CN109856635B - 一种csar地面动目标重聚焦成像方法 - Google Patents

一种csar地面动目标重聚焦成像方法 Download PDF

Info

Publication number
CN109856635B
CN109856635B CN201910148768.6A CN201910148768A CN109856635B CN 109856635 B CN109856635 B CN 109856635B CN 201910148768 A CN201910148768 A CN 201910148768A CN 109856635 B CN109856635 B CN 109856635B
Authority
CN
China
Prior art keywords
sub
moving target
aperture
phase
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910148768.6A
Other languages
English (en)
Other versions
CN109856635A (zh
Inventor
安道祥
王武
陈乐平
罗雨潇
范崇祎
周智敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201910148768.6A priority Critical patent/CN109856635B/zh
Publication of CN109856635A publication Critical patent/CN109856635A/zh
Application granted granted Critical
Publication of CN109856635B publication Critical patent/CN109856635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于合成孔径雷达地面动目标指示领域,涉及一种CSAR地面动目标重聚焦成像方法。该方法包括步骤:S1、接收动目标的雷达回波信号并进行预处理;S2、将雷达回波信号沿方位向划分成若干个子孔径回波信号;S3、将子孔径回波信号变换到距离频域,逐频点提取信号沿方位向的相位;S4、根据提取的相位计算得到距离估计值,并用二次曲线拟合构造相位补偿因子;S5、利用相位补偿因子进行运动补偿;S6、利用MD自聚焦方法补偿相位估计误差;S7、分别沿方位向做傅里叶变换和沿距离向做逆傅里叶变换,获得该子孔径下动目标重聚焦结果;S8、重复步骤S3‑S7获得多子孔径下动目标重聚焦图像序列。本发明在目标运动参数未知情况下实现了运动补偿。

Description

一种CSAR地面动目标重聚焦成像方法
技术领域
本发明属于合成孔径雷达(Synthetic Aperture Radar,SAR)地面动目标指示(Ground Moving Target Indication,GMTI)领域,涉及一种适用于曲线合成孔径雷达(Curve SAR,CSAR)的地面动目标重聚焦(Ground Moving Target Refocusing,GMTR)成像方法。
背景技术
合成孔径雷达(Synthetic Aperture Radar,SAR)是一种可对观测场景进行高分辨微波成像的雷达技术,CSAR是一种新的SAR成像体制,即雷达平台围绕观测场景做大曲线或宽角度圆弧运动,并且波束始终指向目标场景进行观测成像的雷达系统。CSAR可以实现地面静止目标亚波长级分辨率,并且能够多角度全方位观测目标,获取更加详细的目标方位散射信息。为了提高战场感知能力,人们希望CSAR在完成静止目标成像侦察的同时,能够实现对地面动目标的侦察探测,即具有GMTI功能。CSAR-GMTI能够同时完成对静止/运动目标成像侦察,极大的拓展了SAR技术的使用范围。然而,常规CSAR成像方法只能对静止目标进行精确成像,地面动目标自身的运动会引入额外的距离走动以及距离弯曲,导致动目标在CSAR图像中发生散焦和位置偏移现象。地面动目标重聚焦成像能够提供动目标的准确情报信息,因此地面动目标重聚焦成像是GMTI重要研究内容之一。
地面动目标一般为非合作目标,很难准确获取其运动参数信息,增加了重聚焦成像的难度。此外,CSAR的特殊运动几何在带来全方位多孔径角观测优势的同时,也引入了复杂的方位和距离耦合,这使得传统直线SAR下的动目标重聚焦方法失效。如何在CSAR工作模式下,实现非合作地面动目标精确重聚焦成像是一个亟待解决的技术问题。
发明内容
本发明的目的在于提供一种适用于CSAR的地面动目标重聚焦方法,以提高CSAR-GMTI性能及其实用价值。为了实现上述技术目的,本发明的技术方案是:
一种CSAR地面动目标重聚焦成像方法,包括以下步骤:
S1、接收动目标的雷达回波信号,并进行预处理;
S2、将预处理后的雷达回波信号沿方位向划分成若干个子孔径回波信号;
S3、对于某个子孔径回波信号,将子孔径回波信号变换到距离频域,逐频点提取信号沿方位向的相位;
S4、根据提取的相位计算得到距离估计值,对距离估计值用二次曲线拟合,根据拟合曲线构造相位补偿因子;
S5、利用相位补偿因子进行运动补偿;
S6、利用Map-Drift自聚焦方法补偿相位估计误差;
S7、对步骤S6的结果分别沿方位向做傅里叶变换和沿距离向做逆傅里叶变换,获得该子孔径下动目标重聚焦结果;
S8、重复步骤S3-S7,逐一对所有子孔径回波信号进行处理,获得多子孔径下动目标重聚焦图像序列。
优选地,所述预处理包括距离向脉冲压缩和地杂波抑制。
优选地,所述步骤S3的具体过程为:
设N表示动目标散射点总个数,n表示散射点序号,n取值范围为0,1,2,…,N-1;N、n均为整数,选取n=0散射点为参考点,An表示动目标第n个散射点回波信号幅度,Rn(ta)表示雷达与动目标第n个散射点之间的瞬时斜距,ΔRn(ta)=Rn(ta)-R0(ta),f为信号频率,c表示光速,π表示圆周率,rect(·)表示矩形窗函数,ta表示慢时间,Tsub表示第k个子孔径的持续时间,ta,k表示第k个子孔径的中心时刻,则第k个子孔径回波距离频域信号Ssk(f,ta)为:
Figure BDA0001980896640000021
将ΔRn(ta)利用小角近似处理,得到:
ΔRn(ta)=Rn(ta)-R0(ta)≈yn-xnω(ta-ta,k),
其中ta∈[ta,k-Tsub/2,ta,k+Tsub/2],ω表示相对旋转角速度,
Figure BDA0001980896640000022
进一步地,Ssk(f,ta)的相位估计值
Figure BDA0001980896640000023
为:
Figure BDA0001980896640000024
其中∠(·)表示计算复信号幅角,unwrap(·)为解缠绕操作。
优选地,所述步骤S4的具体过程为:
根据提取的相位计算距离估计值
Figure BDA0001980896640000025
为:
Figure BDA0001980896640000031
其中
Figure BDA0001980896640000032
Figure BDA0001980896640000033
的离散化形式,
Figure BDA0001980896640000034
Nr表示距离频率采样点数,
Figure BDA0001980896640000035
表示距离频率采样点,即距离频率f的离散采样对应的频率,nr取值为0,1,2,…,Nr-1,利用二次曲线对
Figure BDA0001980896640000036
进行拟合,得到R0(ta)的估计结果
Figure BDA0001980896640000037
Figure BDA0001980896640000038
Figure BDA0001980896640000039
分别表示常数项、一次项、二次项拟合系数,利用上式构造相位补偿因子H(f,ta):
Figure BDA00019808966400000310
优选地,所述步骤S4的具体过程为:将相位补偿因子与第k个子孔径回波信号相乘,得到运动补偿之后的第k个子孔径回波信号。
为了更好的理解本发明技术方案,下面对相关原理和推导过程作详细说明。
如图1所示,以笛卡尔坐标系原点为探测场景中心,包含多个散射点的动目标在场景中以速度
Figure BDA00019808966400000311
运动,vx,vy分别表示X轴、Y轴方向的速度分量;动目标第n个散射点的位置为
Figure BDA00019808966400000312
xn,yn表示空间坐标值,其中ta表示慢时间,T表示向量转置符号。雷达平台以速度
Figure BDA00019808966400000313
围绕探测场景做曲线运动,慢时间ta时刻的雷达平台的位置坐标为
Figure BDA00019808966400000314
H表示雷达平台与探测场景的垂直距离。雷达与动目标第n个散射点之间的瞬时斜距可以表示为
Figure BDA00019808966400000315
其中||·||2表示2范数。不失一般性,选n=0散射点为参考点,则
Figure BDA00019808966400000316
雷达发射信号为线性调频信号(Linear frequency modulation,LFM),中心频率为fc,带宽为B。接收到的CSAR动目标回波信号经正交解调、脉冲压缩以及抑制地杂波之后,信号表示为s(r,ta):
Figure BDA0001980896640000041
其中r表示斜距,sinc(·)表示辛格函数,c表示光速,N表示动目标散射点总个数,An表示动目标第n个散射点回波信号幅度,j为虚数单位,exp表示以自然对数e为底指数函数,相应的距离频域信号g(f,ta)表示为
Figure BDA0001980896640000042
其中f∈[fc-B/2,fc+B/2],
Figure BDA0001980896640000043
表示傅里叶变换。为便于动目标成像处理,雷达全孔径回波被均匀划分为K个子孔径回波。第k个子孔径回波为:
Figure BDA0001980896640000044
其中Tsub和ta,k分别表示第k个子孔径的持续时间和中心时刻,k为整数且0≤k≤K-1。rect(·)表示矩形窗函数。如图2所示,在子孔径下,以参考点为圆心,建立新的坐标系O'X'Y',在不引起混淆的情况下,仍然用(xn,yn)表示第n个散射点在新坐标系O'X'Y'下的位置。在O'X'Y'坐标系下,利用小角近似,ΔRn(ta)表示为:
ΔRn(ta)=Rn(ta)-R0(ta)≈yn-xnω(ta-ta,k) (6)
其中ta∈[ta,k-Tsub/2,ta,k+Tsub/2],ω表示雷达与目标之间相对旋转角速度。将(6)代入(5)中可得
Figure BDA0001980896640000045
为便于推导,将(7)重写为
Figure BDA0001980896640000046
其中
Figure BDA0001980896640000051
Figure BDA0001980896640000052
Figure BDA0001980896640000053
式(11)中S(f,ta)和
Figure BDA0001980896640000054
分别表示式(7)中求和项的幅度和相位。相位
Figure BDA0001980896640000055
由多个散射点之间的差分距离共同决定。相应的,定义
Figure BDA0001980896640000056
由于雷达与目标之间距离R0(ta)远大于目标散射点之间的差分距离,因此
Figure BDA0001980896640000057
远小于
Figure BDA0001980896640000058
将R0(ta)泰勒展开,可以得到
Figure BDA0001980896640000059
相应的
Figure BDA00019808966400000510
其中
Figure BDA00019808966400000511
分别表示一阶导数、二阶导数。α1与α2由雷达与动目标之间的相对运动决定。当子孔径持续时间Tsub较小时,上式中高阶项可以忽略。由式(13)可以看出,
Figure BDA00019808966400000512
是关于ta的一个二次函数,再结合上文中
Figure BDA00019808966400000513
远小于
Figure BDA00019808966400000514
的结论,可以利用二次曲线拟合的方法,从Ssk(f,ta)的相位
Figure BDA00019808966400000515
中估计得到
Figure BDA00019808966400000516
Ssk(f,ta)的相位
Figure BDA00019808966400000517
可以由下式得到
Figure BDA00019808966400000518
其中
Figure BDA00019808966400000519
表示估计值,∠(·)表示计算复信号幅角,unwrap(·)为解缠绕操作。现代数字信号处理中,信号一般会离散化。用
Figure BDA00019808966400000520
表示距离频率f的离散采样点,式(14)离散化形式可以表示为
Figure BDA00019808966400000521
相应的距离估计
Figure BDA00019808966400000522
为:
Figure BDA00019808966400000523
其中
Figure BDA00019808966400000524
Nr表示距离频率采样点数。利用二次曲线对
Figure BDA00019808966400000525
进行拟合,即可得到R0(ta)的估计结果。R0(ta)的估计为
Figure BDA0001980896640000061
Figure BDA0001980896640000062
Figure BDA0001980896640000063
分别表示常数项、一次项、二次项拟合系数。利用上式构造相位补偿因子
Figure BDA0001980896640000064
将式(17)与式(8)相乘,得到运动补偿之后的回波信号为
Figure BDA0001980896640000065
其中
Figure BDA0001980896640000066
上式中,只有二次项相位会影响成像质量,利用Map-Drift算法,补偿该残余二次相位误差后,雷达回波为
Figure BDA0001980896640000067
随后沿f(距离频率)傅里叶变换,沿ta(方位时间)做傅里叶变换,得到第k个子孔径下动目标重聚焦结果
Figure BDA0001980896640000068
其中fd与慢时间ta互为傅里叶变换对,表示多普勒频率。
按上述方法,逐个处理所有子孔径回波,即可获得多个子孔径观测下动目标重聚焦图像序列。
与现有技术相比,本发明具有以下优点:
1)本发明采用CSAR模式,能够获得多子孔径(多角度)动目标重聚焦成像结果;
2)通过直接在距离频域提取相位,本发明能够在目标运动参数未知情况下,校正距离徙动,实现运动补偿。
附图说明
图1为本发明的应用场景示意图;
图2是某一子孔径下观测几何示意图;
图3是本发明方法流程图;
图4是实施例中某一实测动目标回波在不同子孔径下重聚焦成像结果图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1为本发明的应用场景示意图,图中雷达平台沿圆周飞行,速度为
Figure BDA0001980896640000071
波束始终指向探测区域,对探测区域内动目标(汽车)进行长时间观测。
图2为子孔径下观测几何示意图,选取动目标某一散射点为参考点进行运动补偿。
图3为本发明的流程图。一种适用于CSAR的地面动目标重聚焦方法,包括以下步骤:
S1、接收动目标的雷达回波信号,进行预处理。预处理包括距离向脉冲压缩以及地杂波抑制。距离向脉冲压缩可以通过匹配滤波实现。根据动目标多普勒频偏是否大于静止杂波多普勒展宽可以将动目标分为快速运动目标和慢速运动目标。针对快速运动目标,地杂波抑制可以通过简单的多普勒滤波实现。针对慢速运动目标,利用多通道技术如DPCA、STAP等可以实现高性能杂波抑制。以快速运动目标为例,将回波变换到多普勒域,通过多普勒滤波,根据地杂波多普勒展宽确定截止频率,滤除低频带杂波,实现地杂波抑制,获取动目标回波;
S2、子孔径回波划分:将接收到的雷达回波沿方位划分成若干个子孔径用于后续处理;
S3.逐频点提取相位:将子孔径动目标回波变换到距离频域,逐频点提取信号沿方位向的相位;
S4.二次曲线拟合:对提取出的相位进行二次曲线拟合,估计动目标参考点距离徙动曲线;
S5.运动补偿:利用拟合获得到二次曲线,构造相位补偿因子,实现运动补偿;
S6.MD自聚焦:利用Map-Drift(MD)自聚焦方法补偿相位估计误差,提高动目标重聚焦成像质量。
S7.二维傅里叶变换:分别沿方位向做傅里叶变换(FFT)和沿距离向做逆傅里叶变换(IFFT),获得子孔径下动目标重聚焦结果;
S8.对所有子孔径重复S2-S7步骤,获得多子孔径下动目标重聚焦图像序列。
本发明方法通过实测雷达回波数据进行了验证,实验结果证明了本发明的有效性。在实验中,本发明中的系统参数如下表1所示。
表1
发射信号中心频率(f<sub>c</sub>) Ka波段
发射信号带宽(B) 900MHz
雷达平台速度(V) 80m/s
圆周轨迹半径 6000m
雷达平台飞行高度 3000m
图4是某一非合作地面动目标(大型卡车)在不同子孔径下重聚焦结果示意图,子孔径持续时间为0.6s。从上到下,图(a)、(c)、(e)、(g),分别对应子孔径1、子孔径20、子孔径40及子孔径60。左侧图(a)、(c)、(e)、(g)为按照静止目标成像方法对动目标进行成像的结果,右侧图(b)、(d)、(f)、(h)为使用本发明方法进行重聚焦成像结果。可以看出,使用本发明方法处理后,动目标聚焦结果有很大提升,动目标轮廓明显,聚焦质量高。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种CSAR地面动目标重聚焦成像方法,其特征在于,包括以下步骤:
S1、接收动目标的雷达回波信号,并进行预处理;
S2、将预处理后的雷达回波信号沿方位向划分成若干个子孔径回波信号;
S3、对于某个子孔径回波信号,将子孔径回波信号变换到距离频域,逐频点提取信号沿方位向的相位;
S4、根据提取的相位计算得到距离估计值,对距离估计值用二次曲线拟合,根据拟合曲线构造相位补偿因子;
S5、利用相位补偿因子进行运动补偿;
S6、利用Map-Drift自聚焦方法补偿相位估计误差;
S7、对步骤S6的结果分别沿方位向做傅里叶变换和沿距离向做逆傅里叶变换,获得该子孔径下动目标重聚焦结果;
S8、重复步骤S3-S7,逐一对所有子孔径回波信号进行处理,获得多子孔径下动目标重聚焦图像序列。
2.如权利要求1所述的一种CSAR地面动目标重聚焦成像方法,其特征在于,所述预处理包括距离向脉冲压缩和地杂波抑制。
3.如权利要求1所述的一种CSAR地面动目标重聚焦成像方法,其特征在于,所述步骤S3的具体过程为:
设N表示动目标散射点总个数,n表示散射点序号,n取值范围为0,1,2,…,N-1;N、n均为整数,选取n=0散射点为参考点,An表示动目标第n个散射点回波信号幅度,Rn(ta)表示雷达与动目标第n个散射点之间的瞬时斜距,ΔRn(ta)=Rn(ta)-R0(ta),f为信号频率,c表示光速,rect(·)表示矩形窗函数,ta表示慢时间,Tsub表示第k个子孔径的持续时间,ta,k表示第k个子孔径的中心时刻,动目标第n个散射点的位置为
Figure FDA0002530152690000011
xn,yn表示空间坐标值,T表示向量转置符号,则第k个子孔径回波距离频域信号Ssk(f,ta)为:
Figure FDA0002530152690000012
将ΔRn(ta)利用小角近似处理,得到:
ΔRn(ta)=Rn(ta)-R0(ta)≈yn-xnω(ta-ta,k),
其中ta∈[ta,k-Tsub/2,ta,k+Tsub/2],ω表示相对旋转角速度,则
Figure FDA0002530152690000021
进一步地,Ssk(f,ta)的相位估计值
Figure FDA0002530152690000022
为:
Figure FDA0002530152690000023
其中∠(·)表示计算复信号幅角,unwrap(·)为解缠绕操作。
4.如权利要求3所述的一种CSAR地面动目标重聚焦成像方法,其特征在于,所述步骤S4的具体过程为:
根据提取的相位计算距离估计值
Figure FDA0002530152690000024
为:
Figure FDA0002530152690000025
其中
Figure FDA0002530152690000026
Figure FDA0002530152690000027
的离散化形式,
Figure FDA0002530152690000028
Figure FDA0002530152690000029
Figure FDA00025301526900000210
为求和项
Figure FDA00025301526900000211
中的相位,Nr表示距离频率采样点数,
Figure FDA00025301526900000212
表示距离频率采样点,nr取值为0,1,2,…,Nr-1,利用二次曲线对
Figure FDA00025301526900000213
进行拟合,得到R0(ta)的估计结果
Figure FDA00025301526900000214
Figure FDA00025301526900000215
Figure FDA00025301526900000216
分别表示常数项、一次项、二次项拟合系数,利用上式构造相位补偿因子H(f,ta):
Figure FDA00025301526900000217
5.如权利要求4所述的一种CSAR地面动目标重聚焦成像方法,其特征在于,所述步骤S4的具体过程为:将相位补偿因子与第k个子孔径回波信号相乘,得到运动补偿之后的第k个子孔径回波信号。
CN201910148768.6A 2019-02-28 2019-02-28 一种csar地面动目标重聚焦成像方法 Active CN109856635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910148768.6A CN109856635B (zh) 2019-02-28 2019-02-28 一种csar地面动目标重聚焦成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910148768.6A CN109856635B (zh) 2019-02-28 2019-02-28 一种csar地面动目标重聚焦成像方法

Publications (2)

Publication Number Publication Date
CN109856635A CN109856635A (zh) 2019-06-07
CN109856635B true CN109856635B (zh) 2020-09-18

Family

ID=66899262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910148768.6A Active CN109856635B (zh) 2019-02-28 2019-02-28 一种csar地面动目标重聚焦成像方法

Country Status (1)

Country Link
CN (1) CN109856635B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731394B (zh) * 2020-12-18 2023-06-20 南京邮电大学 基于近似观测矩阵的聚束sar杂波抑制和动目标重聚焦
CN113030968B (zh) * 2021-03-12 2023-05-23 中国人民解放军国防科技大学 基于csar模式提取dem的方法、装置及存储介质
CN113050087B (zh) * 2021-03-17 2022-08-05 电子科技大学 一种用于曲线合成孔径雷达的子孔径划分方法
CN113093186B (zh) * 2021-03-31 2023-10-31 中国人民解放军国防科技大学 一种基于分块成像的大场景高分辨率成像方法和装置
CN113093187B (zh) * 2021-03-31 2023-07-21 中国人民解放军国防科技大学 一种无道路信息辅助的csar地面动目标跟踪方法
CN113126057B (zh) * 2021-04-20 2022-09-16 哈尔滨工业大学 一种基于调频率估计的sar运动补偿方法
CN113721244A (zh) * 2021-07-08 2021-11-30 中国科学院空天信息创新研究院 合成孔径雷达的信噪比处理方法及装置、存储介质
CN114371479B (zh) * 2022-03-22 2022-06-17 中国人民解放军空军预警学院 一种参数化稀疏表征的机载sar运动目标聚焦方法
CN115267775A (zh) * 2022-06-24 2022-11-01 中国人民解放军国防科技大学 一种分布式顺轨编队sar系统的非均匀缺失孔径成像方法
CN116243315B (zh) * 2023-04-27 2023-07-28 中国人民解放军国防科技大学 三维摆动目标的sar图像重聚焦方法、装置及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157048A (ja) * 2002-11-07 2004-06-03 Mitsubishi Electric Corp 合成開口レーダ装置
CN103983969B (zh) * 2014-04-10 2017-02-15 西安电子科技大学 基于二次拟合距离方程的地面加速运动目标成像方法
CN106054188B (zh) * 2016-06-24 2019-01-11 西安电子科技大学 无人机合成孔径雷达成像的图像偏移自聚焦方法
CN106772276B (zh) * 2016-12-21 2019-05-21 南京信息工程大学 一种地球同步轨道圆迹sar水平面二维旁瓣抑制方法
CN108196240B (zh) * 2018-02-07 2019-09-20 中国人民解放军国防科技大学 一种适用于csar成像的地面动目标轨迹重构方法
CN108896992B (zh) * 2018-05-09 2020-08-14 中国人民解放军国防科技大学 适用于圆周合成孔径雷达的分辨率估计方法

Also Published As

Publication number Publication date
CN109856635A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN109856635B (zh) 一种csar地面动目标重聚焦成像方法
Cantalloube et al. Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results
CN107229048B (zh) 一种高分宽幅sar动目标速度估计与成像方法
CN110501706B (zh) 大角度非均匀转动空间目标isar成像方法
CN110109102B (zh) 一种sar运动目标检测与速度估计的方法
Yang et al. An airborne SAR moving target imaging and motion parameters estimation algorithm with azimuth-dechirping and the second-order keystone transform applied
CN114545411B (zh) 一种基于工程实现的极坐标格式多模高分辨sar成像方法
CN109633642B (zh) 一种太赫兹高速目标雷达成像方法
CN109444882B (zh) 基于变斜视椭圆波束同步模型的双站sar成像方法
CN102121990B (zh) 基于空时分析的逆合成孔径雷达的目标转速估计方法
Ran et al. Simultaneous range and cross-range variant phase error estimation and compensation for highly squinted SAR imaging
CN111781595B (zh) 基于匹配搜索和多普勒解模糊的复杂机动群目标成像方法
CN109061640B (zh) 一种用于顺轨干涉sar海流反演的方位模糊抑制方法
Zhou et al. Analysis of wide-angle radar imaging
CN110554377B (zh) 基于多普勒中心偏移的单通道sar二维流场反演方法及系统
CN110988873B (zh) 基于能量中心提取的单通道sar舰船速度估计方法及系统
CN109799502B (zh) 一种适用于滤波反投影算法的两维自聚焦方法
CN107271996B (zh) 一种机载cssar地面运动目标成像方法
CN112505647B (zh) 一种基于序贯子图像序列的动目标方位速度估计方法
CN104459651B (zh) 机载sar-gmti系统等效基线长度估计方法
Saeedi et al. Improved navigation-based motion compensation for LFMCW synthetic aperture radar imaging
CN116449326A (zh) 宽带多目标平动参数估计与补偿方法
Chen et al. Advanced synthetic aperture radar imaging and feature analysis
Farhadi et al. Phase error estimation for automotive SAR
Zhu et al. New approach for SAR Doppler ambiguity resolution in compressed range time and scaled azimuth time domain

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant