CN113625562A - 一种基于自适应观测器的非线性系统模糊容错控制方法 - Google Patents

一种基于自适应观测器的非线性系统模糊容错控制方法 Download PDF

Info

Publication number
CN113625562A
CN113625562A CN202110892486.4A CN202110892486A CN113625562A CN 113625562 A CN113625562 A CN 113625562A CN 202110892486 A CN202110892486 A CN 202110892486A CN 113625562 A CN113625562 A CN 113625562A
Authority
CN
China
Prior art keywords
observer
adaptive
fault
fuzzy
nonlinear system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110892486.4A
Other languages
English (en)
Other versions
CN113625562B (zh
Inventor
李猛
李露
陈勇
苗朕海
刘越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110892486.4A priority Critical patent/CN113625562B/zh
Publication of CN113625562A publication Critical patent/CN113625562A/zh
Application granted granted Critical
Publication of CN113625562B publication Critical patent/CN113625562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于自适应观测器的非线性系统模糊容错控制方法涉及含有非线性系统的自适应观测器设计、状态估计器设计以及模糊容错控制器设计。本发明针对非线性系统中的故障问题,设计了一种基于自适应滑模的估计器;针对非线性系统的状态约束问题,构造了一种基对数型的李雅普诺夫函数;为了实现跟踪控制,设计了一种模糊容错控制器。本发明能够有效解决非线性系统在故障和状态约束下的故障和状态估计以及跟踪控制问题。

Description

一种基于自适应观测器的非线性系统模糊容错控制方法
技术领域
本发明属于模糊容错控制技术领域,更为具体地讲,涉及一种基于自适应观测器的非线性系统模糊容错控制方法。
背景技术
在实际应用中,由于系统固有的非线性特性或非线性分量的存在,几乎所有的系统都是非线性系统。近年来,非线性系统引起了许多研究者的关注。通常,在工业控制中,执行器或传感器的故障经常由于温度变化、系统部件老化等原因发生,由于这些故障的存在,控制系统的性能可能会恶化或导致系统的不稳定。特别是近年来,对非线性系统故障的研究也受到关注。[“Decentralized adaptive NN output-feedback fault compensationcontrol of nonlinear switched large-scale systems with actuator dead-zones”(Z.Ma,and H.Ma,IEEE Transactions on Systems,Man,And Cybernetics:Systems,vol.50,no.9,pp.3435-3447,2020.)]针对具有故障的非线性切换大规模系统,设计了一种基于神经网络的自适应分散容错控制来补偿故障。[“Barrier Lyapunov function-basedadaptive fault-tolerant control for a class of strict-feedback stochasticnonlinear systems”(X.Yu,T.Wang,J Qiu,and H.Gao,IEEE Transactions onCybernetics,vol.51,no.2,pp.938-946,2021.)]考虑到随机非线性系统中的锁定和失效故障,提出了一种自适应模糊容错控制方法来补偿故障。然而,到目前为止,具有状态约束的非线性系统的容错控制问题尚未得到充分研究,因为在补偿故障的同时保持状态约束更具挑战性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于自适应观测器的非线性系统模糊容错控制方法,以能够有效地解决非线性系统在故障和状态约束下的故障容错、状态估计以及跟踪控制问题。
为实现上述发明目的,本发明基于自适应观测器的非线性系统模糊容错控制方法,针对非线性系统中的故障问题,设计了一种基于自适应滑模的估计器;针对非线性系统的状态约束问题,构造了一种基对数型的李雅普诺夫函数;为了实现跟踪控制,设计了一种模糊容错控制器。本发明能够有效解决非线性系统在故障和状态约束下的故障和状态估计以及跟踪控制问题。
所述自适应观测器设计,定义最优的权重参数为δi *,设计滑模函数为:
Figure BDA0003196466800000021
其中
Figure BDA0003196466800000022
Figure BDA0003196466800000023
Figure BDA0003196466800000024
的估计值。于是设计观测器:
Figure BDA0003196466800000025
Figure BDA0003196466800000026
其中vi为中间变量,ξi>0表示观测器调节参数,φi(t)表示自适应参数,其自适应律为:
Figure BDA0003196466800000027
Figure BDA0003196466800000028
Figure BDA0003196466800000029
Figure BDA00031964668000000210
Figure BDA00031964668000000211
Figure BDA00031964668000000212
其中μ0i>0,πi>0,
Figure BDA00031964668000000213
βi>0,0<γi<1和qi>1均为自适应律调节参数。
所述状态估计器设计,设计一种状态估计器,如下:
Figure BDA00031964668000000214
其中ci为估计器调节参数。
所述模糊容错控制器设计,设计如下控制器:
Figure BDA00031964668000000215
其中τn-1和τn表示虚拟控制误差,λn>0和ρn>1为控制器调节参数,参数
Figure BDA00031964668000000216
Figure BDA00031964668000000217
及fn0的计算将在说明书中给出。
本发明的目的是这样实现的。
本发明基于自适应观测器的非线性系统模糊容错控制方法涉及含有非线性系统的自适应观测器设计、状态估计器设计以及模糊容错控制器设计。本发明针对非线性系统中的故障问题,设计了一种基于自适应滑模的估计器;针对非线性系统的状态约束问题,构造了一种基对数型的李雅普诺夫函数;为了实现跟踪控制,设计了一种模糊容错控制器。本发明能够有效解决非线性系统在故障和状态约束下的故障和状态估计以及跟踪控制问题。
附图说明
图1是本发明基于自适应观测器的非线性系统模糊容错控制方法一种具体实施方式的原理示意图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
图1是本发明基于自适应观测器的非线性系统模糊容错控制方法一种具体实施方式的原理示意图。
如图1所示,本发明涉及含有非线性系统的自适应观测器设计、状态估计器设计以及模糊容错控制器设计。
考虑如下非线性系统:
Figure BDA0003196466800000031
其中y∈R和u(t)∈R分别表示系统的输出和输入,
Figure BDA0003196466800000032
Figure BDA0003196466800000033
表示系统的状态,满足约束条件:|xi|≤κi,i=1,2,...,n,其中κi>0且为常数,
Figure BDA0003196466800000034
i=1,2,...,n代表光滑的未知非线性函数,ηi(t),i=1,2,...,n表示系统的故障。
非线性系统(1)满足假设:(1)故障项的一阶和二阶导数是有界的,即
Figure BDA0003196466800000035
Figure BDA0003196466800000036
其中上界
Figure BDA0003196466800000037
是未知的,但界限
Figure BDA0003196466800000038
是可获得的;(2)对于任意X1,X2∈Ri,存在常量Li使得条件|hi(X1)-hi(X2)|≤Li||X1-X2||,i=1,...,n成立;(3)期望信号yr(t)是可微分和有界的,满足条件
Figure BDA0003196466800000039
其中
Figure BDA00031964668000000310
Figure BDA00031964668000000311
是两个正常数。
通常,采用模糊逻辑的方法来逼近平滑的非线性函数,如对任意常数ε>0,h(x)是定义在紧致集合M上的连续函数,则存在一个模糊逻辑系统使得:
Figure BDA0003196466800000041
其中δT表示权重向量,
Figure BDA0003196466800000042
表示激励函数。
自适应观测器和状态估计器设计
首先未知的光滑非线性函数
Figure BDA0003196466800000043
可以近似为:
Figure BDA0003196466800000044
其中
Figure BDA0003196466800000045
表示
Figure BDA0003196466800000046
的估计值。
其次最优参数δi *可以通过下面方程求得:
Figure BDA0003196466800000047
其中Ωi
Figure BDA0003196466800000048
表示两个有界的紧致集,且
Figure BDA0003196466800000049
定义变量
Figure BDA00031964668000000410
作为非线性函数的模糊估计误差,它们满足
Figure BDA00031964668000000411
其中
Figure BDA00031964668000000412
表示误差上界。进一步,将状态近似误差定义为:
Figure BDA00031964668000000413
其中
Figure BDA00031964668000000414
表示状态xi的估计值。
构造状态估计器:
Figure BDA00031964668000000415
其中ci为常数且ci>2,vi表示辅助变量,它将被设计使得故障的估计误差
Figure BDA00031964668000000416
可以在有限时间内收敛于0,其中
Figure BDA00031964668000000417
表示故障ηi(t)的估计值。
进一步,构造如下滑模函数:
Figure BDA00031964668000000418
其中
Figure BDA00031964668000000419
Figure BDA00031964668000000420
如果辅助变量vi(i=1,2,...,n)的动态模型设计如下:
Figure BDA00031964668000000421
其中
Figure BDA00031964668000000422
ξi是常数且满足ξi>0,sgn(·)表示符号函数,故障通过下式进行估计:
Figure BDA0003196466800000051
则故障的估计误差
Figure BDA0003196466800000052
可以在有限时间内收敛于0。其中参数φi可按照如下自适应律进行更新:
Figure BDA0003196466800000053
Figure BDA0003196466800000054
且:
Figure BDA0003196466800000055
Figure BDA0003196466800000056
Figure BDA0003196466800000057
Figure BDA0003196466800000058
其中μ0i>0,πi>0,
Figure BDA0003196466800000059
βi>0,0<γi<1和qi>1均为调节参数。
模糊容错控制器设计
根据上面设计的状态估计器和观测器,非线性系统(1)可以进一步描述为:
Figure BDA00031964668000000510
于是,定义误差变量:
Figure BDA00031964668000000511
其中αi-1,i=2,...,n表示虚拟控制输入,τi,i=1,2,...,n表示虚拟误差。
下面将根据反步控制算法的思想,设计虚拟控制输入和实际控制输入。
首先,定义扩展误差变量e=(e1,e2,...,en)T,设计李雅普诺夫函数:
Figure BDA00031964668000000512
步骤1:对误差变量τ1微分,得
Figure BDA00031964668000000513
构造如下对数型李雅普诺夫函数
Figure BDA0003196466800000061
其中P1表示正定对称矩阵,
Figure BDA0003196466800000062
其中
Figure BDA0003196466800000063
Figure BDA0003196466800000064
对V1进行求导,得
Figure BDA0003196466800000065
于是,构造如下虚拟控制输入α1和参数自适应律
Figure BDA0003196466800000066
Figure BDA0003196466800000067
Figure BDA0003196466800000068
其中λ1>0和ρ1>1。
步骤i(i=2,...,n-1):对误差变量τi微分,得:
Figure BDA0003196466800000069
构造如下对数型李雅普诺夫函数:
Figure BDA00031964668000000610
其中Pi表示正定对称矩阵,
Figure BDA00031964668000000611
其中
Figure BDA00031964668000000612
Figure BDA00031964668000000613
Figure BDA00031964668000000614
对Vi进行求导,得:
Figure BDA00031964668000000615
为了求解上式中的
Figure BDA00031964668000000616
设计如下超螺旋观测器:
Figure BDA00031964668000000617
其中ζil(l=0,1)和fi0表示超螺旋系统的状态,ξil(l=0,1)表示观测器参数,且满足ξil>0。
进一步,按如下式计算参数
Figure BDA00031964668000000618
Figure BDA00031964668000000619
其中ωi-1表示参数估计误差,其上界为
Figure BDA0003196466800000071
Figure BDA0003196466800000072
代入
Figure BDA0003196466800000073
得:
Figure BDA0003196466800000074
于是,构造虚拟控制输入和参数自适应律:
Figure BDA0003196466800000075
Figure BDA0003196466800000076
其中λi>0和ρi>1。
步骤n:对误差变量τn微分,得:
Figure BDA0003196466800000077
构造如下对数型李雅普诺夫函数:
Figure BDA0003196466800000078
其中Pn表示正定对称矩阵,
Figure BDA0003196466800000079
Figure BDA00031964668000000710
Figure BDA00031964668000000711
Figure BDA00031964668000000712
对Vn微分,得:
Figure BDA00031964668000000713
于是,设计如下实际控制输入和参数自适应律:
Figure BDA00031964668000000714
Figure BDA00031964668000000715
将其代数上式,经化简得:
Figure BDA00031964668000000716
其中C=min{2(ci-2),2λi,(ρi-1)Pi,i=1,...,n}和
Figure BDA00031964668000000717
不等式(35)表明,跟踪误差及所有的闭环系统信号是有界的。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (6)

1.一种基于自适应观测器的非线性系统模糊容错控制方法,其特征在于,包括自适应观测器设计、状态估计器设计、以及模糊容错控制器设计。
2.根据权利要求1所述的基于自适应观测器的非线性系统模糊容错控制方法,其特征在于,所述的自适应观测器设计包括具有故障和约束的非线性系统描述、非线性函数的模糊估计,自适应观测器设计。
3.根据权利要求2所述的基于自适应观测器的非线性系统模糊容错控制方法,其特征在于,所述的具有故障和约束的非线性系统描述为:对于如下非线性系统
Figure FDA0003196466790000011
其中,y∈R和u(t)∈R分别表示系统的输出和输入,
Figure FDA0003196466790000012
Figure FDA0003196466790000013
表示系统的状态,满足约束条件:|xi|≤κi,i=1,2,...,n,其中κi>0且为常数,
Figure FDA0003196466790000014
代表光滑的未知非线性函数,ηi(t),i=1,2,...,n表示系统的故障。
4.根据权利要求2所述非线性函数的模糊估计和自适应观测器设计,其特征在于:对任意的非线性连续函数
Figure FDA0003196466790000015
存在一个模糊逻辑系统,使得:
Figure FDA0003196466790000016
其中δT表示权重向量,
Figure FDA0003196466790000017
表示模糊逻辑系统的激励函数,T表示求向量或矩阵的转置,
Figure FDA0003196466790000018
表示
Figure FDA0003196466790000019
的估计值。定义最优的权重参数为δi *,设计滑模函数为:
Figure FDA00031964667900000110
其中
Figure FDA00031964667900000111
Figure FDA00031964667900000112
Figure FDA00031964667900000113
的估计值。于是设计如下观测器:
Figure FDA00031964667900000114
Figure FDA00031964667900000115
其中vi为中间变量,ξi>0表示观测器调节参数,φi(t)表示自适应参数,其自适应律为:
Figure FDA00031964667900000116
Figure FDA00031964667900000117
且:
Figure FDA0003196466790000021
Figure FDA0003196466790000022
Figure FDA0003196466790000023
Figure FDA0003196466790000024
其中μ0i>0,πi>0,
Figure FDA0003196466790000025
βi>0,0<γi<1和qi>1均为自适应律调节参数。
5.根据权利要求1所述的基于自适应观测器的非线性系统模糊容错控制方法,其特征在于,所述状态估计器设计,其特征在于:设计一种模糊状态估计器,如下:
Figure FDA0003196466790000026
其中ci为估计器调节参数。
6.根据权利要求1所述的基于自适应观测器的非线性系统模糊容错控制方法,其特征在于,所述模糊容错控制器设计为:
Figure FDA0003196466790000027
其中τn-1和τn表示虚拟控制误差,λn>0和ρn>1为控制器调节参数,参数
Figure FDA0003196466790000028
Figure FDA0003196466790000029
及fn0的计算将在说明书中给出。
CN202110892486.4A 2021-08-04 2021-08-04 一种基于自适应观测器的非线性系统模糊容错控制方法 Active CN113625562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110892486.4A CN113625562B (zh) 2021-08-04 2021-08-04 一种基于自适应观测器的非线性系统模糊容错控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110892486.4A CN113625562B (zh) 2021-08-04 2021-08-04 一种基于自适应观测器的非线性系统模糊容错控制方法

Publications (2)

Publication Number Publication Date
CN113625562A true CN113625562A (zh) 2021-11-09
CN113625562B CN113625562B (zh) 2023-09-19

Family

ID=78382788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110892486.4A Active CN113625562B (zh) 2021-08-04 2021-08-04 一种基于自适应观测器的非线性系统模糊容错控制方法

Country Status (1)

Country Link
CN (1) CN113625562B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859847A (zh) * 2022-03-11 2022-08-05 四川大学 一种适用于互联非线性系统的可靠优化控制系统及方法
CN115079574A (zh) * 2022-07-19 2022-09-20 安徽大学 一种挠性高超声速飞行器分布式故障补偿方法
CN115616953A (zh) * 2022-09-22 2023-01-17 电子科技大学 一种基于反步的远程伺服电机跟踪控制方法
CN116436300A (zh) * 2023-06-14 2023-07-14 佛山仙湖实验室 一种基于反步超螺旋的dc-dc变换器控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123600A1 (en) * 2002-11-13 2004-07-01 Brunell Brent Jerome Adaptive model-based control systems and methods for controlling a gas turbine
CN110566403A (zh) * 2019-08-08 2019-12-13 天津科技大学 一种风力发电t-s模糊鲁棒调度容错控制方法
CN110658724A (zh) * 2019-11-20 2020-01-07 电子科技大学 一类非线性系统自适应模糊容错控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123600A1 (en) * 2002-11-13 2004-07-01 Brunell Brent Jerome Adaptive model-based control systems and methods for controlling a gas turbine
CN110566403A (zh) * 2019-08-08 2019-12-13 天津科技大学 一种风力发电t-s模糊鲁棒调度容错控制方法
CN110658724A (zh) * 2019-11-20 2020-01-07 电子科技大学 一类非线性系统自适应模糊容错控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
戴姣等: "基于自适应动态规划的一类非线性系统的容错控制器设计", 《电光与控制》 *
朱芳来等: "基于T-S模糊模型的观测器和动态输出反馈容错控制器设计", 《西安交通大学学报》 *
陈升等: "一类非线性系统的模糊自适应容错控制", 《渤海大学学报(自然科学版)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859847A (zh) * 2022-03-11 2022-08-05 四川大学 一种适用于互联非线性系统的可靠优化控制系统及方法
CN114859847B (zh) * 2022-03-11 2023-05-09 四川大学 一种适用于互联非线性系统的可靠优化控制系统及方法
CN115079574A (zh) * 2022-07-19 2022-09-20 安徽大学 一种挠性高超声速飞行器分布式故障补偿方法
CN115079574B (zh) * 2022-07-19 2022-11-08 安徽大学 一种挠性高超声速飞行器分布式故障补偿方法
CN115616953A (zh) * 2022-09-22 2023-01-17 电子科技大学 一种基于反步的远程伺服电机跟踪控制方法
CN116436300A (zh) * 2023-06-14 2023-07-14 佛山仙湖实验室 一种基于反步超螺旋的dc-dc变换器控制方法及系统
CN116436300B (zh) * 2023-06-14 2023-08-22 佛山仙湖实验室 一种基于反步超螺旋的dc-dc变换器控制方法及系统

Also Published As

Publication number Publication date
CN113625562B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
CN113625562A (zh) 一种基于自适应观测器的非线性系统模糊容错控制方法
Yu et al. Neuroadaptive finite-time control for nonlinear MIMO systems with input constraint
Cui et al. Finite-time adaptive fuzzy control for MIMO nonlinear systems with input saturation via improved command-filtered backstepping
Ma et al. Command-filter-based finite-time adaptive control for nonlinear systems with quantized input
Li et al. Fixed‐time backstepping control design for high‐order strict‐feedback non‐linear systems via terminal sliding mode
Li et al. Adaptive neural network finite-time dynamic surface control for nonlinear systems
Wang et al. Finite‐time adaptive tracking control for a class of nonstrict feedback nonlinear systems with full state constraints
Li et al. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems
Zhou Decentralized adaptive control for large-scale time-delay systems with dead-zone input
Liu et al. Adaptive prescribed performance tracking control for strict‐feedback nonlinear systems with zero dynamics
Chen et al. The prescribed time sliding mode control for attitude tracking of spacecraft
Lv et al. Finite-time adaptive fuzzy tracking control for a class of nonlinear systems with unknown hysteresis
Liu et al. Almost fast finite‐time adaptive tracking control for a class of full‐state constrained pure‐feedback nonlinear systems
Liu et al. Event-triggered adaptive neural network tracking control for uncertain systems with unknown input saturation based on command filters
Fan et al. ADP-based optimal control for systems with mismatched disturbances: A PMSM application
Wang et al. Finite-time compensation control for state-variable-unmeasurable nonlinear systems with sensor and actuator faults
He et al. An α‐variable model‐free prescribed‐time control for nonlinear system with uncertainties and disturbances
Ma et al. Filter-and observer-based finite-time adaptive fuzzy control for induction motors systems considering stochastic disturbance and load variation
Wang et al. A simplified adaptive tracking control for nonlinear pure‐feedback systems with input delay and full‐state constraints
Zhang et al. Predefined–Time Adaptive Control of a Piezoelectric–Driven Motion System With Time–Varying Output Constraint
Chen et al. Model free based finite time fault‐tolerant control of robot manipulators subject to disturbances and input saturation
Wang et al. Observer‐based adaptive neural fault‐tolerant control for nonlinear systems with prescribed performance and input dead‐zone
Wang et al. Adaptive type-2 fuzzy output feedback control using nonlinear observers for permanent magnet synchronous motor servo systems
CN113885314B (zh) 一种具有未知增益和干扰的非线性系统跟踪控制方法
Zhang et al. Tracking control of a robotic system with deferred constraints and actuator faults

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant