CN111983641A - 一种用于实时生成北斗星基增强系统完好性参数的方法 - Google Patents

一种用于实时生成北斗星基增强系统完好性参数的方法 Download PDF

Info

Publication number
CN111983641A
CN111983641A CN202010445178.2A CN202010445178A CN111983641A CN 111983641 A CN111983641 A CN 111983641A CN 202010445178 A CN202010445178 A CN 202010445178A CN 111983641 A CN111983641 A CN 111983641A
Authority
CN
China
Prior art keywords
satellite
dfre
time
covariance matrix
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010445178.2A
Other languages
English (en)
Other versions
CN111983641B (zh
Inventor
邵搏
丁群
原彬
耿永超
熊帅
吴显兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 20 Research Institute
Original Assignee
CETC 20 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 20 Research Institute filed Critical CETC 20 Research Institute
Priority to CN202010445178.2A priority Critical patent/CN111983641B/zh
Publication of CN111983641A publication Critical patent/CN111983641A/zh
Application granted granted Critical
Publication of CN111983641B publication Critical patent/CN111983641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/072Ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • G01S19/115Airborne or satellite based pseudolites or repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements

Abstract

本发明提供了一种用于实时生成北斗星基增强系统完好性参数的方法,通过监测站观测到的某颗卫星的双频伪距观测量和载波相位观测量,实时计算该颗卫星的改正数、DFRE和降效协方差矩阵,在120秒更新时刻将直接将计算的改正数、DFRE和降效协方差矩阵输出;在其他时刻,基于之前输出的改正数和降效协方差矩阵,实时估计DFRE,并将DFRE信息输出。本发明具有较强的工程实用性,能够为BDSBAS建设提供理论依据和实施思路,在改正数和降效协方差矩阵更新周期内,基于历史改正数和降效协方差矩阵信息估计DFRE,保证了更新周期内DFRE与改正数信息的相关性,确保用户端的完好性性能。

Description

一种用于实时生成北斗星基增强系统完好性参数的方法
技术领域
本发明涉及卫星导航增强技术领域,是北斗星基增强系统(BeiDou SatelliteBased Augmentation System,BDSBAS)中一种生成服务完好性参数的方法。
背景技术
BDSBAS是我国按照国际标准自主建设的星基增强系统(Satellite BasedAugmentation System,SBAS),通过中国境内分布的监测站,实现对经过我国上空的全球导航卫星系统(Global Navigation Satellite System,GNSS)的完好性监测,其提供的DFMC星基增强服务将满足国际民航组织规定的一类精密进近指标要求,其系统架构如图1所示。
BDSBAS的DFMC星基增强服务最多可以同时增强92颗卫星,增强对象为全球定位系统(Global Positioning System,GPS)、伽利略系统(GALILEO)、北斗全球卫星导航系统(BeiDou navigation satellite System,BDS)和格洛纳斯系统(GLONASS)。通过地球同步静止卫星(Geosynchronous Earth Orbit,GEO)卫星的B2a信号向用户播发卫星钟差改正数和轨道改正数等差分参数,以及双频测距误差(Dual-Frequency Range Error,DFRE)和降效协方差矩阵等完好性参数,实现定位精度和完好性等服务性能的提升。由于在双频定位模式下,用户可自行消除电离层延迟的影响,DFMC星基增强服务不再播发与电离层有关的差分和完好性参数。
DFRE和降效协方差矩阵是DFMC星基增强服务的重要完好性参数,反映的是卫星轨道和钟差改正数的修正效果。用户利用DFRE和降效协方差矩阵进行保护级计算,并与当前航路阶段的告警门限进行比较,以判定系统服务是否可用。
目前,国外尚未有公开文献对DFRE和降效协方差矩阵的实时解算方法进行描述。国内针对DFMC星基增强服务的完好性参数进行了初步研究,仅在DFRE和降效协方差矩阵的更新时刻进行解算。由于DFRE和降效协方差矩阵的更新间隔分别为6秒和120秒,此方法将导致120秒更新周期内的协方差矩阵与DFRE不匹配,影响用户完好性性能。
因此,需要一种合理的能够实时生成DFMC星基增强服务完好性参数的方法,保证BDSBAS DFMC星基增强服务的完好性性能。
发明内容
为了克服现有技术的不足,本发明提供一种用于实时生成北斗星基增强系统完好性参数的方法,通过监测站观测到的某颗卫星的双频伪距观测量和载波相位观测量,实时计算该颗卫星的改正数、DFRE和降效协方差矩阵,在120秒更新时刻将直接将计算的改正数、DFRE和降效协方差矩阵输出;在其他时刻,基于之前输出的改正数和降效协方差矩阵,实时估计DFRE,并将DFRE信息输出。
本发明解决其技术问题所采用的技术方案的具体步骤为:
步骤一:伪距残差解算
BDSBAS监测站采集所监测到全球卫星导航系统(Global Navigation SatelliteSystem,GNSS)卫星的观测数据和GNSS导航电文,监测站i观测到卫星j的双频观测数据如下:
Figure BDA0002505586100000021
Figure BDA0002505586100000022
Figure BDA0002505586100000023
Figure BDA0002505586100000024
其中,
Figure BDA0002505586100000025
Figure BDA0002505586100000026
分别为L1和L5频点上的伪距观测量;
Figure BDA0002505586100000027
Figure BDA0002505586100000028
分别为L1和L5频点上的载波相位观测量;
Figure BDA0002505586100000029
为监测站i和卫星j间的几何距离;
Figure BDA00025055861000000210
为对流层延迟;bi为监测站接收机时钟与GNSS系统时之间的偏差;Bj为卫星时钟与GNSS系统时之间的偏差;
Figure BDA00025055861000000211
为电离层延迟,对伪距观测量的影响是滞后,对载波相位观测量的影响是超前;
Figure BDA00025055861000000212
f1=1575.42MHz为载波L1的频率,f5=1176.45MHz为载波L5的频率;
Figure BDA00025055861000000213
Figure BDA00025055861000000214
为伪距观测量上的观测噪声;N1和N5为整周模糊度,λ1=C/f1和λ5=C/f5分别为载波L1和L5的波长,C为光速;
Figure BDA00025055861000000215
Figure BDA00025055861000000216
为载波相位观测量上的观测噪声;
首先对载波观测量进行如下变化:
Figure BDA0002505586100000031
Figure BDA0002505586100000032
式(5)、(6)中
Figure BDA0002505586100000033
中分别为L1、L5频点载波消电离层组合观测;
Figure BDA0002505586100000034
由于
Figure BDA0002505586100000035
前后两个时刻的整周模糊度基本相同,用
Figure BDA0002505586100000036
来平滑伪距观测量中的噪声;
Figure BDA0002505586100000037
其中,Lk表示L1或L5频点,
Figure BDA0002505586100000038
为相应频点的伪距观测量,
Figure BDA0002505586100000039
为相应频点平滑后的伪距观测量,τ=100s为平滑时间;
利用L1和L5频点平滑后的伪距观测量消除电离层延迟,消除电离层延迟后的伪距观测量
Figure BDA00025055861000000310
为:
Figure BDA00025055861000000311
将星历距离
Figure BDA00025055861000000312
卫星时钟偏差
Figure BDA00025055861000000313
和对流层延迟估计
Figure BDA00025055861000000314
Figure BDA00025055861000000315
中消除,得到伪距残差
Figure BDA00025055861000000316
Figure BDA00025055861000000317
其中,
Figure BDA00025055861000000318
由卫星星历位置和监测站位置计算得到;
Figure BDA00025055861000000319
为卫星时钟偏差,利用GNSS导航电文得出;ΔRj=[Δxj Δyj Δzj]T为卫星j在地心地固坐标系下X、Y、Z方向上的星历误差,即卫星星历位置与真实位置之间的误差;
Figure BDA00025055861000000320
为监测站i到卫星j的单位方向矢量;
Figure BDA00025055861000000321
为卫星j星历位置,利用GNSS导航电文得出;[xi yi zi]T为监测站接收机天线相位中心位置,通过测绘标校得出;ΔBj为卫星j的时钟误差;
Figure BDA0002505586100000041
为残余误差,方差为
Figure BDA0002505586100000042
步骤二:改正数和轨道钟差协方差矩阵解算;
利用卡尔曼滤波法求解式(9)得到轨道改正数
Figure BDA0002505586100000043
钟差改正数
Figure BDA0002505586100000044
轨道改正数变化率
Figure BDA0002505586100000045
钟差改正数变化率
Figure BDA0002505586100000046
和轨道钟差协方差矩阵
Figure BDA0002505586100000047
Xk(t)=φ*X(t-1) (10)
Pk(t)=φ*P(t-1)*φT+Q (11)
Figure BDA0002505586100000048
X(t)=Xk(t)+gain*(Zj-Hj*Xk(t)) (13)
P(t)=(E-gain*Hj)*Pk(t) (14)
Figure BDA0002505586100000049
Figure BDA00025055861000000410
其中,
Figure BDA00025055861000000411
Figure BDA00025055861000000412
为对线元素为0.0001的8×8的对角线矩阵,E为8×8的单位矩阵,P(t)4×4为P(t)前四行前四列元素组成的矩阵,M为观测到卫星j的监测站数量。
步骤三:T0时刻DFRE和降效协方差矩阵解算;
DFRE是修正残差在用户端的综合反映,需要对星历和时钟改正数在服务区域内的最大修正残差形成包络;
在t=T0时刻,DFRE(σDFRE)的计算公式为:
Figure BDA0002505586100000051
其中,T0为改正数和降效协方差矩阵的更新时刻;
Figure BDA0002505586100000052
为T0时刻卫星j在最大投影方向上的单位方向矢量;
Figure BDA0002505586100000053
Figure BDA0002505586100000054
为卫星j到服务区域内用户user的单位方向矢量,
Figure BDA0002505586100000055
为卫星j到服务区域内用户user的距离,[xuser yuser zuser]T为用户user的位置;
根据双频测距误差索引(Dual-Frequency Range Error Index,DFREI)映射表,将
Figure BDA0002505586100000056
转换为
Figure BDA0002505586100000057
映射表如表1所示:
表1DFREI映射表
DFREI DFRE(σ<sub>DFRE</sub>) DFREI DFRE(σ<sub>DFRE</sub>)
0 0.125 8 1.5
1 0.25 9 1.75
2 0.375 10 2
3 0.5 11 2.5
4 0.625 12 3
5 0.75 13 4
6 1 14 10
7 1.25
降效协方差矩阵
Figure BDA0002505586100000058
的表达式如下:
Figure BDA0002505586100000059
其中,
Figure BDA00025055861000000510
Figure BDA00025055861000000511
在DFREI映射表中对应的DFRE值;
步骤四:T1时刻DFRE估计;
在t=T1时刻,T1-T0<120秒,DFRE(σDFRE)的计算公式为:
Figure BDA0002505586100000061
其中,
Figure BDA0002505586100000062
为T1时刻卫星j在最大投影方向上的单位方向矢量;
Figure BDA0002505586100000063
为卫星j到服务区域内用户user的单位方向矢量,
Figure BDA0002505586100000064
为卫星j到服务区域内用户user的距离。
T1时刻和T0时刻改正数的修正差值ΔX满足下式:
Figure BDA0002505586100000065
得到:
Figure BDA0002505586100000066
其中,
Figure BDA0002505586100000067
为T1时刻DFRE估计值。
本发明是有益效果在于:
1)提出了实时生成北斗星基增强系统完好性参数DFRE和降效协方差矩阵的方法,给出了明确的处理流程和实施步骤,具有较强的工程实用性,能够为BDSBAS建设提供理论依据和实施思路;
2)在改正数和降效协方差矩阵更新周期内,基于历史改正数和降效协方差矩阵信息估计DFRE,保证了更新周期内DFRE与改正数信息的相关性,确保用户端的完好性性能。
附图说明
图1为北斗星基增强系统架构
图2为北斗星基增强系统完好性参数实时生成流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明是一种用于实时生成北斗星基增强系统完好性参数的方法,具体步骤如图2所示:
步骤一:伪距残差解算
BDSBAS监测站采集所监测到全球卫星导航系统(Global Navigation SatelliteSystem,GNSS)卫星的观测数据和GNSS导航电文,监测站i观测到卫星j的双频观测数据如下:
Figure BDA0002505586100000071
Figure BDA0002505586100000072
Figure BDA0002505586100000073
Figure BDA0002505586100000074
其中,
Figure BDA0002505586100000075
Figure BDA0002505586100000076
分别为L1和L5频点上的伪距观测量;
Figure BDA0002505586100000077
Figure BDA0002505586100000078
分别为L1和L5频点上的载波相位观测量;
Figure BDA0002505586100000079
为监测站i和卫星j间的几何距离;
Figure BDA00025055861000000710
为对流层延迟;bi为监测站接收机时钟与GNSS系统时之间的偏差;Bj为卫星时钟与GNSS系统时之间的偏差;
Figure BDA00025055861000000711
为电离层延迟,对伪距观测量的影响是滞后,对载波相位观测量的影响是超前;
Figure BDA00025055861000000712
f1=1575.42MHz为载波L1的频率,f5=1176.45MHz为载波L5的频率;
Figure BDA00025055861000000713
Figure BDA00025055861000000714
为伪距观测量上的观测噪声;N1和N5为整周模糊度,由接收机失锁造成;λ1=C/f1和λ5=C/f5分别为载波L1和L5的波长,光速C=299792458m/s;
Figure BDA00025055861000000715
Figure BDA00025055861000000716
为载波相位观测量上的观测噪声,该噪声远远小于伪距观测量上的观察噪声。不同时刻的数据会进行标识,未做说明的数据均为t时刻的数据。
首先对载波观测量进行如下变化:
Figure BDA00025055861000000717
Figure BDA0002505586100000081
式(5)、(6)中
Figure BDA0002505586100000082
中分别为L1、L5频点载波消电离层组合观测;
Figure BDA0002505586100000083
由于
Figure BDA0002505586100000084
前后两个时刻的整周模糊度基本相同,用
Figure BDA0002505586100000085
来平滑伪距观测量中的噪声;
Figure BDA0002505586100000086
其中,Lk表示L1或L5频点,
Figure BDA0002505586100000087
为相应频点的伪距观测量,
Figure BDA0002505586100000088
为相应频点平滑后的伪距观测量,τ=100s为平滑时间;
利用L1和L5频点平滑后的伪距观测量消除电离层延迟,消除电离层延迟后的伪距观测量
Figure BDA0002505586100000089
为:
Figure BDA00025055861000000810
将星历距离
Figure BDA00025055861000000811
卫星时钟偏差
Figure BDA00025055861000000812
和对流层延迟估计
Figure BDA00025055861000000813
Figure BDA00025055861000000814
中消除,得到伪距残差
Figure BDA00025055861000000815
Figure BDA00025055861000000816
其中,
Figure BDA00025055861000000817
由卫星星历位置和监测站位置计算得到;
Figure BDA00025055861000000818
为卫星时钟偏差,利用GNSS导航电文得出;ΔRj=[Δxj Δyj Δzj]T为卫星j在地心地固坐标系下X、Y、Z方向上的星历误差,即卫星星历位置与真实位置之间的误差;
Figure BDA00025055861000000819
为监测站i到卫星j的单位方向矢量;
Figure BDA00025055861000000820
为卫星j星历位置,利用GNSS导航电文得出;[xi yi zi]T为监测站接收机天线相位中心位置,通过测绘标校得出;ΔBj为卫星j的时钟误差(利用导航电文中的卫星时钟偏差修正后的残余误差);
Figure BDA0002505586100000091
为残余误差,方差为
Figure BDA0002505586100000092
步骤二:改正数和轨道钟差协方差矩阵解算;
利用卡尔曼滤波法求解式(9)得到轨道改正数
Figure BDA0002505586100000093
钟差改正数
Figure BDA0002505586100000094
轨道改正数变化率
Figure BDA0002505586100000095
钟差改正数变化率
Figure BDA0002505586100000096
和轨道钟差协方差矩阵
Figure BDA0002505586100000097
Xk(t)=φ*X(t-1) (10)
Pk(t)=φ*P(t-1)*φT+Q (11)
Figure BDA0002505586100000098
X(t)=Xk(t)+gain*(Zj-Hj*Xk(t)) (13)
P(t)=(E-gain*Hj)*Pk(t) (14)
Figure BDA0002505586100000099
Figure BDA00025055861000000910
其中,
Figure BDA00025055861000000911
Figure BDA00025055861000000912
Q为对线元素为0.0001的8×8的对角线矩阵,E为8×8的单位矩阵,P(t)4×4为P(t)前四行前四列元素组成的矩阵,M为观测到卫星j的监测站数量。
步骤三:T0时刻DFRE和降效协方差矩阵解算;
DFRE是修正残差在用户端的综合反映,需要对星历和时钟改正数在服务区域内的最大修正残差形成包络;
在t=T0时刻,DFRE(σDFRE)的计算公式为:
Figure BDA0002505586100000101
其中,T0为改正数和降效协方差矩阵的更新时刻;
Figure BDA0002505586100000102
为T0时刻卫星j在最大投影方向上的单位方向矢量;
Figure BDA0002505586100000103
Figure BDA0002505586100000104
为卫星j到服务区域内用户user的单位方向矢量,
Figure BDA0002505586100000105
为卫星j到服务区域内用户user的距离,[xuser yuser zuser]T为用户user的位置;
根据双频测距误差索引(Dual-Frequency Range Error Index,DFREI)映射表,将
Figure BDA0002505586100000106
转换为
Figure BDA0002505586100000107
映射表如表1所示,例,
Figure BDA0002505586100000108
对应
Figure BDA0002505586100000109
表1DFREI映射表
DFREI DFRE(σ<sub>DFRE</sub>) DFREI DFRE(σ<sub>DFRE</sub>)
0 0.125 8 1.5
1 0.25 9 1.75
2 0.375 10 2
3 0.5 11 2.5
4 0.625 12 3
5 0.75 13 4
6 1 14 10
7 1.25
降效协方差矩阵
Figure BDA00025055861000001010
的表达式如下:
Figure BDA00025055861000001011
其中,
Figure BDA00025055861000001012
Figure BDA00025055861000001013
在DFREI映射表中对应的DFRE值(例,
Figure BDA00025055861000001014
对应
Figure BDA00025055861000001015
)。
步骤四:T1时刻DFRE估计;
在t=T1时刻(T1-T0<120秒),DFRE(σDFRE)的计算公式为:
Figure BDA0002505586100000111
其中,
Figure BDA0002505586100000112
为T1时刻卫星j在最大投影方向上的单位方向矢量;
Figure BDA0002505586100000113
为卫星j到服务区域内用户user的单位方向矢量,
Figure BDA0002505586100000114
为卫星j到服务区域内用户user的距离。
T1时刻和T0时刻改正数的修正差值ΔX满足下式:
Figure BDA0002505586100000115
得到:
Figure BDA0002505586100000116
其中,
Figure BDA0002505586100000117
为T1时刻DFRE估计值。
本发明提出了一种用于实时生成北斗星基增强系统完好性参数的方法,解决了于当前双频完好性参数生成方法欠缺的难题。专业用户可通过上述步骤实时生成双频完好性参数,为高生命安全用户提供高可靠性的完好性内容服务,对我国北斗星基增强系统建设、DFMC星基增强服务加速形成具有重大的推进作用。

Claims (1)

1.一种用于实时生成北斗星基增强系统完好性参数的方法,其特征在于包括下述步骤:
步骤一:伪距残差解算;
BDSBAS监测站采集所监测到全球卫星导航系统卫星的观测数据和GNSS导航电文,监测站i观测到卫星j的双频观测数据如下:
Figure RE-FDA0002698263350000011
Figure RE-FDA0002698263350000012
Figure RE-FDA0002698263350000013
Figure RE-FDA0002698263350000014
其中,
Figure RE-FDA0002698263350000015
Figure RE-FDA0002698263350000016
分别为L1和L5频点上的伪距观测量;
Figure RE-FDA0002698263350000017
Figure RE-FDA0002698263350000018
分别为L1和L5频点上的载波相位观测量;
Figure RE-FDA0002698263350000019
为监测站i和卫星j间的几何距离;
Figure RE-FDA00026982633500000110
为对流层延迟;bi为监测站接收机时钟与GNSS系统时之间的偏差;Bj为卫星时钟与GNSS系统时之间的偏差;
Figure RE-FDA00026982633500000111
为电离层延迟,对伪距观测量的影响是滞后,对载波相位观测量的影响是超前;
Figure RE-FDA00026982633500000112
f1=1575.42MHz为载波L1的频率,f5=1176.45MHz为载波L5的频率;
Figure RE-FDA00026982633500000113
Figure RE-FDA00026982633500000114
为伪距观测量上的观测噪声;N1和N5为整周模糊度,λ1=C/f1和λ5=C/f5分别为载波L1和L5的波长,C为光速;
Figure RE-FDA00026982633500000115
Figure RE-FDA00026982633500000116
为载波相位观测量上的观测噪声;
首先对载波观测量进行如下变化:
Figure RE-FDA00026982633500000117
Figure RE-FDA00026982633500000118
式(5)、(6)中
Figure RE-FDA00026982633500000119
中分别为L1、L5频点载波消电离层组合观测;
Figure RE-FDA00026982633500000120
由于
Figure RE-FDA00026982633500000121
前后两个时刻的整周模糊度基本相同,用
Figure RE-FDA00026982633500000122
来平滑伪距观测量中的噪声;
Figure RE-FDA00026982633500000123
其中,Lk表示L1或L5频点,
Figure RE-FDA00026982633500000124
为相应频点的伪距观测量,
Figure RE-FDA00026982633500000125
为相应频点平滑后的伪距观测量,τ=100s为平滑时间;
利用L1和L5频点平滑后的伪距观测量消除电离层延迟,消除电离层延迟后的伪距观测量
Figure RE-FDA00026982633500000126
为:
Figure RE-FDA0002698263350000021
将星历距离
Figure RE-FDA0002698263350000022
卫星时钟偏差
Figure RE-FDA0002698263350000023
和对流层延迟估计
Figure RE-FDA0002698263350000024
Figure RE-FDA0002698263350000025
中消除,得到伪距残差
Figure RE-FDA0002698263350000026
Figure RE-FDA0002698263350000027
其中,
Figure RE-FDA0002698263350000028
由卫星星历位置和监测站位置计算得到;
Figure RE-FDA0002698263350000029
为卫星时钟偏差,利用GNSS导航电文得出;ΔRj=[Δxj Δyj Δzj]T为卫星j在地心地固坐标系下X、Y、Z方向上的星历误差,即卫星星历位置与真实位置之间的误差;
Figure RE-FDA00026982633500000210
为监测站i到卫星j的单位方向矢量;
Figure RE-FDA00026982633500000211
为卫星j星历位置,利用GNSS导航电文得出;[xi yi zi]T为监测站接收机天线相位中心位置,通过测绘标校得出;ΔBj为卫星j的时钟误差;
Figure RE-FDA00026982633500000212
为残余误差,方差为
Figure RE-FDA00026982633500000213
步骤二:改正数和轨道钟差协方差矩阵解算;
利用卡尔曼滤波法求解式(9)得到轨道改正数
Figure RE-FDA00026982633500000214
钟差改正数
Figure RE-FDA00026982633500000215
轨道改正数变化率
Figure RE-FDA00026982633500000216
钟差改正数变化率
Figure RE-FDA00026982633500000217
和轨道钟差协方差矩阵
Figure RE-FDA00026982633500000218
Xk(t)=φ*X(t-1) (10)
Pk(t)=φ*P(t-1)*φT+Q (11)
Figure RE-FDA00026982633500000219
X(t)=Xk(t)+gain*(Zj-Hj*Xk(t)) (13)
P(t)=(E-gain*Hj)*Pk(t) (14)
Figure RE-FDA00026982633500000220
Figure RE-FDA00026982633500000221
其中,
Figure RE-FDA0002698263350000031
Figure RE-FDA0002698263350000032
Q为对线元素为0.0001的8×8的对角线矩阵,E为8×8的单位矩阵,P(t)4×4为P(t)前四行前四列元素组成的矩阵,M为观测到卫星j的监测站数量;
步骤三:T0时刻DFRE和降效协方差矩阵解算;
DFRE是修正残差在用户端的综合反映,需要对星历和时钟改正数在服务区域内的最大修正残差形成包络;
在t=T0时刻,DFRE(σDFRE)的计算公式为:
Figure RE-FDA0002698263350000033
其中,T0为改正数和降效协方差矩阵的更新时刻;
Figure RE-FDA0002698263350000034
为T0时刻卫星j在最大投影方向上的单位方向矢量;
Figure RE-FDA0002698263350000035
Figure RE-FDA0002698263350000036
为卫星j到服务区域内用户user的单位方向矢量,
Figure RE-FDA0002698263350000037
为卫星j到服务区域内用户user的距离,[xuser yuser zuser]T为用户user的位置;
根据双频测距误差索引映射表,将
Figure RE-FDA0002698263350000038
转换为
Figure RE-FDA0002698263350000039
映射表如表1所示:
表1 DFREI映射表
Figure RE-FDA00026982633500000310
Figure RE-FDA0002698263350000041
降效协方差矩阵
Figure RE-FDA0002698263350000042
的表达式如下:
Figure RE-FDA0002698263350000043
其中,
Figure RE-FDA0002698263350000044
Figure RE-FDA0002698263350000045
在DFREI映射表中对应的DFRE值;
步骤四:T1时刻DFRE估计;
在t=T1时刻,T1-T0<120秒,DFRE(σDFRE)的计算公式为:
Figure RE-FDA0002698263350000046
其中,
Figure RE-FDA0002698263350000047
Figure RE-FDA0002698263350000048
为T1时刻卫星j在最大投影方向上的单位方向矢量;
Figure RE-FDA0002698263350000049
为卫星j到服务区域内用户user的单位方向矢量,
Figure RE-FDA00026982633500000410
为卫星j到服务区域内用户user的距离;
T1时刻和T0时刻改正数的修正差值ΔX满足下式:
Figure RE-FDA00026982633500000411
得到:
Figure RE-FDA00026982633500000412
其中,
Figure RE-FDA00026982633500000413
为T1时刻DFRE估计值。
CN202010445178.2A 2020-05-23 2020-05-23 一种用于实时生成北斗星基增强系统完好性参数的方法 Active CN111983641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010445178.2A CN111983641B (zh) 2020-05-23 2020-05-23 一种用于实时生成北斗星基增强系统完好性参数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010445178.2A CN111983641B (zh) 2020-05-23 2020-05-23 一种用于实时生成北斗星基增强系统完好性参数的方法

Publications (2)

Publication Number Publication Date
CN111983641A true CN111983641A (zh) 2020-11-24
CN111983641B CN111983641B (zh) 2022-04-19

Family

ID=73441970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010445178.2A Active CN111983641B (zh) 2020-05-23 2020-05-23 一种用于实时生成北斗星基增强系统完好性参数的方法

Country Status (1)

Country Link
CN (1) CN111983641B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112817022A (zh) * 2020-12-23 2021-05-18 浙江吉利控股集团有限公司 一种低轨卫星时频同步方法、系统、电子设备和存储介质
CN114609650A (zh) * 2022-03-09 2022-06-10 中国人民解放军92728部队 一种基于北斗全链条故障激励的完好性测试方法
CN115826016A (zh) * 2023-02-10 2023-03-21 长安大学 一种北斗双频星基增强改正数及完好性参数解算的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928741A1 (fr) * 2008-03-11 2009-09-18 Thales Sa Dispositif et procede de surveillance d'integrite en temps reel d'un systeme de navigation par satellite
CN105068088A (zh) * 2015-06-29 2015-11-18 北京航空航天大学 双频卫星导航星基增强系统可用性预测方法
CN106468774A (zh) * 2016-09-09 2017-03-01 北京航空航天大学 一种应用于星基增强系统的星历星钟改正参数及空间信号完好性参数方法
CN110007326A (zh) * 2019-04-15 2019-07-12 中国电子科技集团公司第二十研究所 一种用于星基增强系统的双频测距误差参数生成方法
CN110376618A (zh) * 2019-08-30 2019-10-25 北京航天宏图信息技术股份有限公司 基于北斗三号卫星星基增强的定位方法、装置及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928741A1 (fr) * 2008-03-11 2009-09-18 Thales Sa Dispositif et procede de surveillance d'integrite en temps reel d'un systeme de navigation par satellite
CN105068088A (zh) * 2015-06-29 2015-11-18 北京航空航天大学 双频卫星导航星基增强系统可用性预测方法
CN106468774A (zh) * 2016-09-09 2017-03-01 北京航空航天大学 一种应用于星基增强系统的星历星钟改正参数及空间信号完好性参数方法
CN110007326A (zh) * 2019-04-15 2019-07-12 中国电子科技集团公司第二十研究所 一种用于星基增强系统的双频测距误差参数生成方法
CN110376618A (zh) * 2019-08-30 2019-10-25 北京航天宏图信息技术股份有限公司 基于北斗三号卫星星基增强的定位方法、装置及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BO SHAO等: "Estimation method of SBAS dual-frequency range error integrity parameter", 《SATELLITE NAVIGATION》 *
D.SALOS等: "Up-to-date SBAS DFMC Service Volume Prototype (DSVP) to support DFMC performance characterization activities", 《2018 IEEE》 *
周昀等: "卫星导航星基增强系统及信号体制的比较", 《空间电子技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112817022A (zh) * 2020-12-23 2021-05-18 浙江吉利控股集团有限公司 一种低轨卫星时频同步方法、系统、电子设备和存储介质
CN114609650A (zh) * 2022-03-09 2022-06-10 中国人民解放军92728部队 一种基于北斗全链条故障激励的完好性测试方法
CN115826016A (zh) * 2023-02-10 2023-03-21 长安大学 一种北斗双频星基增强改正数及完好性参数解算的方法

Also Published As

Publication number Publication date
CN111983641B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN109581452B (zh) 一种gnss参考站载波相位整周模糊度解算方法
EP3805804A1 (en) Fast and precise positioning method and system
Wabbena et al. PPP-RTK: precise point positioning using state-space representation in RTK networks
US7982667B2 (en) Post-processed accuracy prediction for GNSS positioning
CN111983641B (zh) 一种用于实时生成北斗星基增强系统完好性参数的方法
US10739471B2 (en) GNSS receiver with a capability to resolve ambiguities using an uncombined formulation
Grinter et al. Precise point positioning: where are we now
CN104483691B (zh) 一种gnss组合精密单点定位方法
CN111965673A (zh) 基于多gnss的单频精密单点定位算法的时间频率传递方法
CN107966722B (zh) 一种gnss钟差解算方法
Li et al. Review of PPP–RTK: Achievements, challenges, and opportunities
CN110007326B (zh) 一种用于星基增强系统的双频测距误差参数生成方法
CN113703021B (zh) 一种基于码伪距的秒级实时高精度定位方法与系统
CN104316943A (zh) 一种伪距离和多普勒组合差分定位系统及方法
Banville et al. Improving real-time kinematic PPP with instantaneous cycle-slip correction
Landau et al. Trimble’s RTK and DGPS solutions in comparison with precise point positioning
CN111352137B (zh) 一种顾及广播星历误差的多模gnss异步rtk定位方法
Motooka et al. CLASLIB: An open-source toolkit for low-cost high-precision PPP-RTK positioning
Elmezayen et al. Performance assessment of real-time multiconstellation GNSS PPP using a low-cost dual-frequency GNSS module
Weinbach et al. Integrity of the Trimble® centerpoint RTX correction service
Wang et al. Comparison of three widely used multi‐GNSS real‐time single‐frequency precise point positioning models using the International GNSS Service real‐time service
Bisnath et al. High-precision platform positioning with a single GPS receiver
Li et al. Assessment and analysis of the four-satellite QZSS precise point positioning and the integrated data processing with GPS
CN115902968A (zh) 基于北斗三号geo播发增强信息的ppp终端定位方法
CN115220078A (zh) 基于载波相位差分的gnss高精度定位方法及导航方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant