CN113608211B - 一种基于通信流量信息辅助的雷达组网方式识别方法 - Google Patents

一种基于通信流量信息辅助的雷达组网方式识别方法 Download PDF

Info

Publication number
CN113608211B
CN113608211B CN202110907391.5A CN202110907391A CN113608211B CN 113608211 B CN113608211 B CN 113608211B CN 202110907391 A CN202110907391 A CN 202110907391A CN 113608211 B CN113608211 B CN 113608211B
Authority
CN
China
Prior art keywords
radar
networking
networking mode
characteristic
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110907391.5A
Other languages
English (en)
Other versions
CN113608211A (zh
Inventor
刘凯旋
周瑶
彭晓燕
田勇
汪鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110907391.5A priority Critical patent/CN113608211B/zh
Publication of CN113608211A publication Critical patent/CN113608211A/zh
Application granted granted Critical
Publication of CN113608211B publication Critical patent/CN113608211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于通信流量信息辅助的雷达组网方式识别方法。现有的雷达组网识别方法主要依赖网内雷达特征信息的提取与融合,识别方法所使用的参数较为单一,识别可信度较低。考虑到组网雷达系统通过相应的通信手段实现了互联互通,对网内通信流量的分析与研究就变得十分重要。此外,不同的组网雷达系统在面对干扰时其通信流量具有不同特征,加入对抗时的网内通信流量特征将有助于对雷达组网方式的识别。因此,本发明在传统雷达组网方式识别所使用的参数集的基础上增加了通信流量这一参数,并将通信流量特征细分为三大类:无干扰、点迹欺骗、航迹欺骗下的通信流量特征,有效的提升了对雷达组网方式识别的可靠性与准确率,具有良好的应用价值。

Description

一种基于通信流量信息辅助的雷达组网方式识别方法
技术领域
本发明属于雷达技术领域,具体涉及一种基于通信流量信息辅助的雷达组网方式识别方法。
背景技术
雷达组网方式的识别是和雷达网进行电子对抗的必要条件,对抗策略的选取以及对抗资源的调度都需要在对雷达组网方式成功识别的基础上进行。
不同组网方式下的雷达网具有不同的特征,这些特征将组成区分不同组网方式的规则。对雷达组网方式的识别工作,在国内开展较少,主要是以电子侦察得到的雷达特征为基础开展研究工作,然而考虑到组网雷达系统内各雷达间还通过相应的通信手段实现了互联互通,对组网雷达的通信特征的分析与研究就变得十分重要,同时这也是突破组网雷达对抗研究瓶颈的一个方向。此外,不同的组网雷达系统在面对干扰时其系统特征会有不同的变化,所以加入对抗下的组网雷达特征将更有助于雷达组网方式的识别。
发明内容
为了改进现有的雷达组网方式识别工作中,对雷达网辐射源参数选取较为单一且欠缺对网内通信特征的研究与分析这一不足点,本发明提出了一种基于通信流量信息辅助的雷达组网方式识别方法,其目的在于提升对雷达组网方式识别的可信度与准确率。本发明在传统雷达组网方式识别所使用的参数集的基础上增加了通信流量这一参数,并将通信流量特征细分为三大类:无干扰下通信流量特征、点迹欺骗下通信流量特征、航迹欺骗下通信流量特征,有效的提升了对雷达组网方式识别的可靠性与准确率。
本发明的技术方案为:
一种基于通信流量信息辅助的雷达组网方式识别方法,包括以下步骤:
S1、辐射源特征参数的选取:
本发明选用了两种常用于雷达组网方式识别的雷达特征:雷达工作状态和雷达网布站方式,并在此基础上增加了雷达网内通信流量这一新特征,且由于不同的干扰类型对不同组网方式下雷达网内的通信流量特征影响不同,所以本发明还将通信流量特征细分为三大类:无干扰下通信流量特征、点迹欺骗下通信流量特征、航迹欺骗下通信流量特征;
S2、确定标准特征向量
给出步骤S1中选取的雷达特征和通信流量特征在不同组网方式下的标准特征值,其中各特征的标准特征值需要根据先验知识,以及设定的场景来给出;将雷达组网方式Ci下的标准雷达特征向量记为将雷达组网方式Ci下不同对抗条件时的标准通信流量特征向量记为/>参数n1、n2分别为选取的雷达特征参数的个数以及通信流量特征参数的个数,/>含义为第n个特征参数在第i种组网方式下的标准特征值;
S3、计算特征参数与组网方式间的匹配度
特征参数的匹配度记为sin,sin表示第n个特征参数与组网方式Ci的匹配度,表示如下:
其中为第n个特征参数在第i种组网方式下的标准特征值,zin表示第n个特征参数的实测时的特征值;din_k为第n个特征参数在组网方式Ci下的匹配度计算函数,本发明选择使用离散化函数din_k来构造匹配度sin,如下所示:
其中din_1≥din_2≥din_3且din_1,din_2,din_3均属于0至1间的小数,代表特征参数对组网方式的支持程度,sin的具体取值由每个特征参数对应的离散化函数以及标准特征值与实测特征值zin决定;
通过实测下的各特征参数的特征值zin以及步骤S2中给出的各特征参数标准特征值使用离散化函数din_k即可得出第n个特征参数对组网方式Ci的匹配度sin
S4、确定特征参数的权重系数
使用win表示特征参数判断权重,其表示第n个特征参数对雷达组网方式Ci匹配判断的重要程度,将各雷达特征参数所组成的权重向量记为将各通信流量特征参数所组成的权重向量记为/>且Wi_radar与Wi_com中所有权重系数之和等于1;权重向量由相关专家给出;
S5、计算特征向量与组网方式之间的匹配度
使用矢量和矢量/>分别表示选取的雷达特征参数与通信流量特征参数在组网方式Ci下的实测特征向量与标准特征向量之间的距离,具体表示如下:
结合专家给出的标准特征向量和/>利用特征向量的匹配度计算模型计算出雷达特征向量Zi_radar和通信流量特征向量Zi_com对雷达组网方式Ci的匹配度Si_radar和Si_com如下(5)、(6)两式所示,其中sin由式(2)给出;其中n1表示选取的雷达特征总个数,n2表示选取的通信流量特征总个数,参数M表示雷达组网方式种类的个数;
将步骤S4中给出的权重向量Wi_radar、Wi_com和(3)、(4)式得出的向量 分别带入式(5)和式(6)即可计算得出雷达特征向量和通信流量特征向量与组网方式Ci的匹配度Si_radar和Si_com
S6、使用D-S证据融合规则对雷达特征匹配度及通信流量特征匹配度进行信息融合:
构建雷达组网方式识别的基本概率赋值函数BPAF(Basic ProbabilityAssignment Function)m(A),表示对判断A的支持程度;
对于式(5)和式(6)中求得的匹配度Si_x(x为radar或com),若Si_x>0,则代表了特征向量x对雷达组网方式Ci是支持的,支持的程度为Si_x;当Si_x≤0时,则代表了特征向量x对该组网方式Ci是不支持的,不支持的程度为Si_x,这也同样意味着特征向量x支持其他的组网方式,支持程度为Si_x+1∈[0,1];
令i=1,2…K,当K≤M时,Si_x≥0,当i=K+1,K+2,…,M时Si_x<0;
当p≤1时,mx(Θ)=1-p;
其中Θ为组网方式的识别框架,框架内包含所有待识别组网方式;建立如下BPFA,其中x表示雷达特征向量或通信流量特征向量,mx(Ci)表示特征向量x对组网方式Ci的支持程度:
否则mx(Θ)=0,有:
雷达特征和通信流量特征所使用的融合规则为经典的D-S组合规则,该规则如下式(9)所示,其中A是组网方式识别框架Θ中的一个子集;m(A)表示现在已有的证据对子集A的一个支持程度;B和C分别为雷达组网方式识别框架下的非空子集,m1(B)、m2(C)分别表示特征向量1对B集合的支持程度和特征向量2对C集合的支持程度;其中K反映了证据m1和m2之间的冲突程度;
使用(7)式或(8)式分别计算出mradar(Ci)和mcom(Ci),再使用mradar(Ci)和mcom(Ci)替换式(9)中的m1(B)和m2(C),即可计算得出通信流量信息与雷达信息融合后对组网方式Ci的支持度,实现雷达组网方式识别。
本发明在传统雷达组网方式识别所使用的参数集的基础上增加了通信流量这一参数,并将通信流量特征细分为三大类:无干扰下通信流量特征、点迹欺骗下通信流量特征、航迹欺骗下通信流量特征,并利用D-S证据融合算法对雷达网内雷达特征与不同对抗环境下的通信流量特征进行信息融合,相较于仅仅利用雷达特征对雷达网组网方式识别,有效提升了对雷达组网方式识别的可靠性与准确率。
附图说明
图1是分别对雷达信息融合和雷达、通信信息联合融合后对各雷达组网方式支持度的对比图。
具体实施方式
本发明具体的计算,包括以下步骤:
步骤一:辐射源特征参数的选取:
本发明选用了两种常用于雷达组网方式识别的雷达特征:雷达工作状态和雷达网布站方式,并在此基础上增加了雷达网内通信流量这一新特征,且由于不同的干扰类型对不同组网方式下雷达网内的通信流量特征影响不同,所以本发明还将通信流量特征细分为三大类:无干扰下通信流量特征、点迹欺骗下通信流量特征、航迹欺骗下通信流量特征。
步骤二:确定标准特征向量
给出步骤S1中选取的雷达特征和通信流量特征在不同组网方式下的标准特征值,其中各特征的标准特征值需要根据先验知识,以及设定的场景来给出。将雷达组网方式Ci下的标准雷达特征向量记为将雷达组网方式Ci下不同对抗条件时的标准通信流量特征向量记为/>参数n1、n2分别为选取的雷达特征参数的个数以及通信流量特征参数的个数。/>含义为第n个特征参数在第i种组网方式下的标准特征值。
步骤三:计算特征参数与组网方式间的匹配度
特征参数的匹配度记为sin,sin表示第n个特征参数与组网方式Ci的匹配度,表示如下:
其中为第n个特征参数在第i种组网方式下的标准特征值,zin表示第n个特征参数的实测时的特征值;din_k为第n个特征参数在组网方式Ci下的匹配度计算函数,本发明选择使用离散化函数din_k来构造匹配度sin。如下所示:
其中din_1≥din_2≥din_3且din_1,din_2,din_3均属于0至1间的小数,代表特征参数对组网方式的支持程度,sin的具体取值由每个特征参数对应的离散化函数以及标准特征值与实测特征值zin决定。
通过实测下的各特征参数的特征值zin以及步骤S2中给出的各特征参数标准特征值使用离散化函数din_k即可得出第n个特征参数对组网方式Ci的匹配度sin
步骤四:确定特征参数的权重系数
使用win表示特征参数判断权重,其表示第n个特征参数对雷达组网方式Ci匹配判断的重要程度,将各雷达特征参数所组成的权重向量记为将各通信流量特征参数所组成的权重向量记为/>且Wi_radar与Wi_com中所有权重系数之和等于1。权重向量由相关专家给出。
步骤五:计算特征向量与组网方式之间的匹配度
使用矢量和矢量/>分别表示选取的雷达特征参数与通信流量特征参数在组网方式Ci下的实测特征向量与标准特征向量之间的距离,具体表示如下:
结合专家给出的标准特征向量和/>利用特征向量的匹配度计算模型计算出雷达特征向量Zi_radar和通信流量特征向量Zi_com对雷达组网方式Ci的匹配度Si_radar和Si_com如下(5)、(6)两式所示,其中sin由式(2)给出。其中n1表示选取的雷达特征总个数,n2表示选取的通信流量特征总个数,参数M表示雷达组网方式种类的个数。
将步骤S4中给出的权重向量Wi_radar、Wi_com和(3)、(4)式得出的向量 分别带入式(5)和式(6)即可计算得出雷达特征向量和通信流量特征向量与组网方式Ci的匹配度Si_radar和Si_com
步骤六:使用D-S证据融合规则对雷达特征匹配度及通信流量特征匹配度进行信息融合构建雷达组网方式识别的基本概率赋值函数BPAF(Basic Probability AssignmentFunction)m(A),表示对判断A的支持程度。
对于式(5)和式(6)中求得的匹配度Si_x(x为radar或com),若Si_x>0,则代表了特征向量x对雷达组网方式Ci是支持的,支持的程度为Si_x;当Si_x≤0时,则代表了特征向量x对该组网方式Ci是不支持的,不支持的程度为Si_x,这也同样意味着特征向量x支持其他的组网方式,支持程度为Si_x+1∈[0,1]。
令i=1,2…K,当K≤M时,Si_x≥0,当i=K+1,K+2,…,M时Si_x<0;
当p≤1时,mx(Θ)=1-p。
其中Θ为组网方式的识别框架,框架内包含所有待识别组网方式。建立如下BPFA,其中x表示雷达特征向量或通信流量特征向量,mx(Ci)表示特征向量x对组网方式Ci的支持程度:
否则mx(Θ)=0,有:
雷达特征和通信流量特征所使用的融合规则为经典的D-S组合规则,该规则如下式(9)所示,其中A是组网方式识别框架Θ中的一个子集;m(A)表示现在已有的证据对子集A的一个支持程度;B和C分别为雷达组网方式识别框架下的非空子集,m1(B)、m2(C)分别表示特征向量1对B集合的支持程度和特征向量2对C集合的支持程度;其中K反映了证据m1和m2之间的冲突程度。
使用(7)式或(8)式分别计算出mradar(Ci)和mcom(Ci),再使用mradar(Ci)和mcom(Ci)替换式(9)中的m1(B)和m2(C),即可计算得出通信流量信息与雷达信息融合后对组网方式Ci的支持度。
下面仿真实验,对本发明的技术效果作进一步展示和说明。
1.仿真条件和内容:
仿真实验通过MATLAB仿真软件实现,本次仿真实验中,识别框架为Θ={C1,C2,C3,C4}={集中式,分布式,双/多基地,引导交接班}。选择的组网方式特征向量包括无对抗下的通信流量征,点迹干扰下的通信流量特征,航迹干扰下的通信流量特征,雷达工作模式,雷达布站方式。仿真前先将雷达网的通信流量等级分为5个等级,记为1-5,其中1代表通信流量等级最小,2代表通信流量等级较小,3代表通信流量等级中等,4代表通信流量等级较大,5代表通信流量等级最大。
识别框架中各组网方式的典型通信流量特征说明如下:
集中式组网系统中,雷达对探测到的原始点迹数据通常不做处理,直接上传点迹数据至数据处理中心进行处理并生成航迹;分布式组网系统中,雷达具备数据处理能力,能够将探测到的点迹处理后生成航迹信息并上传给数据中心,而航迹流量远小于点迹流量。双/多基组网系统与集中式组网类似,但因其收发分置需传输同步信息,所以流量较集中式更大;引导交接班组网系统与分布式组网类似,但因其多采用线性布站,各分雷达的管辖区域两两衔接,系统中通信数据的流向较为固定,其通信流量也较分布式组网更小。在虚假点迹欺骗干扰下,集中式组网系统和双(多)基地组网系统通信流量会有显著提升;而分布式组网系统和引导交接班系统中各分雷达都具备跟踪滤波功能,通信流量则基本不变。在航迹欺骗干扰下,集中式组网和双/多基地组网通信流量将会有少量增加;分布式组网系统和引导交接班系统,由于上传航迹遭受误导,因此这两种系统的通信流量则会有显著的提升。
识别框架中各组网方式的典型雷达特征说明如下:
集中式组网与双/多基组网系统中,各分雷达对探测到的点迹信息不做处理,直接将原始点迹进行传输,因此该系统一般只进行搜索探测,其中集中式多采用多道防线布站或环形布站,双/多基地组网雷达系统因为其系统的特殊性,一般很难探测到其发射站,因此通常难以确定其具体的布站方式;分布式组网与引导交接班组网系统中,各分雷达开始时先进行搜索探测,当侦察到空间中的目标时,将切换到跟踪模式以便对疑似目标进行跟踪,而因其传输类型为目标航迹,所以,这两种系统将会更多的处于跟踪工作模式,其中分布式通常采用多道防线布站或环形布站,而引导交接班雷达组网系统则多采用线性布站,且多为纵深线性布站方式。
假设待识别的组网雷达系统为分布式组网雷达,具体仿真场景如下:
在t1时段内,仿真场景所在的电磁空间中不存在任何干扰,待识别框架Θ={C1,C2,C3,C4}下通信流量的典型等级为{3,2,3或4,1或2}={通信流量等级中等,通信流量等级较小,通信流量等级中等或较大,通信流量等级最小或较小}。在一段时间的观察中,探测到对方的平均通信流量等级为2,处于跟踪工作模式下的雷达波束比例较多,雷达布站方式为多道防线布站。
在t2时间段内,对雷达网实施点迹干扰,此时待识别框架Θ={C1,C2,C3,C4}下通信流量的典型等级为{4或5,2,4或5,1或2}={通信流量等级最大或较大,通信流量等级较小,通信流量等级最大或较大,通信流量等级最小或较小}。侦测到对方的通信设备,从一段时间的平均来看通信流量较t1时段有较小提升,通信流量等级为2。雷达布站方式为多道防线布站,处于跟踪模式下的波束仍占多数。
在t3时间段内,对雷达网实施航迹干扰,此时待识别框架Θ={C1,C2,C3,C4}下通信流量的典型等级为{3或4,3,4,2或3}={通信流量等级中等或较大,通信流量等级中等,通信流量等级较大,通信流量等级较小或中等}。侦察到对方部署的通信设备,从一段时间平均来看通信流量等级为3。布站方式为多道防线布站,用于跟踪的波束较前两个时刻更多。
2.仿真结果分析:
根据上述仿真场景,由公式(1-8)可以计算出相应的可信度函数值,其结果如表1所示。其中mn(Ci)表示第n个特征对组网方式Ci的可信度。由于t1,t2,t3三个时段内的雷达布站方式和工作模式几乎没有改变,所以表1只列出了其中一个时段内雷达布站方式以及工作模式的可信度。
表1特征参数的可信度函数值
其中布站方式和工作模式构成了雷达特征对各组网方式的支持度,三个时间段中采用不同的对抗方式下的流量特征构成了通信流量特征对各组网方式的支持度。得到了每种组网方式下雷达特征支持度与通信流量特征的支持度后,使用式(9)继续对各特征的BPAF进行D-S证据融合,融合的结果如图1所示。
图1中横坐标中的1,2,3,4分别代表了识别框架中的4种组网方式,即集中式,分布式,双/多基地式,引导交接班;纵坐标的值表示融合后对该类组网方式的支持度。则可将仿真结果转换为表2。
表2信息融合效果对比
由上表2可以看出,由于分布式组网和引导交接班式组网方式在雷达工作状态这一雷达特征参数上的支持度较为相近,所以当仅使用雷达信息融合后,两者的支持度较为接近,从而无法对组网方式做出可靠的判断。而雷达网通信特征的加入使得对不同组网方式的区分更为准确,能够有效地将正确的组网方式的支持度提升,并将其他种类组网方式的支持度降低。根据D-S证据融合理论的识别准则,可以判定当前雷达网的组网方式为分布式组网。
对雷达网的电子对抗技术的研究是当下一个热点,而对雷达组网方式的识别工作则是对抗策略的制定以及对抗资源分配的基础。对比现有的雷达组网方式识别方法,本发明提出一种基于通信流量信息辅助的雷达组网方式识别方法,采用了D-S证据融合理论,将多种不同对抗环境下的通信流量特征与雷达特征结合起来,较好的解决了雷达组网方式识别问题,对比仅使用雷达特征进行组网方式识别,本发明在雷达组网方式识别的可靠性与准确率方面有了显著提升。

Claims (1)

1.一种基于通信流量信息辅助的雷达组网方式识别方法,其特征在于,包括以下步骤:
S1、辐射源特征参数的选取:
采用雷达工作状态、雷达网布站方式和雷达网内通信流量作为特征,其中雷达网内通信流量特征包括:无干扰下通信流量特征、点迹欺骗下通信流量特征、航迹欺骗下通信流量特征;
S2、确定标准特征向量
将雷达组网方式Ci下的标准雷达特征向量记为将雷达组网方式Ci下不同对抗条件时的标准通信流量特征向量记为/>参数n1、n2分别为选取的雷达特征参数的个数以及通信流量特征参数的个数,/>含义为第n个特征参数在第i种组网方式下的标准特征值;标准特征值由先验知识,以及设定的场景得到;
S3、计算特征参数与组网方式间的匹配度
特征参数的匹配度记为sin,sin表示第n个特征参数与组网方式Ci的匹配度,表示如下:
其中为第n个特征参数在第i种组网方式下的标准特征值,zin表示第n个特征参数的实测时的特征值;din_k为第n个特征参数在组网方式Ci下的匹配度计算函数,使用离散化函数din_k来构造匹配度sin,如下所示:
其中din_1≥din_2≥din_3且din_1,din_2,din_3均属于0至1间的小数,代表特征参数对组网方式的支持程度,sin的具体取值由每个特征参数对应的离散化函数以及标准特征值与实测特征值zin决定;
通过实测下的各特征参数的特征值zin以及步骤S2中给出的各特征参数标准特征值使用离散化函数din_k即可得出第n个特征参数对组网方式Ci的匹配度sin
S4、确定特征参数的权重系数
使用win表示特征参数判断权重,其表示第n个特征参数对雷达组网方式Ci匹配判断的重要程度,将各雷达特征参数所组成的权重向量记为将各通信流量特征参数所组成的权重向量记为/>且Wi_radar与Wi_com中所有权重系数之和等于1;权重向量由相关专家给出;
S5、计算特征向量与组网方式之间的匹配度
使用矢量和矢量/>分别表示选取的雷达特征参数与通信流量特征参数在组网方式Ci下的实测特征向量与标准特征向量之间的距离,具体表示如下:
结合专家给出的标准特征向量和/>利用特征向量的匹配度计算模型计算出雷达特征向量Zi_radar和通信流量特征向量Zi_com对雷达组网方式Ci的匹配度Si_radar和Si_com如下(5)、(6)两式所示,其中sin由式(2)给出;其中n1表示选取的雷达特征总个数,n2表示选取的通信流量特征总个数,参数M表示雷达组网方式种类的个数;
将步骤S4中给出的权重向量Wi_radar、Wi_com和(3)、(4)式得出的向量 分别带入式(5)和式(6)即可计算得出雷达特征向量和通信流量特征向量与组网方式Ci的匹配度Si_radar和Si_com
S6、使用D-S证据融合规则对雷达特征匹配度及通信流量特征匹配度进行信息融合
构建雷达组网方式识别的基本概率赋值函数BPAFm(A),表示对判断A的支持程度;
对于式(5)和式(6)中求得的匹配度Si_x,若Si_x>0,则代表了特征向量x对雷达组网方式Ci是支持的,支持的程度为Si_x;当Si_x≤0时,则代表了特征向量x对该组网方式Ci是不支持的,不支持的程度为Si_x,同样意味着特征向量x支持其他的组网方式,支持程度为Si_x+1∈[0,1];
令i=1,2…K,当K≤M时,Si_x≥0,当i=K+1,K+2,…,M时Si_x<0;
当p≤1时,mx(Θ)=1-p;
其中Θ为组网方式的识别框架,框架内包含所有待识别组网方式;建立如下BPFA,其中x表示雷达特征向量或通信流量特征向量,mx(Ci)表示特征向量x对组网方式Ci的支持程度:
否则mx(Θ)=0,有:
雷达特征和通信流量特征所使用的融合规则为D-S组合规则,该规则如下式(9)所示,其中A是组网方式识别框架Θ中的一个子集;m(A)表示现在已有的证据对子集A的一个支持程度;B和C分别为雷达组网方式识别框架下的非空子集,m1(B)、m2(C)分别表示特征向量1对B集合的支持程度和特征向量2对C集合的支持程度;其中K反映了证据m1和m2之间的冲突程度;
使用(7)式或(8)式分别计算出mradar(Ci)和mcom(Ci),再使用mradar(Ci)和mcom(Ci)替换式(9)中的m1(B)和m2(C),即可计算得出通信流量信息与雷达信息融合后对组网方式Ci的支持度,实现雷达组网方式识别。
CN202110907391.5A 2021-08-09 2021-08-09 一种基于通信流量信息辅助的雷达组网方式识别方法 Active CN113608211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110907391.5A CN113608211B (zh) 2021-08-09 2021-08-09 一种基于通信流量信息辅助的雷达组网方式识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110907391.5A CN113608211B (zh) 2021-08-09 2021-08-09 一种基于通信流量信息辅助的雷达组网方式识别方法

Publications (2)

Publication Number Publication Date
CN113608211A CN113608211A (zh) 2021-11-05
CN113608211B true CN113608211B (zh) 2023-09-05

Family

ID=78307630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110907391.5A Active CN113608211B (zh) 2021-08-09 2021-08-09 一种基于通信流量信息辅助的雷达组网方式识别方法

Country Status (1)

Country Link
CN (1) CN113608211B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018722A (zh) * 2012-10-15 2013-04-03 西安电子科技大学 利用组网雷达系统对抗欺骗式假目标的方法
CN106443598A (zh) * 2016-12-08 2017-02-22 中国人民解放军海军航空工程学院 基于卷积神经网络的雷达网协同航迹欺骗干扰鉴别方法
CN106526554A (zh) * 2016-11-11 2017-03-22 中国人民解放军海军航空工程学院 基于三门限延迟判别的长基线雷达网虚假航迹识别算法
CN107220409A (zh) * 2017-05-02 2017-09-29 哈尔滨工程大学 一种基于粒子机制免疫人群搜索的组网雷达布站方法
CN107871138A (zh) * 2017-11-01 2018-04-03 电子科技大学 一种基于改进d‑s证据理论的目标意图识别方法
CN109061577A (zh) * 2018-07-05 2018-12-21 西安电子科技大学 一种不同类型的遮盖式干扰和欺骗式干扰的识别方法
CN109633628A (zh) * 2019-01-07 2019-04-16 西安电子科技大学 基于分布式组网雷达数据融合的抗rgpo干扰的方法
CN109633624A (zh) * 2019-01-07 2019-04-16 西安电子科技大学 基于滤波数据处理的rgpo干扰鉴别方法
CN110954872A (zh) * 2019-12-17 2020-04-03 西安电子科技大学 基于多层感知机mlp的相控阵雷达工作模式识别方法
CN111412787A (zh) * 2020-03-26 2020-07-14 湖南科技大学 基于LoRa动态自组网的雷场快速探测系统
CN112182062A (zh) * 2020-09-15 2021-01-05 中国人民解放军63660部队 一种多目标雷达组网测量数据匹配与编目方法
CN112799028A (zh) * 2020-12-14 2021-05-14 中电科仪器仪表有限公司 一种基于rcs起伏统计特性差异的虚假目标识别方法
CN112924943A (zh) * 2021-01-29 2021-06-08 中国人民解放军海军航空大学 协方差阵-位置偏差联合检验的虚假航迹鉴别方法及系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018722A (zh) * 2012-10-15 2013-04-03 西安电子科技大学 利用组网雷达系统对抗欺骗式假目标的方法
CN106526554A (zh) * 2016-11-11 2017-03-22 中国人民解放军海军航空工程学院 基于三门限延迟判别的长基线雷达网虚假航迹识别算法
CN106443598A (zh) * 2016-12-08 2017-02-22 中国人民解放军海军航空工程学院 基于卷积神经网络的雷达网协同航迹欺骗干扰鉴别方法
CN107220409A (zh) * 2017-05-02 2017-09-29 哈尔滨工程大学 一种基于粒子机制免疫人群搜索的组网雷达布站方法
CN107871138A (zh) * 2017-11-01 2018-04-03 电子科技大学 一种基于改进d‑s证据理论的目标意图识别方法
CN109061577A (zh) * 2018-07-05 2018-12-21 西安电子科技大学 一种不同类型的遮盖式干扰和欺骗式干扰的识别方法
CN109633628A (zh) * 2019-01-07 2019-04-16 西安电子科技大学 基于分布式组网雷达数据融合的抗rgpo干扰的方法
CN109633624A (zh) * 2019-01-07 2019-04-16 西安电子科技大学 基于滤波数据处理的rgpo干扰鉴别方法
CN110954872A (zh) * 2019-12-17 2020-04-03 西安电子科技大学 基于多层感知机mlp的相控阵雷达工作模式识别方法
CN111412787A (zh) * 2020-03-26 2020-07-14 湖南科技大学 基于LoRa动态自组网的雷场快速探测系统
CN112182062A (zh) * 2020-09-15 2021-01-05 中国人民解放军63660部队 一种多目标雷达组网测量数据匹配与编目方法
CN112799028A (zh) * 2020-12-14 2021-05-14 中电科仪器仪表有限公司 一种基于rcs起伏统计特性差异的虚假目标识别方法
CN112924943A (zh) * 2021-01-29 2021-06-08 中国人民解放军海军航空大学 协方差阵-位置偏差联合检验的虚假航迹鉴别方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"雷达组网电子干扰技术在航迹欺骗中的应用";蒋雪琴 等;《舰船科学技术》;第38卷(第3A期);第106-108页 *

Also Published As

Publication number Publication date
CN113608211A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN106680780B (zh) 频谱共享环境下基于射频隐身的雷达最优波形设计方法
CN109195214B (zh) 一种基于遗传算法的noma功率分配方法
CN110798314B (zh) 一种基于随机森林算法的量子密钥分发参数优化方法
CN107426212B (zh) 一种认知无线网络中基于代理的入侵检测方法
US9668233B1 (en) Wireless communication network with distributed device location determination
CN111954219B (zh) 一种无人机的欺骗攻击的检测方法、系统及装置
CN113038474B (zh) 一种基于信任评估的低功耗无线传感器网络路由控制方法
CN112135344B (zh) 一种基于csi和dcnn的无设备目标定位方法
CN110649982B (zh) 基于次用户节点选择的双阈值能量检测方法
CN113179509B (zh) 基于WiFi的自组网方法、装置、存储介质及无线节点
CN115278520A (zh) 一种基于指纹库迁移重构的5g室内定位方法
US20210067253A1 (en) Connecting ultrasound-incapable client devices to collaboration devices
CN113608211B (zh) 一种基于通信流量信息辅助的雷达组网方式识别方法
CN111417124A (zh) 在认知无线网络环境下频谱感知的方法
Slimane et al. A light boosting-based ml model for detecting deceptive jamming attacks on uavs
CN116405503A (zh) 一种无人机集群网络拓扑推断方法
CN108390735B (zh) 一种信息素驱动的分布式协同宽带频谱感知方法
CN113420791B (zh) 边缘网络设备接入控制方法、装置及终端设备
CN111901137A (zh) 一种利用蜜罐告警日志挖掘多步攻击场景的方法
CN112836540B (zh) 大规模匿名rfid系统中概率性克隆攻击的检测方法
CN109787996B (zh) 雾计算中一种基于dql算法的伪装攻击检测方法
CN109995593A (zh) Iobt关键节点设定与扩散度均衡方法
Zhang et al. Fine‐grained CSI fingerprinting for indoor localisation using convolutional neural network
WO2024120444A1 (zh) 模型监督方法、装置、终端、网络侧设备及可读存储介质
CN116341691B (zh) 一种去中心化联邦学习系统、方法、存储介质及计算设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant