CN113687355A - 汽车毫米波雷达圆周成像方法及装置 - Google Patents

汽车毫米波雷达圆周成像方法及装置 Download PDF

Info

Publication number
CN113687355A
CN113687355A CN202111082704.4A CN202111082704A CN113687355A CN 113687355 A CN113687355 A CN 113687355A CN 202111082704 A CN202111082704 A CN 202111082704A CN 113687355 A CN113687355 A CN 113687355A
Authority
CN
China
Prior art keywords
millimeter wave
wave radar
result
fourier transform
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111082704.4A
Other languages
English (en)
Inventor
张远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202111082704.4A priority Critical patent/CN113687355A/zh
Publication of CN113687355A publication Critical patent/CN113687355A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9052Spotlight mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9056Scan SAR mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种汽车毫米波雷达圆周成像方法及装置,其中方法包括:获得毫米波雷达回波信号;利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;对傅里叶变换后的结果进行目标依赖相位误差补偿处理;根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。本发明可以进行汽车毫米波雷达圆周成像,提高成像准确性,保证行车安全。

Description

汽车毫米波雷达圆周成像方法及装置
技术领域
本发明涉及雷达成像领域,尤其涉及汽车毫米波雷达圆周成像方法及装置。
背景技术
目前,汽车已经成为人生生活中普遍使用的交通工具,人们在驾驶汽车的过程中,安全性能的提升成为重中之重。
现有技术中,通常将汽车毫米波雷达安装于汽车前端和四角进行测距、测速和测角,但是这种方法存在测量数据不准确的问题,很难保证行车安全。
因此,亟需一种可以克服上述问题的汽车毫米波雷达成像方案。
发明内容
本发明实施例提供一种汽车毫米波雷达圆周成像方法,用以进行汽车毫米波雷达圆周成像,提高成像准确性,保证行车安全,该方法包括:
获得毫米波雷达回波信号;
利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;
对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;
对傅里叶变换后的结果进行目标依赖相位误差补偿处理;
根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。
本发明实施例提供一种汽车毫米波雷达圆周成像装置,用以进行汽车毫米波雷达圆周成像,提高成像准确性,保证行车安全,该装置包括:
信号获得模块,用于获得毫米波雷达回波信号;
误差去除模块,用于利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;
傅里叶变换模块,用于对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;
误差补偿模块,用于对傅里叶变换后的结果进行目标依赖相位误差补偿处理;
圆周成像模块,用于根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。
本发明实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述汽车毫米波雷达圆周成像方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述汽车毫米波雷达圆周成像方法的计算机程序。
本发明实施例通过获得毫米波雷达回波信号;利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;对傅里叶变换后的结果进行目标依赖相位误差补偿处理;根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。本发明实施例通过毫米波雷达旋转运动形成合成孔径并进行圆周合成孔径成像,对于目标相关的残留相位误差利用距离波数一次向补偿函数进行去除,并且发现旋臂旋转引起的目标斜距无关相位误差,因此对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换,并对傅里叶变换后的结果进行目标依赖相位误差补偿处理,进而可以根据目标依赖相位误差补偿处理后的结果进行汽车毫米波雷达圆周成像,实现360度成像能力,提高了成像准确性,保证行车安全。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例中汽车毫米波雷达圆周成像方法示意图;
图2为本发明实施例中圆周扫描几何示意图;
图3为本发明实施例中汽车毫米波雷达圆周成像的系统示意图;
图4为本发明实施例中仿真点阵目标布局;
图5为本发明实施例中成像方法结果图;
图6~图8为本发明实施例中三种算法的切向和径向目标响应结果比对图,其中,图6为P1切向方向和径向方向的响应比较,图7为P2切向方向和径向方向的响应比较,图8为P3切向方向和径向方向的响应比较;
图9为本发明实施例中面目标成像结果图;
图10为本发明实施例中汽车毫米波雷达圆周成像装置结构图;
图11是本发明实施例的计算机设备结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
如前所述,现有技术中通常将汽车毫米波雷达安装于汽车前端和四角进行测距、测速和测角,但是这种方法不具备高精度成像能力,虽然毫米波雷达可以获得目标点云,但是其本质上并不是成像,存在测量数据不准确的问题,很难保证行车安全。
为了进行汽车毫米波雷达圆周成像,提高成像准确性,保证行车安全,本发明实施例提供一种汽车毫米波雷达圆周成像方法,如图1所示,该方法可以包括:
步骤101、获得毫米波雷达回波信号;
步骤102、利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;
步骤103、对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;
步骤104、对傅里叶变换后的结果进行目标依赖相位误差补偿处理;
步骤105、根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。
由图1所示可以得知,本发明实施例通过获得毫米波雷达回波信号;利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;对傅里叶变换后的结果进行目标依赖相位误差补偿处理;根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。本发明实施例通过毫米波雷达旋转运动形成合成孔径并进行圆周合成孔径成像,对于目标相关的残留相位误差利用距离波数一次向补偿函数进行去除,并且发现旋臂旋转引起的目标斜距无关相位误差,因此对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换,并对傅里叶变换后的结果进行目标依赖相位误差补偿处理,进而可以根据目标依赖相位误差补偿处理后的结果进行汽车毫米波雷达圆周成像,实现360度成像能力,提高了成像准确性,保证行车安全。
图2为本发明实施例圆周扫描几何示意图。在图2中S表示雷达位置,P表示目标位置,R表示目标到雷达的距离。雷达以点O为圆心做圆周运动,旋转臂长为rso
实施例中,获得毫米波雷达回波信号。
本实施例中,所述毫米波雷达回波信号为去斜后的回波信号,其信号模型表达式为:
Figure BDA0003264364370000041
其中,Wa为方位向窗函数,θs为雷达旋转角度,Wr为距离向窗函数,kr为距离向波数,rso为雷达旋转半径,rpo为目标到雷达旋转中心距离,θs为雷达旋转角度,θp为rpo与ox轴夹角,rc为去斜时使用的参考斜距。
实施例中,利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差。
本实施例中,利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差,包括:
根据参考斜距和距离向波数,构建距离波数一次向补偿函数;
将距离波数一次向补偿函数和毫米波雷达回波信号相乘。
具体实施时,按如下公式根据参考斜距和距离向波数,构建距离波数一次向补偿函数:
s1=exp{j[-2πkr·rc]} (2)
然后,将距离波数一次向补偿函数和毫米波雷达回波信号相乘得到如下公式,从而可以补偿消除公式(1)中的去斜时使用的参考斜距rc调制项:
Figure BDA0003264364370000042
实施例中,对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换。
本实施例中,对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换,包括:
确定所述去除误差的毫米波雷达回波信号的相位;
根据所述去除误差的毫米波雷达回波信号的相位对旋转角度进行求导,确定旋转向波数;
根据雷达与目标及旋转中心之间的几何关系和旋转向波数,确定傅里叶变换后的结果。
具体实施时,将公式(3)沿旋转角度方向进行傅里叶变换,利用驻留相位原理可以确定如下所述去除误差的毫米波雷达回波信号的相位:
Figure BDA0003264364370000043
其中,kθ为旋转向波数。然后,按如下公式对雷达旋转角度θs求导数并求解驻留相位点:
Figure BDA0003264364370000051
其中,R表示目标到雷达的距离。从而,可以得到旋转向波数kθ
Figure BDA0003264364370000052
进而,可以根据雷达与目标及旋转中心之间的几何关系和旋转向波数,确定傅里叶变换后的结果。在图2中,根据雷达S与目标P及旋转中心O之间所构成的三角形,可以得出如下等式:
Figure BDA0003264364370000053
其中,φ为雷达相位中心与雷达目标斜距夹角,从而可以利用公式(7)得到:
Figure BDA0003264364370000054
Figure BDA0003264364370000055
将公式(9)代入公式(6)可以得到:
kθ=-kr·rso·sinφ (10)
进而,将公式(10)代入公式(9)可以得到:
Figure BDA0003264364370000056
将公式(11)代入公式(4)可以得到波数域完整相位表达式为:
Figure BDA0003264364370000057
经过进一步简化可以得到:
Figure BDA0003264364370000061
傅里叶变换后的结果可以表示为:
SS1(kθ,kr)=Was)·Wr(kr)·exp{j·Φ} (14)
实施例中,对傅里叶变换后的结果进行目标依赖相位误差补偿处理。
具体实施时,按如下公式进行目标依赖相位误差补偿处理:
Figure BDA0003264364370000062
实施例中,根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。
本实施例中,根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像,包括:
对目标依赖相位误差补偿处理后的结果沿距离方向进行逆傅里叶变换;
对逆傅里叶变换的结果沿旋转角度方向进行逆傅里叶变换,得到极坐标聚焦结果;
对所述极坐标聚焦结果进行插值处理,得到二维空间坐标成像结果。
具体实施时,按如下公式对目标依赖相位误差补偿处理后的结果沿距离方向进行逆傅里叶变换:
Figure BDA0003264364370000063
其中,第一个相位项在rpo的距离单元位置是零,在其他距离单元位置虽然不为零,但是由于模糊度函数δr(·)的幅度会极大限制相位项影响,因此实际上这个相位项已经完全被消除。公式(16)中第二个相位项决定了目标的角度方向位置,通过按如下公式对逆傅里叶变换的结果沿旋转角度方向进行逆傅里叶变换得到极坐标聚焦结果:
Figure BDA0003264364370000064
进而,可以对所述极坐标聚焦结果进行插值处理,得到二维空间坐标成像结果。
下面给出一个具体实施例,说明本发明实施例中汽车毫米波雷达圆周成像的具体应用。在本具体实施例中,图3为汽车毫米波雷达圆周成像的系统示意图,雷达参数如表1所示。
表1
系统载频 f<sub>0</sub>=77GHz
发射脉冲时宽 T<sub>p</sub>=20us
扫描角度范围 θ<sub>1</sub>=0°θ<sub>2</sub>=360°
方位向波束-3dB宽度 50°
发射脉冲带宽 1GHz
采样频率 60MHz
图4为仿真点阵目标布局,如图4所示设置一个4m×4m的点阵目标,选择P1、P2、P3作为观察点。成像系统中的目标在同一距离、不同角度下具有不变的聚焦特性,因此这三点目标具有分析的通用性。不同方法点目标响应比较如表2所示。
表2
Figure BDA0003264364370000071
本发明具体实施例的成像方法结果图如图5所示。然后分别使用后向投影算法(BPA)和距离-多普勒算法(RDA)对同一回波进行处理,并对这三种成像算法进行质量分析。分辨率分析是沿着目标的切向和径向方向进行的,这里恰好是在Y和X方向。图6~图8分别为三种算法的切向和径向目标响应结果。表2给出了按(σxy)m和(PLSRx,PLSRy)dB测量点目标响应的结果。可以看出,该方法的总体点目标响应更接近BPA结果,成像精度高于RDA。另外,在相同的计算环境下进行了耗时测试。测试回波数据的方位点为7200,距离点为1024。该数据为复数数据,也就是说,包含实部和虚部。数据类型是双精度浮点数。因此,总的数据量是118兆字节。成像场景大小为30米×30米,采样间隔为0.05米。表3显示了三种算法的耗时。可以看出,本发明具体实施例方法的时间效率远高于BPA。图9是面目标成像结果。表3为不同方法的计算时间。
表3
本发明 BPA RDA
时间 4.9s 8 min 5.0s
采样间隔(m) 0.05 0.05 0.05
本发明实施例通过毫米波雷达旋转运动形成合成孔径并进行圆周合成孔径成像,对于目标相关的残留相位误差利用距离波数一次向补偿函数进行去除,并且发现旋臂旋转引起的目标斜距无关相位误差,因此对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换,并对傅里叶变换后的结果进行目标依赖相位误差补偿处理,进而可以根据目标依赖相位误差补偿处理后的结果进行汽车毫米波雷达圆周成像,实现360度成像能力,提高了成像准确性,保证行车安全。
基于同一发明构思,本发明实施例还提供了一种汽车毫米波雷达圆周成像装置,如下面的实施例所述。由于这些解决问题的原理与汽车毫米波雷达圆周成像方法相似,因此汽车毫米波雷达圆周成像装置的实施可以参见方法的实施,重复之处不再赘述。
图10为本发明实施例中汽车毫米波雷达圆周成像装置的结构图,如图10所示,该汽车毫米波雷达圆周成像装置包括:
信号获得模块1001,用于获得毫米波雷达回波信号;
误差去除模块1002,用于利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;
傅里叶变换模块1003,用于对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;
误差补偿模块1004,用于对傅里叶变换后的结果进行目标依赖相位误差补偿处理;
圆周成像模块1005,用于根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。
一个实施例中,所述误差去除模块1002进一步用于:
根据参考斜距和距离向波数,构建距离波数一次向补偿函数;
将距离波数一次向补偿函数和毫米波雷达回波信号相乘。
一个实施例中,所述傅里叶变换模块1003进一步用于:
确定所述去除误差的毫米波雷达回波信号的相位;
根据所述去除误差的毫米波雷达回波信号的相位对旋转角度进行求导,确定旋转向波数;
根据雷达与目标及旋转中心之间的几何关系和旋转向波数,确定傅里叶变换后的结果。
一个实施例中,所述圆周成像模块1005进一步用于:
对目标依赖相位误差补偿处理后的结果沿距离方向进行逆傅里叶变换;
对逆傅里叶变换的结果沿旋转角度方向进行逆傅里叶变换,得到极坐标聚焦结果;
对所述极坐标聚焦结果进行插值处理,得到二维空间坐标成像结果。
综上所述,本发明实施例通过获得毫米波雷达回波信号;利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;对傅里叶变换后的结果进行目标依赖相位误差补偿处理;根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。本发明实施例通过毫米波雷达旋转运动形成合成孔径并进行圆周合成孔径成像,对于目标相关的残留相位误差利用距离波数一次向补偿函数进行去除,并且发现旋臂旋转引起的目标斜距无关相位误差,因此对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换,并对傅里叶变换后的结果进行目标依赖相位误差补偿处理,进而可以根据目标依赖相位误差补偿处理后的结果进行汽车毫米波雷达圆周成像,实现360度成像能力,提高了成像准确性,保证行车安全。
基于前述发明构思,如图11所示,本发明还提出了一种计算机设备1100,包括存储器1110、处理器1120及存储在存储器1110上并可在处理器1120上运行的计算机程序1130,所述处理器1120执行所述计算机程序1130时实现前述汽车毫米波雷达圆周成像方法。
基于前述发明构思,本发明提出了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现前述汽车毫米波雷达圆周成像方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种汽车毫米波雷达圆周成像方法,其特征在于,包括:
获得毫米波雷达回波信号;
利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;
对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;
对傅里叶变换后的结果进行目标依赖相位误差补偿处理;
根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。
2.如权利要求1所述的汽车毫米波雷达圆周成像方法,其特征在于,利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差,包括:
根据参考斜距和距离向波数,构建距离波数一次向补偿函数;
将距离波数一次向补偿函数和毫米波雷达回波信号相乘。
3.如权利要求1所述的汽车毫米波雷达圆周成像方法,其特征在于,对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换,包括:
确定所述去除误差的毫米波雷达回波信号的相位;
根据所述去除误差的毫米波雷达回波信号的相位对旋转角度进行求导,确定旋转向波数;
根据雷达与目标及旋转中心之间的几何关系和旋转向波数,确定傅里叶变换后的结果。
4.如权利要求1所述的汽车毫米波雷达圆周成像方法,其特征在于,根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像,包括:
对目标依赖相位误差补偿处理后的结果沿距离方向进行逆傅里叶变换;
对逆傅里叶变换的结果沿旋转角度方向进行逆傅里叶变换,得到极坐标聚焦结果;
对所述极坐标聚焦结果进行插值处理,得到二维空间坐标成像结果。
5.一种汽车毫米波雷达圆周成像装置,其特征在于,包括:
信号获得模块,用于获得毫米波雷达回波信号;
误差去除模块,用于利用距离波数一次向补偿函数去除毫米波雷达回波信号中的残留相位误差;
傅里叶变换模块,用于对去除误差的毫米波雷达回波信号沿旋转角度方向进行傅里叶变换;
误差补偿模块,用于对傅里叶变换后的结果进行目标依赖相位误差补偿处理;
圆周成像模块,用于根据目标依赖相位误差补偿处理后的结果,进行汽车毫米波雷达圆周成像。
6.如权利要求5所述的汽车毫米波雷达圆周成像装置,其特征在于,所述误差去除模块进一步用于:
根据参考斜距和距离向波数,构建距离波数一次向补偿函数;
将距离波数一次向补偿函数和毫米波雷达回波信号相乘。
7.如权利要求5所述的汽车毫米波雷达圆周成像装置,其特征在于,所述傅里叶变换模块进一步用于:
确定所述去除误差的毫米波雷达回波信号的相位;
根据所述去除误差的毫米波雷达回波信号的相位对旋转角度进行求导,确定旋转向波数;
根据雷达与目标及旋转中心之间的几何关系和旋转向波数,确定傅里叶变换后的结果。
8.如权利要求5所述的汽车毫米波雷达圆周成像装置,其特征在于,所述圆周成像模块进一步用于:
对目标依赖相位误差补偿处理后的结果沿距离方向进行逆傅里叶变换;
对逆傅里叶变换的结果沿旋转角度方向进行逆傅里叶变换,得到极坐标聚焦结果;
对所述极坐标聚焦结果进行插值处理,得到二维空间坐标成像结果。
9.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至4任一所述方法。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有执行权利要求1至4任一所述方法的计算机程序。
CN202111082704.4A 2021-09-15 2021-09-15 汽车毫米波雷达圆周成像方法及装置 Withdrawn CN113687355A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111082704.4A CN113687355A (zh) 2021-09-15 2021-09-15 汽车毫米波雷达圆周成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111082704.4A CN113687355A (zh) 2021-09-15 2021-09-15 汽车毫米波雷达圆周成像方法及装置

Publications (1)

Publication Number Publication Date
CN113687355A true CN113687355A (zh) 2021-11-23

Family

ID=78586470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111082704.4A Withdrawn CN113687355A (zh) 2021-09-15 2021-09-15 汽车毫米波雷达圆周成像方法及装置

Country Status (1)

Country Link
CN (1) CN113687355A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117788592A (zh) * 2024-02-26 2024-03-29 北京理工大学前沿技术研究院 一种矿井车辆的雷达点云处理装置、方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062657A (zh) * 2014-05-30 2014-09-24 西安电子科技大学 一种合成孔径雷达sar的广义极坐标成像方法
CN106324597A (zh) * 2016-07-29 2017-01-11 西安电子科技大学 基于pfa的大转角isar雷达的平动补偿和成像方法
CN109738894A (zh) * 2019-01-29 2019-05-10 北方工业大学 一种雷达的成像方法
CN109932718A (zh) * 2019-03-11 2019-06-25 南京航空航天大学 多旋翼无人机载的圆周轨迹环视sar全孔径成像方法
CN112558070A (zh) * 2021-02-20 2021-03-26 北方工业大学 圆周扫描地基sar的频域成像方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062657A (zh) * 2014-05-30 2014-09-24 西安电子科技大学 一种合成孔径雷达sar的广义极坐标成像方法
CN106324597A (zh) * 2016-07-29 2017-01-11 西安电子科技大学 基于pfa的大转角isar雷达的平动补偿和成像方法
CN109738894A (zh) * 2019-01-29 2019-05-10 北方工业大学 一种雷达的成像方法
CN109932718A (zh) * 2019-03-11 2019-06-25 南京航空航天大学 多旋翼无人机载的圆周轨迹环视sar全孔径成像方法
CN112558070A (zh) * 2021-02-20 2021-03-26 北方工业大学 圆周扫描地基sar的频域成像方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN ZHANG 等: "Efficient ArcSAR Focusing in the Wavenumber Domain", IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pages 1 - 10 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117788592A (zh) * 2024-02-26 2024-03-29 北京理工大学前沿技术研究院 一种矿井车辆的雷达点云处理装置、方法、设备及介质
CN117788592B (zh) * 2024-02-26 2024-06-07 北京理工大学前沿技术研究院 一种矿井车辆的雷达点云处理装置、方法、设备及介质

Similar Documents

Publication Publication Date Title
CN107505614B (zh) 一种基于ati-sar图像幅相信息融合的目标检测方法
Kung et al. A normal distribution transform-based radar odometry designed for scanning and automotive radars
CN108415015B (zh) 一种稀疏孔径下舰船目标三维InISAR成像方法
CN108254718B (zh) 基于旋转干涉仪的多目标角度解模糊方法
CN109856635B (zh) 一种csar地面动目标重聚焦成像方法
CN108919220B (zh) 基于嵌入式gpu的弹载sar前侧视成像方法
CN111781595B (zh) 基于匹配搜索和多普勒解模糊的复杂机动群目标成像方法
CN113009441B (zh) 一种雷达运动反射面多径目标的识别方法及装置
CN113687355A (zh) 汽车毫米波雷达圆周成像方法及装置
CN115267718A (zh) 基于点云拼接的环视雷达360°探测实现方法
CN112558070B (zh) 圆周扫描地基sar的频域成像方法及装置
CN109917384B (zh) 旋臂扫描地基sar的中远距频域快速成像方法及装置
CN113009483A (zh) 一种测速方法、装置、计算机存储介质及设备
CN113156435A (zh) 一种基于嵌入式gpu的弹载sar前侧视时域成像方法
CN109613474B (zh) 一种适用于短距离车载雷达的测角补偿方法
CN115407282B (zh) 一种短基线下基于干涉相位的sar有源欺骗干扰检测方法
CN114002666B (zh) 任意天线构型下星载ati-sar洋流流速提取方法及设备
CN112147606B (zh) 一种基于多通道雷达的旋转目标微动特征提取方法和装置
Tilly et al. Reduction of sidelobe effects in automotive polarimetric radar measurements
Xie Enhanced multi-baseline unscented Kalman filtering phase unwrapping algorithm
CN114791598A (zh) 确定检测的角度的方法和系统
CN107238813B (zh) 近场信号源波达方向和波达时间确定方法及装置
CN113466859B (zh) 基于快速相位插值的自旋空间碎片目标isar二维成像方法
CN115980752B (zh) 一种涡旋电磁波雷达旋转目标特征提取与成像方法
CN114002651B (zh) 飞行器的雷达俯仰视向角实时估计方法、装置及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211123

WW01 Invention patent application withdrawn after publication