CN113649503A - 一种航空发动机用高强度β锻钛合金锻件组织控制方法 - Google Patents

一种航空发动机用高强度β锻钛合金锻件组织控制方法 Download PDF

Info

Publication number
CN113649503A
CN113649503A CN202110870008.3A CN202110870008A CN113649503A CN 113649503 A CN113649503 A CN 113649503A CN 202110870008 A CN202110870008 A CN 202110870008A CN 113649503 A CN113649503 A CN 113649503A
Authority
CN
China
Prior art keywords
forging
titanium alloy
heat treatment
blank
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110870008.3A
Other languages
English (en)
Inventor
邓雨亭
李四清
王旭
黄旭
王周田
李晓强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Erzhong Group Deyang Wanhang Die Forging Co ltd
AECC Beijing Institute of Aeronautical Materials
Original Assignee
China National Erzhong Group Deyang Wanhang Die Forging Co ltd
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Erzhong Group Deyang Wanhang Die Forging Co ltd, AECC Beijing Institute of Aeronautical Materials filed Critical China National Erzhong Group Deyang Wanhang Die Forging Co ltd
Priority to CN202110870008.3A priority Critical patent/CN113649503A/zh
Publication of CN113649503A publication Critical patent/CN113649503A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

本发明涉及一种航空发动机用高强度β锻钛合金锻件组织控制方法,包括以下步骤:将钛合金棒坯加热到相变点以上20℃~50℃;将棒坯锻造成锻件毛坯,各部位变形量均达到40%以上;将锻件毛坯水冷至室温;对锻件毛坯进行退火热处理;对锻件毛坯进行固溶和时效热处理。本发明在β锻造工艺中采用了锻后水冷的技术路线,通过在固溶和时效热处理前增加一次退火热处理,解决了锻后水冷表面急冷层组织不均匀和拉伸塑性低的问题,显著提升了锻件心部强度和整体强度的均匀性。

Description

一种航空发动机用高强度β锻钛合金锻件组织控制方法
技术领域
本发明属于钛合金组织控制技术领域,具体涉及一种航空发动机用高强度β锻钛合金锻件组织控制方法。
背景技术
β锻造是指将坯料加热到β相变点以上进行的锻造,锻件可获得充分编织的网篮组织,具有良好的断裂韧性和蠕变性能,被广泛用于制造航空发动机风扇和压气机。对于采用β锻工艺的钛合金(国内牌号为TC17和TC19的钛合金)通常富含较多的β稳定元素,其快速冷却可获得亚稳定的β相,低温时效处理使亚稳相转变为次生α相,可通过调整热处理制度调整锻件组织和强度等性能。但随着航空发动机对高推重比的要求,锻件尺寸不断增大且形状更为复杂,合金淬透性的限制导致锻件如果采用锻后风冷或空冷,得到的锻件心部强度不能满足设计要求且强度性能分散性大,后续热处理对锻件组织性能调控的窗口非常窄。
锻后冷却速度决定了α片层的宽度和晶界α相的厚度,这2个参数随着冷却速度的提高而降低,因此锻后水冷可以通过得到细小的片层α相显著提升锻件心部强度。但锻后水冷易使锻件表面形成急冷层,锻态低倍组织不均匀,锻态显微组织为原始β晶界上析出了断续的晶界α相和极少部分晶界附近的α片层,经固溶和时效热处理后的显微组织为晶粒内部析出了短而细的α片层,α片层编织状态差且长宽低于10:1,为不合格组织,严重降低锻件拉伸塑性。
中国专利“一种TC4钛合金盘锻件的β锻及热处理方法(CN109482796B)”,公开了一种采用400KJ对机锤模锻,加热在相变点上30~40℃进行β相区锻造,变形量达到40%,锻后先空冷5~6分钟,然后水冷,得到细小均匀的锻态网篮组织,锻后热处理采用相变点以下30~40℃固溶,水冷然后进行620~630℃时效的热处理,得到细小稳定的网篮组织,性能具备高强度并兼顾一定塑性。该专利仅针对TC4钛合金β锻锻件,采用锻后先空冷后水冷的工艺,得到细小均匀的锻态网篮组织,多种因素影响第一阶段空冷所需时间,5~6分钟难以推广至其他尺寸或其他类型的钛合金锻件,若时间太长则达不到提升强度的效果,若时间太短,多数富含β稳定元素较多的钛合金则不能析出尺寸符合要求的α片层,依旧形成急冷层组织显著降低塑性。
发明内容
鉴于现有技术的上述情况,本发明的目的是提供一种航空发动机用高强度β锻钛合金锻件组织控制方法,解决了锻后水冷表面急冷层组织不均匀和拉伸塑性低的问题,显著提升了锻件心部强度和整体强度的均匀性,实现对锻后水冷锻件表面急冷层组织和性能的调控。
本发明的上述目的是利用以下技术方案实现的:
一种航空发动机用高强度β锻钛合金锻件组织控制方法,包括以下步骤:
将钛合金棒坯加热到相变点以上20℃~50℃;
将棒坯锻造成锻件毛坯,各部位变形量均达到40%以上;
将锻件毛坯水冷至室温;
对锻件毛坯进行退火热处理;
对锻件毛坯进行固溶和时效热处理。
进一步地,所述对锻件毛坯进行退火热处理的热处理制度为:T~(T+100)℃保温H~(H+3)小时,空冷至室温,其中所述T为钛合金α片层最佳转变温度(即,“鼻尖”温度点),所述H为α片层最佳转变温度下的转变终了时间,单位小时。由TTT曲线可知退火处理可得到粗大魏氏体α片层,选择此退火温度和保温时间可高效率预析出锻件表面急冷层的α片层,且不显著粗化锻件心部α片层厚度。
其中所述最佳转变温度和转变终了时间是通过查询或绘制所用钛合金的等温转变(TTT)曲线得到的。
其中将棒坯锻造成锻件毛坯时应变速率控制在0.001s-1~0.05s-1。所述将锻件毛坯水冷至室温是将锻件毛坯快速转移到具有循环水功能的水槽中进行的。
本发明的方法通过将锻后水冷+退火热处理+固溶和时效热处理的技术路线应用到β锻工艺中,充分利用锻后水冷提升锻件整体强度的优势,在固溶和时效热处理前增加一次退火热处理,选取α片层最佳转变温度和此温度下的转变终了时间制定退火热处理制度,使锻件表面在固溶和时效热处理预析出片层α相且不显著粗化锻件心部α片层厚度。显著改善锻件表面急冷层组织,锻件表面到心部的α片层均良好编织且长宽比低于10:1。针对大尺寸锻件(截面尺寸大于等于150mm)可显著提升其心部强度,使满足设计要求,针对中小尺寸锻件(截面尺寸小于150mm)可扩大固溶和时效热处理的工艺窗口,得到强度高且综合性能优异的锻件。
附图说明
图1是β锻TC17钛合金锻件低倍组织。
图2是β锻TC17钛合金锻件锻态急冷层组织。
图3是β锻TC17钛合金锻件固溶和时效热处理后表面组织。
图4是TC17钛合金的TTT曲线。
图5是β锻TC17钛合金锻件退火+固溶和时效热处理后表面组织。
图6是β锻TC19钛合金锻件低倍组织。
图7是β锻TC19钛合金锻件固溶和时效热处理后表面显微组织。
图8是TC19钛合金的TTT曲线。
图9是β锻TC19钛合金锻件退火+固溶和时效热处理后表面显微组织。
具体实施方式
为了更清楚地理解本发明的目的、技术方案及优点,以下结合附图及实施例,对本发明进行进一步详细说明。
实施本发明所述的一种航空发动机用高强度β锻钛合金锻件组织控制方法需要提供钛合金棒坯、坯料加热炉、液压机、机械手、水槽、热处理炉等设备。具体工艺步骤如下:1、将钛合金棒坯加热到相变点以上20~50℃;2、将棒坯锻造成锻件毛坯,各部位变形量均达到40%以上,应变速率控制在0.001s-1~0.05s-1;3、将锻件毛坯水冷至室温;4、对锻件毛坯进行退火热处理;5、对锻件毛坯进行固溶和时效热处理。
实施例1
棒坯原材料为中国材料牌号TC17的钛合金。
步骤1:采用HB 6623.2测得所用Φ500mm TC17钛合金棒坯相变点温度为900℃。
步骤2:将钛合金棒坯加热到相变点以上30℃。
步骤3:将步骤2中的棒坯锻造成锻件毛坯,各部位变形量均达到40%以上,应变速率控制为0.01s-1
步骤4:将步骤3中的锻件毛坯快速转移至具有循环水功能的水槽中,冷却至室温,得到的锻件毛坯低倍组织如图1所示,锻件表面急冷层存在一条约15mm厚的亮带,低倍组织不均匀。锻态显微组织如图2所示,仅在原始β晶界上析出断续的晶界α相和少部分晶界附近的α片层,晶粒内部均为过冷的亚稳β相,仅进行了固溶和时效热处理后的显微组织如图3所示,晶粒内部析出了短而细的α片层,α片层编织状态差且长宽低于10:1,为不合格组织,锻件表面的室温抗拉强度高至1220MPa,但延伸率仅为4.6%。
步骤5:查询TC17钛合金的TTT(等温转变)曲线,如图4所示,得到α片层最佳转变温度约为600℃和该温度下的转变终了时间约为0.3小时。
步骤6:对步骤4中的锻件毛坯进行退火热处理,热处理制度为:650℃保温2小时,空冷至室温。
步骤7:对步骤6中的锻件毛坯固溶和时效热处理。常用热处理制度为780~830℃保温3~6小时,水冷至室温和590~650℃保温8小时,空冷至室温。本例中热处理制度为:805℃保温4小时,水冷至室温和620℃保温8小时,空冷至室温。
采取上述办法调控TC17钛合金的锻件尺寸约为Φ1020mm×327mm,截面尺寸约为170mm,锻件毛坯重量约为570Kg。在固溶和时效热处理前增加一次退火热处理,得到的显微组织如图5所示,退火热处理可以预析出片层α相,相比于直接进行高温固溶处理,α片层编织良好且长宽达到10:1,且退火处理可以消除锻后水冷产生的内应力。最终锻件整体的室温拉伸性能得到显著的改善:未增加退火处理前表面的室温抗拉强度高至1220MPa,但延伸率仅为4.6%,远低于锻件心部的12.2%,心部强度可达1165MPa;增加退火热处理后表面的室温抗拉强度降低至1180MPa,延伸率提升至10.4%,与锻件心部延伸率14.1%相当,心部强度无明显下降,可达1150MPa,达到设计要求(抗拉强度≥1120MPa和延伸率≥6.5%)并存在较大富余量。
实施例2
棒坯原材料为中国材料牌号TC19的钛合金。
步骤1:采用HB 6623.2测得所用Φ180mm TC19钛合金棒坯相变点温度为965℃;
步骤2:将钛合金棒坯加热到相变点以上20℃。
步骤3:将步骤2中的棒坯锻造成锻件毛坯,各部位变形量均达到40%以上,应变速率控制为0.04s-1
步骤4:将步骤3中的锻件毛坯快速转移至具有循环水功能的水槽中,冷却至室温,得到的锻件毛坯低倍组织如图6所示,锻件表面急冷层的低倍组织不均匀。仅进行了固溶和时效热处理后的显微组织如图7所示,编织的片层α相短而细,为不合格组织,锻件表面室温抗拉强度高至1280MPa,但延伸率仅为4.1%。
步骤5:查询TC19钛合金的TTT曲线,如图8所示,得到α片层最佳转变温度约为700℃和该温度下的转变终了时间约为0.2小时。
步骤6:对步骤4中的锻件毛坯进行退火热处理,热处理制度为:750℃保温1.5小时,空冷至室温。
步骤7:对步骤6中的锻件毛坯固溶和时效热处理。常用热处理制度为915~965℃保温1~4小时,风冷至室温和535~680℃保温8小时,空冷至室温。本例中热处理制度为:935℃保温2小时,风冷至室温和595℃保温8小时,空冷至室温。
采取上述办法调控的TC19钛合金锻件尺寸约为Φ460mm×80mm,最大截面尺寸约为80mm,锻件毛坯重量约40Kg。得到的显微组织如图9所示,退火热处理可以预析出片层α相,显著提升锻件整体强度的前提下,良好地控制了锻件表面片层α相的形貌,并且利用退火处理可以消除锻后水冷产生的内应力。最终锻件的室温拉伸性得到了显著的改善:未增加退火处理前锻件表面室温抗拉强度高至1280MPa,但延伸率仅为4.1%,心部强度可达1240MPa,延伸率可达8.6%;增加退火热处理后表面的室温抗拉强度降低至1230MPa,延伸率提升至8.9%,心部强度小幅度下降,可达1200MPa。远高于设计要求(抗拉强度≥1089MPa和延伸率≥4%),显著扩大了固溶和时效热处理的工艺窗口,实际生产可依据性能要求调整热处理制度。

Claims (9)

1.一种航空发动机用高强度β锻钛合金锻件组织控制方法,包括以下步骤:
将钛合金棒坯加热到相变点以上20℃~50℃;
将棒坯锻造成锻件毛坯,各部位变形量均达到40%以上;
将锻件毛坯水冷至室温;
对锻件毛坯进行退火热处理;
对锻件毛坯进行固溶和时效热处理。
2.按照权利要求1所述的方法,其中所述对锻件毛坯进行退火热处理的热处理制度为:T~(T+100)℃保温H~(H+3)小时,空冷至室温,其中所述T为钛合金α片层最佳转变温度,所述H为α片层最佳转变温度下的转变终了时间,单位小时。
3.按照权利要求2所述的方法,其中所述最佳转变温度和转变终了时间是通过查询或绘制所用钛合金的等温转变曲线得到的。
4.按照权利要求1所述的方法,其中将棒坯锻造成锻件毛坯时应变速率控制在0.001s-1~0.05s-1
5.按照权利要求1所述的方法,其中所述将锻件毛坯水冷至室温是将锻件毛坯快速转移到具有循环水功能的水槽中进行的。
6.按照权利要求1所述的方法,其中所述钛合金为TC17钛合金。
7.按照权利要求6所述的方法,其中,所述固溶和时效热处理的热处理制度为780~830℃保温3~6小时,水冷至室温和590~650℃保温8小时,空冷至室温。
8.按照权利要求1所述的方法,其中所述钛合金为TC19钛合金。
9.按照权利要求8所述的方法,其中,所述固溶和时效热处理的热处理制度为915~965℃保温1~4小时,风冷至室温和535~680℃保温8小时,空冷至室温。
CN202110870008.3A 2021-07-30 2021-07-30 一种航空发动机用高强度β锻钛合金锻件组织控制方法 Pending CN113649503A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110870008.3A CN113649503A (zh) 2021-07-30 2021-07-30 一种航空发动机用高强度β锻钛合金锻件组织控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110870008.3A CN113649503A (zh) 2021-07-30 2021-07-30 一种航空发动机用高强度β锻钛合金锻件组织控制方法

Publications (1)

Publication Number Publication Date
CN113649503A true CN113649503A (zh) 2021-11-16

Family

ID=78479022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110870008.3A Pending CN113649503A (zh) 2021-07-30 2021-07-30 一种航空发动机用高强度β锻钛合金锻件组织控制方法

Country Status (1)

Country Link
CN (1) CN113649503A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752877A (zh) * 2022-05-30 2022-07-15 西部超导材料科技股份有限公司 一种高声速均匀性Ti6Al4V合金棒材的制备方法
CN114790533A (zh) * 2022-04-09 2022-07-26 中国科学院金属研究所 一种tc11钛合金铸件的热处理工艺
CN115041616A (zh) * 2022-06-29 2022-09-13 中国航发北京航空材料研究院 高效率和低成本的TC19钛合金β锻整体叶盘锻件制备方法
CN115255234A (zh) * 2022-07-28 2022-11-01 广东鸿凯高科有限公司 钛材锻造加工工艺及其在新能源锂电设备核心部件中的应用
CN116377359A (zh) * 2023-04-20 2023-07-04 西北有色金属研究院 一种提高钛合金损伤容限性能的加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507836B (zh) * 2003-09-30 2008-04-09 西北有色金属研究院 一种高强韧钛合金及其制备方法
CN101480689A (zh) * 2008-12-25 2009-07-15 贵州安大航空锻造有限责任公司 两相钛合金盘形锻件的近等温锻造方法
JP2014065967A (ja) * 2011-12-19 2014-04-17 Kobe Steel Ltd チタン合金ビレット、チタン合金ビレットの製造方法、チタン合金鍛造材、チタン合金鍛造材の製造方法ならびに航空機部品の製造方法
CN109482796A (zh) * 2018-12-11 2019-03-19 陕西宏远航空锻造有限责任公司 一种TC4钛合金盘锻件的β锻及热处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507836B (zh) * 2003-09-30 2008-04-09 西北有色金属研究院 一种高强韧钛合金及其制备方法
CN101480689A (zh) * 2008-12-25 2009-07-15 贵州安大航空锻造有限责任公司 两相钛合金盘形锻件的近等温锻造方法
JP2014065967A (ja) * 2011-12-19 2014-04-17 Kobe Steel Ltd チタン合金ビレット、チタン合金ビレットの製造方法、チタン合金鍛造材、チタン合金鍛造材の製造方法ならびに航空機部品の製造方法
CN109482796A (zh) * 2018-12-11 2019-03-19 陕西宏远航空锻造有限责任公司 一种TC4钛合金盘锻件的β锻及热处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余新平等: "TC21钛合金的等温转变行为", 《材料热处理学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790533A (zh) * 2022-04-09 2022-07-26 中国科学院金属研究所 一种tc11钛合金铸件的热处理工艺
CN114752877A (zh) * 2022-05-30 2022-07-15 西部超导材料科技股份有限公司 一种高声速均匀性Ti6Al4V合金棒材的制备方法
CN115041616A (zh) * 2022-06-29 2022-09-13 中国航发北京航空材料研究院 高效率和低成本的TC19钛合金β锻整体叶盘锻件制备方法
CN115255234A (zh) * 2022-07-28 2022-11-01 广东鸿凯高科有限公司 钛材锻造加工工艺及其在新能源锂电设备核心部件中的应用
CN116377359A (zh) * 2023-04-20 2023-07-04 西北有色金属研究院 一种提高钛合金损伤容限性能的加工工艺

Similar Documents

Publication Publication Date Title
CN113649503A (zh) 一种航空发动机用高强度β锻钛合金锻件组织控制方法
CN111286686A (zh) 一种tc4钛合金细等轴组织大规格棒材短流程制备方法
CN108559934B (zh) 一种tc6钛合金锻件的深冷处理工艺
CN110592508B (zh) 一种低成本、高性能钛合金短流程锻造工艺
CN111647835B (zh) 一种改善β型钛合金机械热处理的方法
CN107350406B (zh) Tc19钛合金大规格棒材的自由锻造方法
CN105689628A (zh) 一种34CrNiMo6钢制风电主轴的锻造工艺
CN111235502B (zh) 一种大规格镍基高温合金锻件的生产方法
CN112338119A (zh) 一种近α型高温钛合金大规格棒材锻造方法
CN111455161B (zh) 奥氏体耐热不锈钢无缝管的组织性能调控方法
CN109628833B (zh) 一种Cr-Mo-Si-V系冷作模具钢及其制备方法
CN115194069A (zh) 一种Ti175合金大尺寸整体叶盘锻件的制备方法
CN110205572B (zh) 一种两相Ti-Al-Zr-Mo-V钛合金锻棒的制备方法
CN113182476B (zh) 一种高强tc11钛合金锻件的制备方法
CN110453163A (zh) 一种提高7000系铝合金超大规格模锻件高向性能的方法
CN114346137A (zh) 一种具有均匀细带状组织大尺寸钛合金棒料的热加工制备方法
CN110144533A (zh) 一种调控2219铝合金环件粗大第二相的方法
CN111136106B (zh) 一种连铸坯不经过加热炉直接轧制生产细晶钢的方法
CN108754371B (zh) 一种细化近α高温钛合金晶粒的制备方法
CN111172373A (zh) 一种低碳钢热处理工艺
CN114346141B (zh) 一种制备弱α织构钛合金锻件的多段热加工方法
CN113957291B (zh) 一种电站用高强镍基高温合金的快速热处理方法
CN101255490A (zh) 发电机组用1Mn18Cr18N钢护环锻件的锻造后细晶强韧化处理工艺
CN114769477A (zh) 一种高强韧钛合金锻件低成本高质量制备方法
CN108034798B (zh) 一种降低2Cr12Ni4Mo3VNbN透平叶片屈强比的热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211116