055
表示接收机位置的方差阵,对于动态精密单点定位,采用103m的白噪声为方差,静态精密单点定位则采用初值为103m的常数估计;
Figure BDA0003249148450000061
表示接收机钟差的方差,采用白噪声来描述:
Figure BDA0003249148450000062
Figure BDA0003249148450000063
表示天顶对流层湿延迟的方差,采用随机游走过程描述:
Figure BDA0003249148450000064
其中,τ耀为白噪声;
Figure BDA0003249148450000065
表示倾斜电离层延迟的方差,采用随机游走过程描述:
Figure BDA0003249148450000066
Figure BDA0003249148450000067
表示载波相位模糊度方差,初始方差为104m;
Figure BDA0003249148450000068
表示卫星轨道误差参数,采用常数估计,初始方差为2π;
参数估计采用扩展卡尔曼滤波,其递推公式为:
Figure BDA0003249148450000069
Figure BDA00032491484500000610
Figure BDA00032491484500000611
Q耀+1,耀+1=[I-Kk+1,kHk+1]Q耀+1,耀 (17)
其中,Φ表示待估参数的状态转移矩阵,K为卡尔曼滤波的增益矩阵,Γ表示动态噪声驱动矩阵,一般可认为是单位矩阵,I为单位矩阵。
与现有技术相比,本发明的有益效果在于:
1、本发明可实现精密单点定位的快速收敛。通过引入低轨导航增强信号,与中高轨导航卫星信号进行联合定位,充分利用低轨卫星运行速度快,几何变换剧烈的优势,提高全球精密单点定位的收敛速度,实现全球高精度瞬时定位服务。
2、本发明方法考虑到目前低轨卫星和中高轨导航卫星均存在轨道误差的影响,在目前精密单点定位方法中无法消除和减弱此影响,通过在定位过程中引入轨道误差参数,达到减弱轨道误差的目的,从而使定位精度达到提升。
附图说明
图1是本发明实施例中一种顾及卫星轨道误差的低轨导航增强实时定位方法的流程图。
图2是本发明实施例的预期可达到的定位精度提升图。
具体实施方式
下面结合附图更详细的描述本发明的原理与实施例,应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
一种顾及卫星轨道误差的低轨导航增强实时定位方法,该方法利用低轨增强信号与导航卫星信号对地面接收机进行快速精密定位;利用卫星轨道误差的特性,通过构造正弦或余弦函数,最大程度的吸收卫星轨道误差对定位结果的影响;利用低轨卫星运行速度快,定位收敛快的特性,采用二步法逐步吸收卫星轨道误差的影响。
该方法包括以下步骤:
步骤1,地面接收机接收来自导航卫星和低轨导航增强卫星的观测数据;
步骤2,获得导航卫星和低轨导航增强卫星的导航电文,计算导航卫星和低轨导航增强卫星的广播星历和钟差;通过网络、卫星通信等其他方式获取卫星状态空间表示的改正信息,对广播星历和钟差进行改正,得到精度较高的轨道和钟差;
步骤3,对获得的观测数据进行预处理,使用包括MW组合在内的方法剔除粗差;
步骤4,进行传统单点定位计算;
步骤5,进行精密单点定位计算;
步骤6,待精密单点定位结果收敛后,固定载波相位模糊度,在精密单点定位方程中引入附加轨道误差参数,吸收卫星轨道误差的影响;
步骤7,若下一历元发生周跳、观测失锁的情况,则暂停轨道误差参数估计,重新估计载波相位模糊度,重复步骤5;若定位成功,则返回步骤1,进行下一时刻定位。
将定位观测方程线性化,同时将码和载波相位偏差吸收至接收机钟差和电离层延迟参数中,可得下式:
Figure BDA0003249148450000081
Figure BDA0003249148450000082
式中,
Figure BDA0003249148450000083
表示卫星s发射至接收机r的单位向量,
Figure BDA0003249148450000084
表示吸收了码和载波相位偏差的接收机钟差,
Figure BDA0003249148450000085
表示吸收了码和载波相位偏差的倾斜电离层延迟;朘为对流层映射函数,ZWDr表示接收机处天顶对流层延迟,
Figure BDA0003249148450000086
为吸收了载波相位偏差的模糊度;
Figure BDA0003249148450000087
表示低轨卫星和导航卫星轨道误差在视向方向的影响;εr和ξr表示伪距和载波相位观测值的观测噪声、多路径影响以及其他影响。
低轨卫星和导航卫星轨道误差可表示为:
Figure BDA0003249148450000091
式中,(Xs,Ys,Zs)为导航卫星和低轨卫星真实位置,
Figure BDA0003249148450000092
为计算的导航卫星和低轨卫星带有误差的位置。导航卫星与低轨卫星播发的轨道是由此前精密定轨后经过轨道预报而来,卫星轨道误差呈现近似三角函数类特征,周期与卫星运行周期一致,因此卫星轨道误差可简单表示为:
Figure BDA0003249148450000093
进一步的,低轨卫星和导航卫星轨道误差在视向方向的影响可表示为:
Figure BDA0003249148450000094
式中,θ表示低轨卫星和导航卫星轨道误差与视向方向的夹角,随卫星运动而不断变化,
Figure BDA0003249148450000095
不是一个完全的正弦或余弦函数,但考虑到一般预报轨道较短,可以把
Figure BDA0003249148450000096
简化为三角函数:
Figure BDA0003249148450000097
根据观测方程,可列出误差方程:
V=Hx-L (24)
其中,V为伪距和载波相位观测值的残差向量,H表示待估参数的雅可比矩阵,若采用消电离层组合,待估参数包括接收机位置坐标改正量、钟差改正、天顶对流层湿延迟、载波相位模糊度等,若采用非差非组合方式建立观测方程,则还应包括倾斜电离层延迟参数;L表示观测量与计算量之差组成的向量。观测值权重根据卫星高度角定权方式确定:
Figure BDA0003249148450000101
其中a和b均为经验常数,E为卫星高度角,则可组成观测值的噪声方差矩阵R:
Figure BDA0003249148450000102
系统噪声方差矩阵Q可表示为:
Figure BDA0003249148450000103
其中,
Figure BDA0003249148450000104
表示接收机位置的方差阵,对于动态精密单点定位,采用103m的白噪声为方差,静态精密单点定位则采用初值为103m的常数估计。
Figure BDA0003249148450000105
表示接收机钟差的方差,采用白噪声来描述:
Figure BDA0003249148450000106
Figure BDA0003249148450000107
表示天顶对流层湿延迟的方差,采用随机游走过程描述:
Figure BDA0003249148450000108
其中τ耀为白噪声。
Figure BDA0003249148450000109
表示倾斜电离层延迟的方差,同样采用随机游走过程描述:
Figure BDA00032491484500001010
Figure BDA00032491484500001011
表示载波相位模糊度方差,初始方差为104m。
Figure BDA00032491484500001012
表示卫星轨道误差参数,采用常数估计,估计参数为公式(23)中的
Figure BDA00032491484500001013
初始方差为2π,其中B根据实际轨道精度设置,一般为0.1~3m。
参数估计采用扩展卡尔曼滤波,则可用下列方程描述:
X耀+1=Φ耀+1,耀X耀耀+1,kW耀
L耀+1=Hk+1X耀+1-V耀+1
其递推公式为:
Figure BDA0003249148450000111
Figure BDA0003249148450000112
Figure BDA0003249148450000113
Q耀+1,耀+1=[I-Kk+1,kHk+1]Q耀+1,耀 (31)其中,Φ表示待估参数的状态转移矩阵,K为卡尔曼滤波的增益矩阵,Γ表示动态噪声驱动矩阵,一般可认为是单位矩阵,I为单位矩阵。
在定位初始时刻,存在载波相位模糊度,因此首先忽略低轨卫星和导航卫星轨道误差,采用传统方法分别进行单点定位和精密单点定位。由于低轨卫星运行速度快,几何构型变化剧烈,因此低轨导航增强精密单点定位收敛速度较快,定位收敛后载波相位模糊度也将收敛。
首次定位收敛后,固定载波相位模糊度参数,引入低轨卫星和导航卫星轨道误差参数
Figure BDA0003249148450000114
设定
Figure BDA0003249148450000115
Figure BDA0003249148450000116
的初值为0,初始方差为2π,重组系统噪声方差矩阵Q。根据低轨卫星和导航卫星轨道的标称精度,为轨道误差参数方程给定相应的初值B,以及根据相应的卫星运行周期T,估计待估参数
Figure BDA0003249148450000117
随着待估参数
Figure BDA0003249148450000119
被成功固定,定位精度可得到进一步提升。若在后续观测中发生周跳,则需要重新收敛载波相位模糊度与参数
Figure BDA0003249148450000118
其初值和初始方差也将重新设置。
下面为一个更具体的例子:
如图1所示,一种顾及卫星轨道误差的低轨导航增强实时定位方法,该方法基于扩展卡尔曼滤波,可作为一种实时定位算法,也可作为一种后处理算法,应用范围包括静态定位与动态定位等。下面将此方法用于实时定位中,对其具体步骤描述如下:
1)地面接收机接收来自导航卫星和低轨导航增强卫星的观测数据;
2)接收机解析导航卫星和低轨导航增强卫星的导航电文,计算导航卫星和低轨导航增强卫星的广播星历和钟差,也可通过网络、卫星通信等其他方式获取卫星状态空间表示的改正信息,对广播星历和钟差进行改正,改正的方法如下:
广播星历位于地心地固坐标系,而轨道改正数所处的坐标系为星固系,因此将轨道改正数转化为地心地固系下的改正数,然后再对卫星轨道进行改正,公式如下:
Xorbit=Xbroadcast-δX (32)
式中,Xorbit表示经过低轨增强信息改正后的卫星轨道,Xbroadcast表示广播星历计算得到的卫星位置,δX为低轨增强信息计算的在地心地固系下的轨道改正数,其计算方法如下:
Figure BDA0003249148450000121
Figure BDA0003249148450000122
en=et×rr (35)
δX=[ereten]·δO (36)式中,r=Xbroadcast,表示广播星历计算的卫星位置矢量,
Figure BDA0003249148450000123
Figure BDA0003249148450000124
表示广播星历计算的卫星速度矢量,δO表示轨道改正矢量。
卫星钟差改正参数一般使用二次多项式系数表示,首先需要恢复当前时刻对应的钟差改正参数:
Δt=C0+C1(t-t0)+C2(t-t0)2 (37)进而可根据下式恢复卫星钟差:
Figure BDA0003249148450000131
其中,tbroadcast表示广播星历计算得到的卫星钟差参数,ts为改正后的卫星精密钟差参数,c表示光速。
3)对获得的观测数据进行预处理,使用包括MW组合在内的方法剔除粗差;
4)将本发明提出的顾及卫星轨道误差的定位观测方程线性化,同时将码和载波相位偏差吸收至接收机钟差和电离层延迟参数中,可得下式:
Figure BDA0003249148450000132
Figure BDA0003249148450000133
式中,
Figure BDA0003249148450000134
表示卫星s发射至接收机r的单位向量,
Figure BDA0003249148450000135
表示吸收了码和载波相位偏差的接收机钟差,
Figure BDA0003249148450000136
表示吸收了码和载波相位偏差的倾斜电离层延迟;朘为对流层映射函数,ZWDr表示接收机处天顶对流层延迟,
Figure BDA0003249148450000137
为吸收了载波相位偏差的模糊度;
Figure BDA0003249148450000138
表示低轨卫星和导航卫星轨道误差在视向方向的影响;εr和ξr表示伪距和载波相位观测值的观测噪声、多路径影响以及其他影响。
根据计算获得的广播星历钟差或精密星历和钟差,以及上述线性化后的定位观测方程,使用最小二乘法进行传统单点定位计算。若卫星数超过4颗,则继续使用GF与MW组合进行周跳检测;
5)不考虑轨道误差,进行精密单点定位。根据观测方程,可列出误差方程:
V=Hx-L (41)
其中,V为伪距和载波相位观测值的残差向量,H表示待估参数的雅可比矩阵,若采用消电离层组合,待估参数包括接收机位置坐标改正量、钟差改正、天顶对流层湿延迟、载波相位模糊度等,若采用非差非组合方式建立观测方程,则还应包括倾斜电离层延迟参数;L表示观测量与计算量之差组成的向量。观测值权重根据卫星高度角定权方式确定:
Figure BDA0003249148450000141
其中a和b均为经验常数,E为卫星高度角,则可组成观测值的噪声方差矩阵:
Figure BDA0003249148450000142
系统噪声方差矩阵Q可表示为:
Figure BDA0003249148450000143
其中,
Figure BDA0003249148450000144
表示接收机位置的方差阵,对于动态精密单点定位,采用103m的白噪声为方差,静态精密单点定位则采用初值为103m的常数估计。
Figure BDA0003249148450000151
表示接收机钟差的方差,采用白噪声来描述:
Figure BDA0003249148450000152
Figure BDA0003249148450000153
表示天顶对流层湿延迟的方差,采用随机游走过程描述:
Figure BDA0003249148450000154
其中τ耀为白噪声。
Figure BDA0003249148450000155
表示倾斜电离层延迟的方差,同样采用随机游走过程描述:
Figure BDA0003249148450000156
Figure BDA0003249148450000157
表示载波相位模糊度方差,初始方差为104m。
参数估计采用扩展卡尔曼滤波:
X耀+1=Φ耀+1,耀X耀耀+1,kW耀 (45)
L耀+1=Hk+1X耀+1-V耀+1 (46)其递推公式为:
Figure BDA0003249148450000158
Figure BDA0003249148450000159
Figure BDA00032491484500001510
Q耀+1,耀+1=[I-Kk+1,kHk+1]Q耀+1,耀 (50)其中,Φ表示待估参数的状态转移矩阵,K为卡尔曼滤波的增益矩阵,Γ表示动态噪声驱动矩阵,一般可认为是单位矩阵,I为单位矩阵。
依次对每历元观测值进行参数估计,若此时精密单点定位结果未收敛,则保存此时待估参数的方差协方差矩阵,继续进行下一历元的计算;若此时精密单点定位结果收敛,则固定载波相位模糊度,定位方程中引入附加轨道误差参数,在系统噪声方差矩阵Q中引入轨道误差参数:
Figure BDA0003249148450000161
其中,
Figure BDA0003249148450000162
表示卫星轨道误差参数,采用常数估计,初始方差为2π。再次应用扩展卡尔曼滤波进行精密单点定位计算。
6)若发生不可修复周跳、观测失锁等情况,暂停轨道误差参数估计,返回步骤4;若无周跳,返回步骤1,进行下一历元定位。
本方法的预期精度提升效果如图2所示。图中在定位初始时刻,存在载波相位模糊度,因此定位存在首次收敛过程,由于低轨卫星运行速度快,几何构型变化剧烈,定位收敛速度比传统精密单点定位较快,待定位收敛后载波相位模糊度也将收敛。首次定位收敛后,固定载波相位模糊度参数,引入低轨卫星和导航卫星轨道误差参数
Figure BDA0003249148450000163
进行估计,精度提升可用图2中的阶梯状表示。
本发明采用两步法减弱轨道误差的影响,其使用地面接收机接收观测数据与导航电文,计算导航卫星和低轨卫星各自的轨道和钟差;按照常规方式进行定位,待定位收敛后,估计轨道误差参数,通过给定适当的权重,吸收低轨卫星和导航卫星轨道误差,从而达到提高定位精度的作用。本发明利用低轨导航增强PPP收敛速度快的特性,通过快速收敛载波相位模糊度,进而引入轨道误差参数,用以削弱卫星轨道误差对定位的影响,提高低轨导航增强定位的精度。
总之,本发明充分考虑了卫星轨道误差的特性,通过在观测方程中添加轨道误差参数来达到吸收卫星轨道误差对精密定位精度的影响。本发明能够为对定位精度要求高的用户提供高质量的定位服务,首次定位具有一定的延迟性,但当定位收敛后,可提供不间断的高质量定位结果。

Claims (5)

1.一种顾及卫星轨道误差的低轨导航增强实时定位方法,其特征在于,包括如下步骤:
步骤1,地面接收机接收来自导航卫星和低轨导航增强卫星的观测数据;
步骤2,获得导航卫星和低轨导航增强卫星的导航电文,计算导航卫星和低轨导航增强卫星的广播星历和钟差,获取卫星状态空间表示的改正信息,对广播星历和钟差进行改正,得到高精度的轨道和钟差;
步骤3,对步骤1获得的观测数据进行预处理,剔除粗差;
步骤4,进行传统单点定位计算;
步骤5,进行精密单点定位计算;
步骤6,待精密单点定位结果收敛后,固定载波相位模糊度,引入附加轨道误差参数,吸收卫星轨道误差的影响;
步骤7,若下一历元发生周跳、观测失锁的情况,则暂停轨道误差参数估计,重新估计载波相位模糊度,重复步骤5;若定位成功,则返回步骤1,进行下一时刻定位。
2.如权利要求1所述的一种顾及卫星轨道误差的低轨导航增强实时定位方法,其特征在于,步骤4中,传统单点定位计算的计算方程为:
Figure FDA0003249148440000011
式中,
Figure FDA0003249148440000012
为卫星s发射接收机r接收到的第j频点伪距观测值,单位为米;
Figure FDA0003249148440000013
表示卫星s和接收机r之间的几何距离;c表示真空中光速;dtr为接收机钟差,dts为卫星钟差;
Figure FDA0003249148440000021
表示倾斜电离层延迟;M为对流层映射函数,ZWDr表示接收机r处天顶对流层延迟;εr表示伪距观测值的观测噪声。
3.如权利要求2所述的一种顾及卫星轨道误差的低轨导航增强实时定位方法,其特征在于,步骤5中,精密单点定位计算的计算方程为:
Figure FDA0003249148440000022
Figure FDA0003249148440000023
式中,
Figure FDA0003249148440000024
为卫星s发射接收机r接收到的第j频点载波相位观测值,单位为米;
Figure FDA0003249148440000025
Figure FDA0003249148440000026
分别为接收机和卫星的伪距硬件延迟;
Figure FDA0003249148440000027
Figure FDA0003249148440000028
表示接收机和卫星的载波相位硬件延迟;Ns为载波相位模糊度;ξr表示载波相位观测值的观测噪声。
4.如权利要求3所述的一种顾及卫星轨道误差的低轨导航增强实时定位方法,其特征在于,步骤6中,引入附加轨道误差参数后的定位方程为:
Figure FDA0003249148440000029
式中,
Figure FDA00032491484400000210
表示低轨导航增强卫星和导航卫星轨道误差在视向方向的影响:
Figure FDA00032491484400000211
式中,(Xs,Ys,Zs)为导航卫星和低轨导航增强卫星的真实位置,
Figure FDA0003249148440000031
为计算所得的导航卫星和低轨导航增强卫星带有误差的位置;卫星轨道误差呈现近似三角函数类特征,周期与卫星运行周期一致,因此卫星轨道误差可简单表示为:
Figure FDA0003249148440000032
进一步的,低轨卫星和导航卫星轨道误差在视向方向的影响可表示为:
Figure FDA0003249148440000033
式中,θ表示低轨导航增强卫星和导航卫星轨道误差与视向方向的夹角,随卫星运动而不断变化,
Figure FDA0003249148440000034
不是一个完全的正弦或余弦函数,但考虑到一般预报轨道较短,故而把
Figure FDA0003249148440000035
简化为三角函数:
Figure FDA0003249148440000036
此时方程(4)和方程(5)的未知数个数为5+N,观测方程数量为2N,冗余度为N-5,N为卫星个数,需要同时观测5颗卫星才可求解。
5.如权利要求4所述的一种顾及卫星轨道误差的低轨导航增强实时定位方法,其特征在于,步骤6中误差的方程为:
V=Hx-L (10)
其中,V为伪距和载波相位观测值的残差向量,H表示待估参数的雅可比矩阵,若采用消电离层组合,待估参数包括接收机位置坐标改正量、钟差改正、天顶对流层湿延迟、载波相位模糊度,若采用非差非组合方式建立观测方程,则还包括倾斜电离层延迟参数;L表示观测量与计算量之差组成的向量;观测值权重根据卫星高度角定权方式确定:
Figure FDA0003249148440000041
其中,a和b均为经验常数,E为卫星高度角;
观测值的噪声方差矩阵R为:
Figure FDA0003249148440000042
系统噪声方差矩阵Q为:
Figure FDA0003249148440000043
其中,
Figure FDA0003249148440000044
表示接收机位置的方差阵,对于动态精密单点定位,采用103m的白噪声为方差,静态精密单点定位则采用初值为103m的常数估计;
Figure FDA0003249148440000045
表示接收机钟差的方差,采用白噪声来描述:
Figure FDA0003249148440000046
Figure FDA0003249148440000047
表示天顶对流层湿延迟的方差,采用随机游走过程描述:
Figure FDA0003249148440000048
其中,τk为白噪声;
Figure FDA0003249148440000049
表示倾斜电离层延迟的方差,采用随机游走过程描述:
Figure FDA00032491484400000410
Figure FDA00032491484400000411
表示载波相位模糊度方差,初始方差为104m;
Figure FDA00032491484400000412
表示卫星轨道误差参数,采用常数估计,初始方差为2π;
参数估计采用扩展卡尔曼滤波,其递推公式为:
Figure FDA0003249148440000051
Figure FDA0003249148440000052
Figure FDA0003249148440000053
Figure FDA0003249148440000054
其中,Φ表示待估参数的状态转移矩阵,K为卡尔曼滤波的增益矩阵,Γ表示动态噪声驱动矩阵,一般可认为是单位矩阵,I为单位矩阵。
CN202111040836.0A 2021-09-07 2021-09-07 一种顾及卫星轨道误差的低轨导航增强实时定位方法 Active CN113687402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111040836.0A CN113687402B (zh) 2021-09-07 2021-09-07 一种顾及卫星轨道误差的低轨导航增强实时定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111040836.0A CN113687402B (zh) 2021-09-07 2021-09-07 一种顾及卫星轨道误差的低轨导航增强实时定位方法

Publications (2)

Publication Number Publication Date
CN113687402A true CN113687402A (zh) 2021-11-23
CN113687402B CN113687402B (zh) 2024-03-19

Family

ID=78585434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111040836.0A Active CN113687402B (zh) 2021-09-07 2021-09-07 一种顾及卫星轨道误差的低轨导航增强实时定位方法

Country Status (1)

Country Link
CN (1) CN113687402B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325779A (zh) * 2021-12-24 2022-04-12 航天恒星科技有限公司 导航增强系统定位粗差检测方法及装置
CN114485655A (zh) * 2022-04-06 2022-05-13 深圳华大北斗科技股份有限公司 Gnss/ins组合导航数据质量控制方法
CN114488227A (zh) * 2022-01-26 2022-05-13 西南交通大学 一种基于空间相关性的多路径误差改正方法
CN115902967A (zh) * 2022-10-21 2023-04-04 北京跟踪与通信技术研究所 基于低轨导航增强卫星信号的导航定位方法、系统及飞行平台
CN117148401A (zh) * 2023-09-04 2023-12-01 北京泛源时空科技有限公司 一种融合北斗与足部惯性的人员自主定位方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540228A (zh) * 2012-03-02 2012-07-04 重庆九洲星熠导航设备有限公司 一种单频gps高精度单点定位系统及方法
CN105242293A (zh) * 2014-07-08 2016-01-13 成都国星通信有限公司 一种全球导航卫星系统的高精度厘米级定位方法
US20160077213A1 (en) * 2014-09-15 2016-03-17 Fugro N.V. Integer ambiguity-fixed precise point positioning method and system
CN105842720A (zh) * 2016-03-23 2016-08-10 哈尔滨工程大学 一种基于载波相位的广域精密实时定位方法
CN108226985A (zh) * 2017-12-25 2018-06-29 北京交通大学 基于精密单点定位的列车组合导航方法
US20180210091A1 (en) * 2016-07-04 2018-07-26 Topcon Positioning Systems, Inc. GNSS Positioning System and Method Using Multiple Processing Threads
CN108415050A (zh) * 2018-06-04 2018-08-17 北京未来导航科技有限公司 一种基于低轨星座导航增强系统的ppp-rtk定位方法
CN109001786A (zh) * 2018-06-04 2018-12-14 北京未来导航科技有限公司 一种基于导航卫星和低轨增强卫星的定位方法和系统
CN109782313A (zh) * 2019-01-17 2019-05-21 上海卫星工程研究所 地面精密单点定位数据处理方法
CN112526564A (zh) * 2020-12-01 2021-03-19 湘潭大学 一种精密单点定位重新收敛方法
CN113267790A (zh) * 2021-06-22 2021-08-17 武汉大学 基于北斗全球短报文通信的卫星轨道钟差改正数编码方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540228A (zh) * 2012-03-02 2012-07-04 重庆九洲星熠导航设备有限公司 一种单频gps高精度单点定位系统及方法
CN105242293A (zh) * 2014-07-08 2016-01-13 成都国星通信有限公司 一种全球导航卫星系统的高精度厘米级定位方法
US20160077213A1 (en) * 2014-09-15 2016-03-17 Fugro N.V. Integer ambiguity-fixed precise point positioning method and system
CN105842720A (zh) * 2016-03-23 2016-08-10 哈尔滨工程大学 一种基于载波相位的广域精密实时定位方法
US20180210091A1 (en) * 2016-07-04 2018-07-26 Topcon Positioning Systems, Inc. GNSS Positioning System and Method Using Multiple Processing Threads
CN108226985A (zh) * 2017-12-25 2018-06-29 北京交通大学 基于精密单点定位的列车组合导航方法
CN108415050A (zh) * 2018-06-04 2018-08-17 北京未来导航科技有限公司 一种基于低轨星座导航增强系统的ppp-rtk定位方法
CN109001786A (zh) * 2018-06-04 2018-12-14 北京未来导航科技有限公司 一种基于导航卫星和低轨增强卫星的定位方法和系统
CN109782313A (zh) * 2019-01-17 2019-05-21 上海卫星工程研究所 地面精密单点定位数据处理方法
CN112526564A (zh) * 2020-12-01 2021-03-19 湘潭大学 一种精密单点定位重新收敛方法
CN113267790A (zh) * 2021-06-22 2021-08-17 武汉大学 基于北斗全球短报文通信的卫星轨道钟差改正数编码方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
易卿武: "转发式低轨单星多普勒定位解算技术", 计算机测量与控制, vol. 28, no. 7, 25 July 2020 (2020-07-25), pages 235 - 259 *
景鑫 等: "一种改进的卫星钟差实时解算算法研究", 测绘技术装备, vol. 19, no. 03, 25 September 2017 (2017-09-25), pages 15 - 18 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325779A (zh) * 2021-12-24 2022-04-12 航天恒星科技有限公司 导航增强系统定位粗差检测方法及装置
CN114488227A (zh) * 2022-01-26 2022-05-13 西南交通大学 一种基于空间相关性的多路径误差改正方法
CN114488227B (zh) * 2022-01-26 2023-10-20 西南交通大学 一种基于空间相关性的多路径误差改正方法
CN114485655A (zh) * 2022-04-06 2022-05-13 深圳华大北斗科技股份有限公司 Gnss/ins组合导航数据质量控制方法
CN115902967A (zh) * 2022-10-21 2023-04-04 北京跟踪与通信技术研究所 基于低轨导航增强卫星信号的导航定位方法、系统及飞行平台
CN115902967B (zh) * 2022-10-21 2023-10-20 北京跟踪与通信技术研究所 基于低轨导航增强卫星信号的导航定位方法、系统及飞行平台
CN117148401A (zh) * 2023-09-04 2023-12-01 北京泛源时空科技有限公司 一种融合北斗与足部惯性的人员自主定位方法及系统

Also Published As

Publication number Publication date
CN113687402B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
CN113687402B (zh) 一种顾及卫星轨道误差的低轨导航增强实时定位方法
CN109061677B (zh) 利用低轨卫星进行星基导航增强的方法
US10078140B2 (en) Navigation satellite system positioning involving the generation of advanced correction information
CN103760572B (zh) 一种基于区域cors的单频ppp电离层加权方法
US20220317310A1 (en) Method and device for converting state space representation information to observation space representation information
US11808861B2 (en) Adaptive estimation of GNSS satellite biases
Ke et al. Integrating GPS and LEO to accelerate convergence time of precise point positioning
CN111896987A (zh) 一种低轨导航增强下进行gnss/ins组合导航的方法和装置
CN103543454B (zh) 一种嵌入在移动通讯网中的卫星定轨系统
CN111983641A (zh) 一种用于实时生成北斗星基增强系统完好性参数的方法
CN110007326A (zh) 一种用于星基增强系统的双频测距误差参数生成方法
Olynik Temporal characteristics of GPS error sources and their impact on relative positioning
CN110515103A (zh) 一种低轨导航增强ppp-rtk对流层延迟产品生成方法
CN113703021A (zh) 一种基于码伪距的秒级实时高精度定位方法与系统
CN116819587A (zh) 一种利用大规模低轨星座增强的精密定位服务方法
CN114879239B (zh) 一种增强瞬时ppp固定解的区域三频整数钟差估计方法
Singh et al. Opportunistic localization using LEO signals
CN115079236A (zh) 通过低轨增强缩短广域非差非组合ppp-rtk定位收敛时间的方法
CN114384570A (zh) 一种基于低轨卫星通导一体自动驾驶导航定位系统和方法
Suzuki et al. Precise point positioning for mobile robots using software GNSS receiver and QZSS LEX signal
Azab et al. Precise point positioning using combined GPS/GLONASS measurements
CN113207088B (zh) 一种基于用户数据回传的ppp-rtk方法
Elsheikh et al. Testing and analysis of instant PPP using freely available augmentation corrections
Deambrogio et al. Impact of high-end receivers in a peer-to-peer cooperative localization system
Gill GNSS Precise Point Positioning using low-cost GNSS receivers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant