CN113658996B - 一种横向变掺杂终端结构及其设计方法 - Google Patents

一种横向变掺杂终端结构及其设计方法 Download PDF

Info

Publication number
CN113658996B
CN113658996B CN202110963630.9A CN202110963630A CN113658996B CN 113658996 B CN113658996 B CN 113658996B CN 202110963630 A CN202110963630 A CN 202110963630A CN 113658996 B CN113658996 B CN 113658996B
Authority
CN
China
Prior art keywords
region
vld
window
doped
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110963630.9A
Other languages
English (en)
Other versions
CN113658996A (zh
Inventor
任敏
张雪璠
张新
叶昶宇
马荣耀
郑芳
苏醒
赵龙杰
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Wuxi China Resources Huajing Microelectronics Co Ltd
Original Assignee
University of Electronic Science and Technology of China
Wuxi China Resources Huajing Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Wuxi China Resources Huajing Microelectronics Co Ltd filed Critical University of Electronic Science and Technology of China
Priority to CN202110963630.9A priority Critical patent/CN113658996B/zh
Publication of CN113658996A publication Critical patent/CN113658996A/zh
Application granted granted Critical
Publication of CN113658996B publication Critical patent/CN113658996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thyristors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种横向变掺杂终端结构及其设计方法,终端结构自表面到底部依次包括钝化层、轻掺杂第一类导电类型漂移区和阳极区,内部上方从左到右依次包括中等掺杂第二导电类型主结区、中等掺杂第二导电类型过渡区、中等掺杂第二导电类型分段线性VLD终端区和重掺杂第一导电类型浮空截止环,中等掺杂第二导电类型分段线性VLD终端区由杂质浓度从主结到终端末端呈两段或两段以上线性递减的区域构成。采用分段线性VLD区域的终端区可以获得更优的VLD终端表面电场,从而可以提升器件耐压,并降低终端表面氧化层电荷对VLD终端可靠性的影响。

Description

一种横向变掺杂终端结构及其设计方法
技术领域
本发明涉及功率半导体器件技术领域,具体涉及到一种横向变掺杂终端结构及其设计方法。
背景技术
功率半导体器件元胞区由大量的元胞并联构成,内部元胞承担耐压的PN结可近似为平行平面结,然而元胞区面积有限,最外侧靠近芯片边缘处的那些元胞的耐压会因为电场集中的影响而大幅降低。将电场集中点,也就是击穿点转移到体内一方面可以提高耐压,另一方面也可以提高器件的可靠性。为此需要在边缘处的元胞外侧做一些用于缓解电场集中的结构,这些结构工作的基本原理是在特定的位置引入有利于提高耐压的电荷。这些结构也被称为平面结终端。主流的平面结终端技术包括等位环(Equipotential Ring,ER)、场板(Field Plate,FP)、场限环(Field Limiting Ring,FLR)、结终端扩展(JunctionTerminal Extension,JTE)和横向变掺杂(Variable Lateral Doping,VLD)技术等。VLD终端采用一定的设计规则改变离子注入掩膜版的开孔大小,离子注入并推结后使横向掺杂浓度由主结向芯片边缘逐渐减小,从而减小耗尽区边缘处曲率,起到提升耐压的作用。VLD终端连续渐变的杂质浓度分布有效的提升了终端效率,其终端效率可以达到95%以上。
但是VLD终端仍具有劣势,具体体现为其对电荷敏感,这里的电荷不仅指的是VLD区域的杂质引入的电荷,还包括陷阱电荷、固定电荷以及可动电荷。在工程应用中,陷阱电荷、固定电荷与可动电荷对VLD终端的可靠性产生影响,在反向耐压时出现击穿电压降低的现象,限制了VLD终端的应用。
发明内容
本发明针对上述问题,提出了一种横向变掺杂终端结构的杂质浓度分布设计方法,该方法通过优化表面电场的分布,可以在耐压工艺窗口不减小的条件下一定程度上解决VLD终端因对电荷敏感而引起的可靠性问题。
为实现上述发明目的,本发明技术方案如下:
一种横向变掺杂终端结构,自表面到底部依次包括钝化层7、轻掺杂第一类导电类型漂移区4和阳极区,内部上方从左到右依次包括中等掺杂第二导电类型主结区1、中等掺杂第二导电类型过渡区2、中等掺杂第二导电类型分段线性VLD终端区3和重掺杂第一导电类型浮空截止环6;
所述阳极区包括重掺杂第一导电类型衬底5和重掺杂第一导电类型衬底5下方的阳极金属9,重掺杂第一导电类型衬底5和阳极金属9形成欧姆接触,阳极金属9与外电路相连;主结金属引线8在中等掺杂第二导电类型主结区1的上方,和中等掺杂第二导电类型主结区1形成欧姆接触;
中等掺杂第二导电类型主结区1与轻掺杂第一类导电类型漂移区4构成元胞区边缘处的最后一个承担耐压的PN结;中等掺杂第二导电类型过渡区2与中等掺杂第二导电类型分段线性VLD终端区3同步形成;
中等掺杂第二导电类型分段线性VLD终端区3由杂质浓度为线性分布的两段区域构成,其具体设计方法为:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区3设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)在所述转折点的靠近主结一侧的区域I,在初始的一段式杂质浓度分布基础上,降低该区域的杂质浓度;或在所述转折点的靠近芯片边缘一侧的区域II,在初始的一段式杂质浓度分布基础上,增大该区域的杂质浓度;杂质浓度的调整可通过调节离子注入的窗口宽度实现。
本发明还提供另外一种横向变掺杂终端结构的设计方法,用于设计上述中等掺杂第二导电类型分段线性VLD终端区3,其为:首先将中等掺杂第二导电类型分段线性VLD终端区3设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,在一段式线性分布的基础上,控制转折点处的离子注入窗口大小不变,减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度,一段式线性分布相邻窗口宽度的递减量为Δk1,转折点处窗口到VLD区域末端窗口范围内相邻窗口宽度的递减量为Δk2,0.4Δk1≤Δk2≤0.8Δk1
本发明还提供另外一种横向变掺杂终端结构的设计方法,用于设计上述中等掺杂第二导电类型分段线性VLD终端区3,其为:首先将中等掺杂第二导电类型分段线性VLD终端区3设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,在一段式线性分布的基础上,控制转折点处的窗口大小不变,减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,一段式线性分布相邻窗口宽度的递减量为Δk1,VLD区域最靠近主结处的窗口到转折点处窗口的范围内相邻窗口宽度的递减量为Δk2,0.4Δk1≤Δk2≤0.8Δk1;通过降低VLD区域前端的注入窗口的宽度,降低了VLD区域前端的杂质浓度从而减弱VLD区域前端的电场调制作用,使表面电场变得更加均匀以此减弱三种电荷的影响。
本发明还提供另外一种横向变掺杂终端结构的设计方法,用于设计上述中等掺杂第二导电类型分段线性VLD终端区3,其为:首先将中等掺杂第二导电类型分段线性VLD终端区3设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,在一段式线性分布的基础上,控制转折点处的窗口大小不变,减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,同时减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度;一段式线性分布相邻窗口宽度的递减量为Δk1,VLD区域最靠近主结处的窗口到转折点处窗口的范围内相邻窗口宽度的递减量为Δk2,0.6Δk1≤Δk2≤0.9Δk1,转折点处窗口到VLD区域末端窗口范围内相邻窗口宽度的递减量为Δk3,0.6Δk1≤Δk3≤0.9Δk1
本发明还提供一种横向变掺杂终端结构的设计方法,用于设计三段以上的分段线性VLD终端区,其为:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)控制转折点处的离子注入窗口大小不变,减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度或减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,获得两段式的杂质浓度分布;
(3)在得到两段式掺杂的VLD区域后,依据其表面电场峰值位置,划分出第三段线性掺杂的区域,并减小第三段区域的注入窗口宽度的下降幅度,得到三段线性掺杂VLD区域;三段以上的线性掺杂VLD区域可通过上述思路迭代得到。
作为优选方式,横向变掺杂终端结构的材料为硅、碳化硅、砷化镓、磷化铟或锗硅半导体材料。
作为优选方式,第一导电类型半导体为N型半导体,第二导电类型半导体为P型半导体;或者第一导电类型半导体为P型半导体,所述第二导电类型半导体为N型半导体。
作为优选方式,轻掺杂为杂质浓度量级在1×1016cm-3及以下的掺杂浓度,中等掺杂为杂质浓度量级在1×1016cm-3到1×1018cm-3之间的掺杂浓度,重掺杂为杂质浓度量级大于1×1018cm-3的掺杂浓度。
本发明的有益效果为:本发明在常规线性分布的VLD终端的设计方法上,将一段式线性杂质浓度分布替换为两段或三段及以上线性杂质浓度分布,因为多段性的杂质浓度分布可以获得更优的VLD终端表面电场,从而可以提升器件耐压,并降低终端表面氧化层电荷对VLD终端可靠性的影响。
附图说明
图1是本发明两段线性浓度分布的VLD终端的结构示意图;
图2是现有技术中一段式线性杂质浓度分布的VLD终端的表面电场分布;
图3是本发明分段线性VLD终端掩膜窗口设置的示意图;
图4是本发明实施例1中VLD终端区域的杂质浓度分布示意图;
图5是本发明实施例2中VLD终端区域的杂质浓度分布示意图;
图6是本发明实施例3中VLD终端区域的杂质浓度分布示意图;
图7是一段式线性浓度分布和本发明两段式线性浓度分布的VLD终端表面电场的对比图;
图8是本发明多段线性的VLD终端杂质浓度分布示意图。
1为中等掺杂第二导电类型主结区,2为中等掺杂第二导电类型过渡区,3为中等掺杂第二导电类型分段线性VLD终端区,4为轻掺杂第一类导电类型漂移区,5为重掺杂第一导电类型衬底,6为重掺杂第一导电类型浮空截止环,7为钝化层,8为主结金属引线,9为阳极金属。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
一种横向变掺杂终端结构,其特征在于:自表面到底部依次包括钝化层7、轻掺杂第一类导电类型漂移区4和阳极区,内部上方从左到右依次包括中等掺杂第二导电类型主结区1、中等掺杂第二导电类型过渡区2、中等掺杂第二导电类型分段线性VLD终端区3和重掺杂第一导电类型浮空截止环6;
所述阳极区包括重掺杂第一导电类型衬底5和重掺杂第一导电类型衬底5下方的阳极金属9,重掺杂第一导电类型衬底5和阳极金属9形成欧姆接触,阳极金属9与外电路相连;主结金属引线8在中等掺杂第二导电类型主结区1的上方,和中等掺杂第二导电类型主结区1形成欧姆接触;
中等掺杂第二导电类型主结区1与轻掺杂第一类导电类型漂移区4构成元胞区边缘处的最后一个承担耐压的PN结;中等掺杂第二导电类型过渡区2与中等掺杂第二导电类型分段线性VLD终端区3同步形成;
横向变掺杂终端结构的材料为硅、碳化硅、砷化镓、磷化铟或锗硅半导体材料。
第一导电类型半导体为N型半导体,第二导电类型半导体为P型半导体;或者第一导电类型半导体为P型半导体,所述第二导电类型半导体为N型半导体。
轻掺杂为杂质浓度量级在1×1016cm-3及以下的掺杂浓度,中等掺杂为杂质浓度量级在1×1016cm-3到1×1018cm-3之间的掺杂浓度,重掺杂为杂质浓度量级大于1×1018cm-3的掺杂浓度。
中等掺杂第二导电类型分段线性VLD终端区3由杂质浓度为线性分布的两段区域构成,其具体设计方法为:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区3设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)在所述转折点的靠近主结一侧为区域I,在所述转折点的靠近芯片边缘一侧为区域II,如图4所示,在一段式线性分布的基础上,控制转折点处的离子注入窗口大小不变,减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度,一段式线性分布相邻窗口宽度的递减量为Δk1,转折点处窗口到VLD区域末端窗口范围内相邻窗口宽度的递减量为Δk2,0.4Δk1≤Δk2≤0.8Δk1。通过增大VLD区域末端的注入窗口的宽度,增大了VLD区域末端的杂质浓度从而增强VLD区域末端的电场调制作用,使表面电场变得更加均匀以此减弱氧化层电荷的影响。
实施例2
本实施例和实施例1的区别在于:中等掺杂第二导电类型分段线性VLD终端区3的设计方法为:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区3设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)在所述转折点的靠近主结一侧为区域I,在所述转折点的靠近芯片边缘一侧为区域II,如图5所示,在一段式线性分布的基础上,控制转折点处的窗口大小不变,减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,一段式线性分布相邻窗口宽度的递减量为Δk1,VLD区域最靠近主结处的窗口到转折点处窗口的范围内相邻窗口宽度的递减量为Δk2,0.4Δk1≤Δk2≤0.8Δk1;通过降低VLD区域前端的注入窗口的宽度,降低了VLD区域前端的杂质浓度从而减弱VLD区域前端的电场调制作用,使表面电场变得更加均匀以此减弱三种电荷的影响。
实施例3
本实施例结合了实施例1和实施例2,本实施例和实施例1的区别在于:中等掺杂第二导电类型分段线性VLD终端区3的设计方法为:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区3设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)在所述转折点的靠近主结一侧为区域I,在所述转折点的靠近芯片边缘一侧为区域II,如图6所示,在一段式线性分布的基础上,控制转折点处的窗口大小不变,减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,同时减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度;一段式线性分布相邻窗口宽度的递减量为Δk1,VLD区域最靠近主结处的窗口到转折点处窗口的范围内相邻窗口宽度的递减量为Δk2,0.6Δk1≤Δk2≤0.9Δk1,转折点处窗口到VLD区域末端窗口范围内相邻窗口宽度的递减量为Δk3,0.6Δk1≤Δk3≤0.9Δk1
实施例4
如图7所示,本实施例提供一种横向变掺杂终端结构的设计方法,用于设计三段以上的分段线性VLD终端区,其为:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)VLD区域与主结交界面处到一段式表面峰值电场位置处为区域I,一段式表面峰值电场位置到两段式表面峰值电场位置为区域II,控制转折点处的离子注入窗口大小不变,减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度或减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,获得两段式的杂质浓度分布;
(3)在得到两段式掺杂的VLD区域后,依据其表面电场峰值位置,划分出第三段线性掺杂的区域,两段式峰值电场位置到VLD区域末端为区域III。并减小区域III的注入窗口宽度的下降幅度,得到三段线性掺杂VLD区域;三段以上的线性掺杂VLD区域可通过上述思路迭代得到。在已有实施例1到3的两段式杂质浓度分布的基础上,减小区域III内杂质变化的幅度,可以进一步优化表面电场分布。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种横向变掺杂终端结构,其特征在于:自表面到底部依次包括钝化层(7)、轻掺杂第一类导电类型漂移区(4)和阳极区,内部上方从左到右依次包括中等掺杂第二导电类型主结区(1)、中等掺杂第二导电类型过渡区(2)、中等掺杂第二导电类型分段线性VLD终端区(3)和重掺杂第一导电类型浮空截止环;
所述阳极区包括重掺杂第一导电类型衬底(5)和重掺杂第一导电类型衬底(5)下方的阳极金属(9),重掺杂第一导电类型衬底(5)和阳极金属(9)形成欧姆接触,阳极金属(9)与外电路相连;主结金属引线(8)在中等掺杂第二导电类型主结区(1)的上方,和中等掺杂第二导电类型主结区(1)形成欧姆接触;
中等掺杂第二导电类型主结区(1)与轻掺杂第一类导电类型漂移区(4)构成元胞区边缘处的最后一个承担耐压的PN结;中等掺杂第二导电类型过渡区(2)与中等掺杂第二导电类型分段线性VLD终端区(3)同步形成;
中等掺杂第二导电类型分段线性VLD终端区(3)由杂质浓度为线性分布的两段区域构成,其具体设计方法为:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区(3)设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)在所述转折点的靠近主结一侧的区域I,在初始的一段式杂质浓度分布基础上,降低该区域的杂质浓度;或在所述转折点的靠近芯片边缘一侧的区域II,在初始的一段式杂质浓度分布基础上,增大该区域的杂质浓度;杂质浓度的调整通过调节离子注入的窗口宽度实现。
2.一种横向变掺杂终端结构的设计方法,用于设计权利要求1所述的中等掺杂第二导电类型分段线性VLD终端区(3),其特征在于:首先将中等掺杂第二导电类型分段线性VLD终端区(3)设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,在一段式线性分布的基础上,控制转折点处的离子注入窗口大小不变,减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度,一段式线性分布相邻窗口宽度的递减量为Δk1,转折点处窗口到VLD区域末端窗口范围内相邻窗口宽度的递减量为Δk2,0.4Δk1≤Δk2≤0.8Δk1
3.一种横向变掺杂终端结构的设计方法,用于设计权利要求1所述的中等掺杂第二导电类型分段线性VLD终端区(3),其特征在于:首先将中等掺杂第二导电类型分段线性VLD终端区(3)设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,在一段式线性分布的基础上,控制转折点处的窗口大小不变,减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,一段式线性分布相邻窗口宽度的递减量为Δk1,VLD区域最靠近主结处的窗口到转折点处窗口的范围内相邻窗口宽度的递减量为Δk2,0.4Δk1≤Δk2≤0.8Δk1;通过降低VLD区域前端的注入窗口的宽度,降低了VLD区域前端的杂质浓度从而减弱VLD区域前端的电场调制作用,使表面电场变得更加均匀以此减弱三种电荷的影响。
4.一种横向变掺杂终端结构的设计方法,用于设计权利要求1所述的中等掺杂第二导电类型分段线性VLD终端区(3),其特征在于:首先将中等掺杂第二导电类型分段线性VLD终端区(3)设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,在一段式线性分布的基础上,控制转折点处的窗口大小不变,减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,同时减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度;一段式线性分布相邻窗口宽度的递减量为Δk1,VLD区域最靠近主结处的窗口到转折点处窗口的范围内相邻窗口宽度的递减量为Δk2,0.6Δk1≤Δk2≤0.9Δk1,转折点处窗口到VLD区域末端窗口范围内相邻窗口宽度的递减量为Δk3,0.6Δk1≤Δk3≤0.9Δk1
5.一种横向变掺杂终端结构的设计方法,用于设计三段以上的分段线性VLD终端区,其特征在于:
(1)首先将中等掺杂第二导电类型分段线性VLD终端区设计为从主结到终端末端杂质浓度呈一段式线性递减的区域,通过器件仿真获得其表面电场分布,再选取距离表面电场峰值位置最近的注入窗口作为两段式杂质浓度分布区的转折点;
(2)控制转折点处的离子注入窗口大小不变,减小转折点处窗口宽度到VLD区域末端窗口宽度的下降幅度或减小VLD区域最靠近主结处的窗口宽度到转折点处窗口宽度的下降幅度,获得两段式的杂质浓度分布;
(3)在得到两段式掺杂的VLD区域后,依据其表面电场峰值位置,划分出第三段线性掺杂的区域,并减小第三段区域的注入窗口宽度的下降幅度,得到三段线性掺杂VLD区域;三段以上的线性掺杂VLD区域通过上述思路迭代得到。
6.根据权利要求2至5任意一项所述的一种横向变掺杂终端结构的设计方法,其特征在于:横向变掺杂终端结构的材料为硅、碳化硅、砷化镓、磷化铟或锗硅半导体材料。
7.根据权利要求2至5任意一项所述的一种横向变掺杂终端结构的设计方法,其特征在于:第一导电类型半导体为N型半导体,第二导电类型半导体为P型半导体;或者第一导电类型半导体为P型半导体,所述第二导电类型半导体为N型半导体。
8.根据权利要求2至5任意一项所述的一种横向变掺杂终端结构的设计方法,其特征在于:轻掺杂为杂质浓度量级在1×1016cm-3及以下的掺杂浓度,中等掺杂为杂质浓度量级在1×1016cm-3到1×1018cm-3之间的掺杂浓度,重掺杂为杂质浓度量级大于1×1018cm-3的掺杂浓度。
CN202110963630.9A 2021-08-20 2021-08-20 一种横向变掺杂终端结构及其设计方法 Active CN113658996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110963630.9A CN113658996B (zh) 2021-08-20 2021-08-20 一种横向变掺杂终端结构及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110963630.9A CN113658996B (zh) 2021-08-20 2021-08-20 一种横向变掺杂终端结构及其设计方法

Publications (2)

Publication Number Publication Date
CN113658996A CN113658996A (zh) 2021-11-16
CN113658996B true CN113658996B (zh) 2023-09-29

Family

ID=78491884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110963630.9A Active CN113658996B (zh) 2021-08-20 2021-08-20 一种横向变掺杂终端结构及其设计方法

Country Status (1)

Country Link
CN (1) CN113658996B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823857B (zh) * 2022-04-27 2023-06-27 中国工程物理研究院电子工程研究所 一种碳化硅器件类结横向变掺杂结终端结构及其制备方法
CN115579382A (zh) * 2022-12-12 2023-01-06 深圳市森国科科技股份有限公司 半导体器件的终端结构及其半导体器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136550A1 (ja) * 2012-03-16 2013-09-19 三菱電機株式会社 半導体装置およびその製造方法
JP2015076437A (ja) * 2013-10-07 2015-04-20 三菱電機株式会社 半導体装置およびその製造方法
CN207068861U (zh) * 2017-08-24 2018-03-02 西安电子科技大学 结终端扩展终端结构
CN207743230U (zh) * 2017-12-20 2018-08-17 上海南麟电子股份有限公司 一种半导体器件结终端扩展结构
CN109216430A (zh) * 2017-06-30 2019-01-15 无锡华润华晶微电子有限公司 半导体横向变掺杂终端结构及其制备方法
CN111755503A (zh) * 2020-07-10 2020-10-09 嘉兴斯达半导体股份有限公司 一种可变横向掺杂的终端结构及其制作方法
CN111755504A (zh) * 2020-07-13 2020-10-09 电子科技大学 一种横向变掺杂终端结构及设计方法和制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564088B2 (en) * 2008-08-19 2013-10-22 Infineon Technologies Austria Ag Semiconductor device having variably laterally doped zone with decreasing concentration formed in an edge region

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136550A1 (ja) * 2012-03-16 2013-09-19 三菱電機株式会社 半導体装置およびその製造方法
JP2015076437A (ja) * 2013-10-07 2015-04-20 三菱電機株式会社 半導体装置およびその製造方法
CN109216430A (zh) * 2017-06-30 2019-01-15 无锡华润华晶微电子有限公司 半导体横向变掺杂终端结构及其制备方法
CN207068861U (zh) * 2017-08-24 2018-03-02 西安电子科技大学 结终端扩展终端结构
CN207743230U (zh) * 2017-12-20 2018-08-17 上海南麟电子股份有限公司 一种半导体器件结终端扩展结构
CN111755503A (zh) * 2020-07-10 2020-10-09 嘉兴斯达半导体股份有限公司 一种可变横向掺杂的终端结构及其制作方法
CN111755504A (zh) * 2020-07-13 2020-10-09 电子科技大学 一种横向变掺杂终端结构及设计方法和制备方法

Also Published As

Publication number Publication date
CN113658996A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
JP7454911B2 (ja) シリコンカーバイド半導体部品
US6084264A (en) Trench MOSFET having improved breakdown and on-resistance characteristics
CN113658996B (zh) 一种横向变掺杂终端结构及其设计方法
CN114122123B (zh) 集成高速续流二极管的碳化硅分离栅mosfet及制备方法
US20070012983A1 (en) Terminations for semiconductor devices with floating vertical series capacitive structures
US20060255401A1 (en) Increasing breakdown voltage in semiconductor devices with vertical series capacitive structures
CN109713041B (zh) 一种适用于超结dmos器件的改良结构
CN112802906B (zh) 带浮栅的分离栅平面型mosfet器件
CN109904220A (zh) 槽栅型碳化硅mosfet器件及制备方法
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
US10355132B2 (en) Power MOSFETs with superior high frequency figure-of-merit
CN110212026A (zh) 超结mos器件结构及其制备方法
CN112838131B (zh) 基于碳化硅平面型mos结构的肖特基二极管
CN113410299B (zh) 一种高耐压的n沟道LDMOS器件及其制备方法
WO2018033034A1 (en) Semiconductor device with hybrid channel configuration
US11658214B2 (en) MOSFET device with undulating channel
CN112635562B (zh) 包括电流扩散区的半导体器件
CN107895738B (zh) 一种阱局部高掺的mos型器件及制备方法
CN113410281B (zh) 一种具有表面耐压结构的p沟道LDMOS器件及其制备方法
CN107359119B (zh) 一种超结功率器件及其制造方法
CN113410300B (zh) 一种高耐压的p沟道LDMOS器件及其制备方法
CN113410298B (zh) 一种具有表面耐压结构的n沟道LDMOS器件及其制备方法
CN117894684B (zh) 一种低导通电阻三栅纵向碳化硅mosfet的制造方法
US20230317797A1 (en) Wide band gap semiconductor device and manufacturing method
CN111969061B (zh) 一种ldmos结构及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant