CN113625057B - 基于谐振特性的电力电缆介损测试装置 - Google Patents

基于谐振特性的电力电缆介损测试装置 Download PDF

Info

Publication number
CN113625057B
CN113625057B CN202110919992.8A CN202110919992A CN113625057B CN 113625057 B CN113625057 B CN 113625057B CN 202110919992 A CN202110919992 A CN 202110919992A CN 113625057 B CN113625057 B CN 113625057B
Authority
CN
China
Prior art keywords
circuit
frequency
dielectric loss
power cable
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110919992.8A
Other languages
English (en)
Other versions
CN113625057A (zh
Inventor
汪锐
任长永
牟志远
杨文海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoding Tengyuan Power Technology Co ltd
Mou Zhiyuan
Wang Rui
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110919992.8A priority Critical patent/CN113625057B/zh
Publication of CN113625057A publication Critical patent/CN113625057A/zh
Application granted granted Critical
Publication of CN113625057B publication Critical patent/CN113625057B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor

Abstract

基于谐振特性的电力电缆介损测试装置,包括:将交联聚乙烯电力电缆的绝缘介质,等效为绝缘电阻R与电容C的并联电路模型,变频电源V AC 一端与并联电路模型一端均接地;变频电源V AC 另一端与等效电阻r、电抗器依次连接,电抗器另一端连接并联电路模型另一端,整个电路构成变频串联谐振电路;电路通过调节变频电源V AC 的电压及频率处于谐振状态,并获取谐振状态下电路中谐振角频率ω 1及电路总电阻R equ1;再次调节变频电源的电压及频率,同时保持电流I max不变,使电路处于非谐振状态,并获取非谐振状态下电路中非谐振角频率ω 2及电路总电阻R equ2;利用以上数据并根据基于谐振特性的介质测试功率增量计算法计算出交联聚乙烯(XPLE)电力电缆的介损值tgδ。

Description

基于谐振特性的电力电缆介损测试装置
技术领域
本发明涉及介质损耗测试技术领域,更具体的说,特别涉及基于谐振特性的电力电缆介损测试装置。
背景技术
在现场测试交联聚乙烯(XPLE)高压电力电缆的介质损耗因数时,由于测试仪器输出电压或容量的限制,给介损测试工作带来了一定困难。目前,针对电力电缆的介质损耗因数测试,主要分为超低频介损、工频介损及异频介损测试三种试验方法。
超低频介损测试广泛应用于中压交联聚乙烯电力电缆的绝缘老化诊断试验,具有试验装置小便于携带、发现缺陷更灵敏、可测试较长电缆等优点,但也存在一定程度的缺点,其缺点是测试频率与实际运行工频频率差异较大,当测试频率低于0.01Hz时可能引起电缆中空间电荷的积累。DongsubKim等学者研究发现随着电缆长度的增加,超低频介损测试值趋于减小,该方法能测试的中压电缆最大长度在1500米内。
工频介损测试的优点是测试频率与运行工况相同,对于老化电缆的测试精度高,但是对电源容量需求高,随电缆长度增加而显著增大。
除此之外,还有异频介损测试的方法,利用串联谐振原理对被试品进行升压,结合介损电桥测量桥体,采用电桥法测量被试品介损(即串谐电桥法)。但是该方法需要额外配置标准电容器、介损电桥、补偿电容器等设备,且不能消除被试品接至介损电桥的引线电阻、接触电阻等电路固有电阻的影响。
综上所述,超低频介损法、工频介损法和串谐电桥法在针对高电压、长距离交联聚乙烯电力电缆介损测试时都存在一定局限性。
因此,现有技术存在的问题,有待于进一步改进和发展。
发明内容
(一)发明目的:为解决上述现有技术中存在的问题,本发明的目的是提供基于谐振特性的电力电缆介损测试装置。
(二)技术方案:为了解决上述技术问题,基于谐振特性的电力电缆介损测试装置,包括:电路、计算单元和调节单元;所述电路包括,将交联聚乙烯电力电缆的绝缘介质,等效为绝缘电阻R与电容C的并联电路模型,变频电源V AC 一端与并联电路模型一端均接地;变频电源V AC 另一端与等效电阻r、电抗器依次连接,电抗器另一端连接并联电路模型另一端,整个电路构成变频串联谐振电路;
所述调节单元用于调节电路中变频电源V AC 的电压及频率;
所述计算单元用于对电路中的参数进行运算;
所述电路通过调节单元,调节变频电源V AC 的电压及频率,使电路处于谐振状态,并获取电容器的电感量L,谐振状态下电压U 0,电流I max以及谐振频率f 1,计算单元根据获取的参数计算谐振状态下电路中谐振角频率ω 1及电路总电阻R equ1
调节单元再次调节电路中变频电源的电压及频率,同时保持电路中电流I max不变,使电路处于非谐振状态,并获取非谐振状态下电路中电压U',以及非谐振频率f 2,计算单元根据获取的参数计算非谐振角频率ω 2及电路总电阻R equ2
计算单元利用既有数参数结合基于谐振特性的介损测试功率增量计算法计算出交联聚乙烯电力电缆的介损值tgδ
等效电阻r为除电力电缆之外的其它电阻之和,包括电抗器线圈电阻、引线电阻、接头接触电阻。
电压U 0的范围在几伏至一百伏之间,频率在20~300Hz内变化。
当电路处于谐振状态时,电路中谐振角频率ω 1ω 1 =2πf 1,等值电容量C'
Figure 165434DEST_PATH_IMAGE001
,等效总电阻R equ1
Figure 999529DEST_PATH_IMAGE002
非谐振频率f 2与谐振频率f 1之间的频率变化∆f ≤0.1Hz。
当电路处于非谐振状态时,非谐振角频率为ω 2 =2πf 2,等值电容量用谐振状态下等值电容量C'代替,电路总阻抗Z
Figure 109961DEST_PATH_IMAGE003
,电路总电抗X
Figure 535257DEST_PATH_IMAGE004
,等效总电阻R equ2
Figure 275680DEST_PATH_IMAGE005
基于谐振特性的介损测试功率增量计算法为,在保持串联谐振电路的电流I max不变的情况下,变换角频率ω,有功功率P对无功功率Q的微分等于tg2δ,始终保持不变:
Figure 146422DEST_PATH_IMAGE006
当频率变化微小时:
Figure 203371DEST_PATH_IMAGE007
,即
Figure 504295DEST_PATH_IMAGE008
,将tg2δ利用三角函数公式进行运算,得到交联聚乙烯电力电缆介损值tgδ
将已获得交联聚乙烯电力电缆介损值tgδ转化为工频(50Hz)下的等值介损值:
Figure 748326DEST_PATH_IMAGE009
(三)有益效果:本发明提供基于谐振特性的电力电缆介损测试装置其谐振频率范围较宽,不需要再增加额外的电容器,显著降低了试验的难度、减少了试验成本;可以实现同交流耐压试验的无缝衔接,即可以实现在高压电力电缆交流耐压的升压及降压过程中同步完成电力电缆介损测试的目的;可以消除被试品连接至介损电桥的引线电阻、接触电阻等电路固有电阻的影响,介损测试的准确度提高。
附图说明
图1是基于谐振特性的电力电缆介损测试装置的谐振电路图;
图2是交联聚乙烯(XPLE)电力电缆的绝缘介质的等值串联电路图;
图3是交联聚乙烯(XPLE)电力电缆的绝缘介质介损测试流程图;
图4是交联聚乙烯(XPLE)电力电缆的绝缘介质介损测试仿真电路。
具体实施方式
下面结合优选的实施例对本发明做进一步详细说明,在以下的描述中阐述了更多的细节以便于充分理解本发明,但是,本发明显然能够以多种不同于此描述的其他方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施例的内容限制本发明的保护范围。
附图是本发明的实施例的示意图,需要注意的是,此附图仅作为示例,并非是按照等比例的条件绘制的,并且不应该以此作为对本发明的实际要求保护范围构成限制。
本发明提供基于谐振特性的电力电缆介损测试装置,用于测试交联聚乙烯(XPLE)电力电缆的介损。该种装置及方法主要针对于高电压、长距离交联聚乙烯(XPLE)电力电缆的介损进行测试。如图1所示,本发明提供一种交联聚乙烯(XPLE)电力电缆,将交联聚乙烯(XPLE)电力电缆的绝缘介质等效为绝缘电阻R与电容C的并联电路模型,变频电源V AC 一端与并联电路模型一端均接地;变频电源V AC 另一端与等效电阻r、电抗器依次连接,电抗器另一端连接并联电路模型另一端,整个电路闭合构成变频串联谐振电路。电抗器的电感量记为L,所述等效电阻r为除电力电缆之外的其它电阻之和,包括电抗器线圈电阻、引线电阻、接头接触电阻。
由于变频电源V AC 输出的是交变电流,电路中电抗器的感抗补偿电容器的容抗,当电路中感抗和容抗相互抵消时,回路中电抗为零,以减小变频电源V AC 的容量。
由于交联聚乙烯(XPLE)电力电缆的绝缘介质等效为绝缘电阻R与电容C的并联电路模型,因此其介质损耗因数计算公式为:
Figure 642333DEST_PATH_IMAGE010
(1)。
保持电路中电流I不变,将交联聚乙烯(XPLE)电力电缆的绝缘介质的并联电路模型按照阻抗相等原则转化为串联电路模型,如图2所示。此时电路中电容为C',绝缘电阻为R',由于是串联电路模型,C'为交联聚乙烯(XPLE)电力电缆的绝缘介质等值电容量,R'为交联聚乙烯(XPLE)电力电缆的绝缘介质等值绝缘电阻。
根据阻抗相等原则,得到串联电路模型中交联聚乙烯(XPLE)电力电缆的绝缘介质等值电容量C'为:
Figure 52323DEST_PATH_IMAGE011
(2);
等值绝缘电阻R'为:
Figure 960367DEST_PATH_IMAGE012
(3);
保持电路中电流I不变,根据公式(3)和等效电阻r推导出电路中的有功功率P的计算公式为:
Figure 206541DEST_PATH_IMAGE013
(4);
由公式(2)推导出电路中无功功率Q的计算公式为:
Figure 433734DEST_PATH_IMAGE014
(5);
根据公式(4)和公式(5)分别对角频率ω求导,得到公式:
Figure 668537DEST_PATH_IMAGE015
(6);
Figure 262329DEST_PATH_IMAGE016
(7) ;
有功功率P对无功功率Q的微分可得出:
Figure 713908DEST_PATH_IMAGE017
(8);
由公式(8)可知,在保持串联谐振电路的电流I不变的情况下,变换角频率ω,有功功率P对无功功率Q的微分等于tg2δ,始终保持不变。
基于以上结论,本发明基于谐振特性的电力电缆介损测试装置,包括电路、计算单元、调节单元,具体按照以下步骤实施,如图3所示:
步骤1:建立谐振电路;
将交联聚乙烯(XPLE)电力电缆的绝缘介质等效为绝缘电阻R与电容C的并联电路模型,变频电源V AC 一端与并联电路模型一端均接地;变频电源V AC 另一端与等效电阻r、电抗器依次连接,电抗器另一端连接并联电路模型另一端,整个电路闭合构成变频串联谐振电路。所述等效电阻r为除电力电缆之外的其它电阻之和,包括电抗器线圈电阻、引线电阻、接头接触电阻。
步骤2:计算电路处于谐振状态时,电路等效总电阻R equ1,以及谐振角频率ω 1
步骤2-1:计算或测试出电抗器的电感量L,调节单元调节变频电源V AC 的电压,使其输出一较低电压U 0,电压U 0的范围在几伏至一百伏之间;
步骤2-2:调节单元调节变频电源V AC 的频率,使其在20~300Hz内变化,寻找电路谐振点;
当电路处于谐振状态时,电路感抗和电路容抗相等而对消,电路呈纯电阻负荷状态,此时,整个谐振电路的功率因数cosφ=1,电路中的阻抗最小,电流最大;
步骤2-3:记录谐振频率f 1,最大电流I max,电压U 0,计算单元根据以下关系式计算出谐振角频率ω 1,电路等效电容量C',等效总电阻R equ1
ω 1 =2πf 1 (9)
Figure 231608DEST_PATH_IMAGE018
(10)
Figure 150279DEST_PATH_IMAGE019
(11)
步骤3:计算电路处于非谐振状态时电路等效总电阻R equ2,以及谐振角频率ω 2
步骤3-1:调节单元将谐振频率f 1略微降低或升高(频率变化∆f ≤0.1Hz)使电路处于非谐振状态,得到非谐振频率f 2;同时调节单元升高变频电源输出电压,电压升高至U',电流仍然保持最大电流I max不变,此时整个电路的功率因数cosφ≠1;
步骤3-2:化简公式(2)得出
Figure 898661DEST_PATH_IMAGE020
(12);
对绝大多数交联聚乙烯(XPLE)电力电缆(长度≥100m,对应等值电容量C≥10nF),其等值绝缘电阻R一般在10MΩ以上,存在关系式(ωCR)2>>1,即
Figure 60040DEST_PATH_IMAGE021
综上所述,变换频率后的非谐振状态下的等值电容量可采用谐振状态下的等值电容量C'代替,计算单元根据以下公式对非谐振状态下的电路参数进行计算,
非谐振角频率ω 2
ω 2 =2πf 2 (13);
非谐振状态下的电路总阻抗Z
Figure 552070DEST_PATH_IMAGE022
(14);
非谐振状态下的电路总电抗X
Figure 325247DEST_PATH_IMAGE023
(15);
非谐振状态下的电路等效总电阻R equ2
Figure 119897DEST_PATH_IMAGE024
(16);
步骤4:计算交联聚乙烯(XPLE)电力电缆介损值tgδ
步骤4-1:根据公式(8),当频率微小变化时有:
Figure 375429DEST_PATH_IMAGE025
(17);
即:
Figure 600044DEST_PATH_IMAGE026
(18);
步骤4-2:计算单元利用公式(18)得出的tg2δ值结合三角函数公式进行运算,得到交联聚乙烯(XPLE)电力电缆介损值tgδ,并将得到的交联聚乙烯(XPLE)电力电缆的介损值tgδ,根据前述绝缘介质的并联电路模型,转化为工频(50Hz)下的等值介损值,得到:
Figure 490377DEST_PATH_IMAGE027
(19)。
公式(19)中tgδ 50 tgδ分别为频率50Hz和f 1时的介质损耗因数。
下面结合本发明基于谐振特性的电力电缆介损测试装置的实施例进行详细说明:
实施例一(仿真验证):
针对建立的基于谐振特性的电力电缆介损测试模型,本发明以电路仿真软件Multisim 12为平台进行仿真实验。
以YJLW02 64/110 1×800型110kV高压电力电缆为例,该高压电力电缆对地电容量为0.214μF/km该高压电力电缆长度约467米,总电容量C1约0.1μF、绝缘电阻R2约100MΩ。选取对应的电抗器,满足待试耐压值,适应变频电源频率,所述电抗器为串联谐振电抗器,本次试验所选取的电抗器的实际电感量L1为82.22H,电路中等效电阻R1为110Ω,等效电阻R1为电力电缆之外的其它电阻之和,包括电抗器线圈电阻、引线电阻、接头接触电阻,建立仿真电路,如图4所示,
YJLW02 64/110 1×800型110kV高压电力电缆的绝缘介质等效为电容C1与绝缘电阻R2的并联电路模型,电压表XMM3用来测量并联电路模型的电压,并联电路模型一端连接功率因素表XWM1的电流端子,并联电路模型另一端与电抗器、等效电阻R1、电流表XMM2依次连接,电流表XMM2测量整个电路电流,电流表XMM2另一端与功率因素表XWM1的电压端子一端均连接变频电源V1一端,功率因素表XWM1的电压端子另一端与电流端子另一端均接地,变频电源V1另一端接地。
本试验根据交联聚乙烯(XPLE)电力电缆介损测试流程,设置变频电源V1输出电压为100V,调节单元,调节变频电源V1的频率在20~300Hz内变换寻找电路谐振点,测得谐振频率为55.505Hz。当电路处于谐振状态时,整个电路的功率因数cosφ=1,电路总电流I为845.864mA,电缆上电压为24.254kV。
调节单元在谐振频率附近微调频率,频率变化小于等于0.1HZ,将变频电源V1输出频率分别微调至55.5Hz和55.51Hz,同时升高变频电源输出电压,保持电路总电流I为845.864mA不变,计算单元根据公式(9)~(19)计算出电力电缆介损值,相关电路参数值如下表1和表2中所示。其中等效总电阻R equ1表示谐振状态时电路等效总电阻,等效总电阻R equ2表示非谐振状态时电路等效总电阻。
表1 电路参数值对比及误差(频率55.5Hz)
Table1 The values of circuit parameters and errors(frequency=55.5Hz)
Figure 144343DEST_PATH_IMAGE028
表2 电路参数值对比及误差(频率55.51Hz)
Table1 The values of circuit parameters and errors(frequency=55.51Hz)
Figure 60740DEST_PATH_IMAGE029
从表1和表2中可知,电容、等效电阻的仿真值与实际值基本一致,等效电阻差值、介损值的误差均在10%以内,将谐振频率两侧介损值(即频率55.5Hz和55.51Hz时的介损)做算术平均后误差更小(-0.94%),验证了该电路模型的有效性。
实施例二(试验验证):
为了验证基于谐振特性的交联聚乙烯(XPLE)电力电缆介损测试方法的有效性,本文对前述YJLW02 64/110 1×800型110kV高压电力电缆进行现场介损试验。
本次实验采用高精度变频电源,变频电源在交流电压0~450V范围内连续可调,频率f 在20~300Hz连续可调,同时可测量输出电流。选取一定长度YJLW02 64/110 1×800型110kV高压电力电缆,电缆长度范围满足电源的容量负载能力即可,由于本次实验是对前述仿真实验的验证,所以选取的电缆长度为467米,选取对应的电抗器,基于公式
Figure 707622DEST_PATH_IMAGE030
ω=2πf,频率f在20~300Hz范围内连续可调,所以满足该范围的电抗器都可以选,所述电抗器为串联谐振电抗器。
变频电源一端与高压电力电缆的外护套均接地;变频电源另一端与电抗器连接,电抗器另一端连接高压电力电缆缆芯,整个电路闭合构成变频串联谐振电路。
本次试验采用的电抗器实际电感量为82.22H、电路中等效电阻为110Ω。采用电容分压器测量被试高压电力电缆上施加的试验电压。
试验时,首先设定变频电源输出电压为100V,调节单元调节电源频率寻找电路谐振点,当电路处于谐振状态时输出频率f =55.17Hz,此时电路总电流I为832.46mA,电缆上电压约23.7kV。随后调节单元微调电源输出频率f,频率变化范围小于等于0.1HZ使电路处于非谐振状态,分别微调输出频率f至55.16Hz和55.18Hz,同时提高变频电源输出电压,保持电路总电流I为832.46mA不变,依据公式(9)~(19)计算电力电缆介损值。
另外,采用AI-6000K型介损测试仪外施高电压(23.7kV)进行异频介损(串谐电桥法)对比测试,相关试验结果如下表3所示。
表3 不同介损测试方法试验结果
Table3 The results of diverse dielectric dissipation factor testmethods
介损测试法 电容/nF 介损值
基于谐振特性的电力电缆介损测试法(23.7kV) 101.218 0.0313%
串谐电桥法(反接法)(23.7kV) 102.56 0.0343%
与串谐电桥法(反接法)对比偏差 -1.3% -8.75%
由表3可知,本发明基于谐振特性的电力电缆介损测试装置与串谐电桥法(采用反接线)相比,测得被试高压电力电缆绝缘介质的电容和介损值均接近,电容偏差在1%左右,介损值偏差在10%内。串谐电桥法(反接法)不能消除试验引线、接头接触电阻等影响,其有功损耗一并计入被试品的介损值中,引起介损测试值偏高。
以上内容是对本发明创造的优选的实施例的说明,可以帮助本领域技术人员更充分地理解本发明创造的技术方案。但是,这些实施例仅仅是举例说明,不能认定本发明创造的具体实施方式仅限于这些实施例的说明。对本发明创造所属技术领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干简单推演和变换,都应当视为属于本发明创造的保护范围。

Claims (10)

1.基于谐振特性的电力电缆介损测试装置,其特征在于,包括:电路、计算单元和调节单元;
所述电路包括,将交联聚乙烯电力电缆的绝缘介质,等效为绝缘电阻R与电容C的并联电路模型,变频电源VAC一端与并联电路模型一端均接地;变频电源VAC另一端与等效电阻r、电抗器依次连接,电抗器另一端连接并联电路模型另一端,整个电路闭合构成变频串联谐振电路;
所述调节单元用于调节电路中变频电源VAC的电压及频率;
所述计算单元用于对电路中的参数进行运算;
所述电路通过调节单元,调节变频电源VAC的电压及频率,使电路处于谐振状态,并获取电抗器的电感量L,谐振状态下变频电源VAC的输出电压U0,电流Imax以及谐振频率f1,计算单元根据获取的参数计算谐振状态下电路中谐振角频率ω1及电路的等效总电阻Requ1
调节单元再次调节电路中变频电源的电压及频率,同时保持电路中电流Imax不变,使电路处于非谐振状态,并获取非谐振状态下电路中变频电源VAC的输出电压U′,以及非谐振频率f2,计算单元根据获取的参数计算非谐振角频率ω2及电路的等效总电阻Requ2
计算单元利用既有参数并结合基于谐振特性的介损测试功率增量计算法计算出交联聚乙烯电力电缆的介损值tgδ。
2.根据权利要求1所述基于谐振特性的电力电缆介损测试装置,其特征在于,等效电阻r为除电力电缆之外的其它电阻之和,包括电抗器线圈电阻、引线电阻、接头接触电阻。
3.根据权利要求1所述基于谐振特性的电力电缆介损测试装置,其特征在于,电压U0的范围在几伏至一百伏之间,频率在20~300Hz内变化。
4.根据权利要求1所述基于谐振特性的电力电缆介损测试装置,其特征在于,当电路处于谐振状态时,电路中谐振角频率ω1为ω1=2πf1,等值电容量C′为
Figure FDA0003510287140000021
等效总电阻Requ1
Figure FDA0003510287140000022
5.根据权利要求1所述基于谐振特性的电力电缆介损测试装置,其特征在于,非谐振频率f2与谐振频率f1之间的频率变化Δf≤0.1Hz。
6.根据权利要求1所述基于谐振特性的电力电缆介损测试装置,其特征在于,电路中等值电容量C′为
Figure FDA0003510287140000023
其中
Figure FDA0003510287140000024
忽略不计,所以当电路处于非谐振状态时,等值电容量用谐振状态下等值电容量C′代替。
7.根据权利要求6所述基于谐振特性的电力电缆介损测试装置,其特征在于,当电路处于非谐振状态时,非谐振角频率为ω2=2πf2,电路总阻抗Z为
Figure FDA0003510287140000025
电路总电抗X为
Figure FDA0003510287140000026
等效总电阻Requ2
Figure FDA0003510287140000027
8.根据权利要求1所述基于谐振特性的电力电缆介损测试装置,其特征在于,基于谐振特性的介损测试功率增量计算法为,在保持串联谐振电路的电流Imax不变的情况下,变换角频率ω,有功功率P对无功功率Q的微分等于tg2δ,始终保持不变:
Figure FDA0003510287140000028
9.根据权利要求8所述基于谐振特性的电力电缆介损测试装置,其特征在于,当频率变化微小时:
Figure FDA0003510287140000031
Figure FDA0003510287140000032
将tg2δ利用三角函数公式进行运算,得到交联聚乙烯电力电缆介损值tgδ;C′为等值电容量。
10.根据权利要求9所述基于谐振特性的电力电缆介损测试装置,其特征在于,将已获得交联聚乙烯电力电缆介损值tgδ转化为工频为50Hz下的等值介损值:
Figure FDA0003510287140000033
CN202110919992.8A 2021-08-11 2021-08-11 基于谐振特性的电力电缆介损测试装置 Active CN113625057B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110919992.8A CN113625057B (zh) 2021-08-11 2021-08-11 基于谐振特性的电力电缆介损测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110919992.8A CN113625057B (zh) 2021-08-11 2021-08-11 基于谐振特性的电力电缆介损测试装置

Publications (2)

Publication Number Publication Date
CN113625057A CN113625057A (zh) 2021-11-09
CN113625057B true CN113625057B (zh) 2022-04-12

Family

ID=78384513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110919992.8A Active CN113625057B (zh) 2021-08-11 2021-08-11 基于谐振特性的电力电缆介损测试装置

Country Status (1)

Country Link
CN (1) CN113625057B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316854A (zh) * 2014-11-06 2015-01-28 国网上海市电力公司 一种变频谐振试验电路
CN106249053A (zh) * 2016-08-19 2016-12-21 汪锐 基于谐振特性的电容式电压互感器介质损耗测试方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4436724B2 (ja) * 2004-07-13 2010-03-24 京セラ株式会社 誘電定数測定法及び同軸共振器
JP4952577B2 (ja) * 2005-03-04 2012-06-13 日本電気株式会社 伝送線路型ノイズフィルタ、その製造方法及びプリント基板
CN102654550A (zh) * 2011-07-18 2012-09-05 张滕飞 利用介质损耗变化测试电缆故障的方法
CN102298109A (zh) * 2011-07-27 2011-12-28 华北电网有限公司唐山供电公司 电力电缆交流耐压试验电路模型的确定方法
CN202393837U (zh) * 2011-10-10 2012-08-22 武汉贝连测控技术有限公司 基于变频串联谐振的电缆介损测量装置
CN103018573B (zh) * 2012-08-22 2015-04-08 浙江省电力公司电力科学研究院 一种交联聚乙烯电力电缆介质损耗值的现场测量系统
CN104880608A (zh) * 2015-04-15 2015-09-02 大连理工大学 基于相关分析法的电缆介损扫频测试方法
CN107797035A (zh) * 2017-10-12 2018-03-13 国网天津市电力公司电力科学研究院 基于宽频介电阻抗谱法的xlpe 电缆绝缘性能评估方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316854A (zh) * 2014-11-06 2015-01-28 国网上海市电力公司 一种变频谐振试验电路
CN106249053A (zh) * 2016-08-19 2016-12-21 汪锐 基于谐振特性的电容式电压互感器介质损耗测试方法

Also Published As

Publication number Publication date
CN113625057A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
RU2645715C2 (ru) Способ и устройство для контроля проходных изоляторов конденсатора для трехфазной сети переменного тока
CN106872868A (zh) 一种宽温范围和复合电场下绝缘材料击穿电压测量系统
CN105403848A (zh) 一种新型电容型设备在线监测系统校验装置
CN105510733A (zh) 一种高压、特高压直流输电线路的参数测量方法
CN113625057B (zh) 基于谐振特性的电力电缆介损测试装置
Pramanik et al. Localisation of discrete change in a transformer winding: a network-function-loci approach
Zhu et al. Insulation monitoring and diagnosis of faults in cross-bonded cables based on the resistive current and sheath current
CN108181512B (zh) 一种基于变压器自激振荡的绕组入口电容测试方法
CN117077370A (zh) 基于多频率分量加权迭代的冲击电压峰值全量程溯源方法
CN107389995B (zh) 调节串联谐振电源品质因数电路及其测试方法
CN112462147A (zh) 直流电流互感器暂态阶跃回路参数的设计方法及系统
CN103869113B (zh) 高压串联谐振装置和利用该装置的耐压试验方法
CN108181600B (zh) 电容式电压互感器测试装置
RU2250471C1 (ru) Делитель напряжения для измерений при коммутационных испытаниях высоковольтных аппаратов и способ компенсации влияния на коэффициент деления емкости делителя на землю
CN216117950U (zh) 一种高压电源的高精度低纹波测试装置
CN110632396B (zh) 一种电缆介质损耗测量方法
CN202281833U (zh) 电容式高压电流互感器介质损失角正切值在线监测仪
CN113702714A (zh) 一种用于测量直流电压互感器高压臂电容值的方法
CN106483385B (zh) 一种基于穿心式互感器的介质损耗测量系统及测量方法
CN206132843U (zh) 直流电压测量装置
Crotti et al. Frequency calibration of MV voltage transformer under actual waveforms
Zhu et al. Calculation method of equivalent core impedance and admittance parameters of long distance power cable
CN108318783A (zh) 一种电流互感器行波传变模型及其构建方法
CN113608033B (zh) 一种高精度宽范围的配电网电容电流测试方法
KR102170794B1 (ko) 커패시터 손실 계수의 측정 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220321

Address after: 071051 Room 301, floor 3, building 1, No. 388, Yufeng Road, Baoding City, Hebei Province

Applicant after: BAODING TENGYUAN POWER TECHNOLOGY CO.,LTD.

Applicant after: Wang Rui

Applicant after: Mou Zhiyuan

Address before: 071051 Room 301, floor 3, building 1, No. 388, Yufeng Road, Baoding City, Hebei Province

Applicant before: BAODING TENGYUAN POWER TECHNOLOGY CO.,LTD.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant