CN113594360A - 一种基于无机分子晶体的忆阻器件、制备方法及其应用 - Google Patents

一种基于无机分子晶体的忆阻器件、制备方法及其应用 Download PDF

Info

Publication number
CN113594360A
CN113594360A CN202110812068.XA CN202110812068A CN113594360A CN 113594360 A CN113594360 A CN 113594360A CN 202110812068 A CN202110812068 A CN 202110812068A CN 113594360 A CN113594360 A CN 113594360A
Authority
CN
China
Prior art keywords
inorganic molecular
active metal
molecular crystal
electrode layer
bottom electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110812068.XA
Other languages
English (en)
Other versions
CN113594360B (zh
Inventor
李渊
邵解烦
冯昕
翟天佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110812068.XA priority Critical patent/CN113594360B/zh
Publication of CN113594360A publication Critical patent/CN113594360A/zh
Application granted granted Critical
Publication of CN113594360B publication Critical patent/CN113594360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种基于无机分子晶体的忆阻器件、制备方法及其应用。所述忆阻器件包括:自下而上依次排列的衬底、底电极层、介质层、活性金属层和顶电极层,其中所述介质层包括无机分子晶体薄膜、活性金属掺杂的无机分子晶体薄膜和二维无机分子晶体单晶中的一种。本发明中首次将无机分子晶体材料应用到忆阻器件中,填补了无机分子晶体在忆阻器研究中的空缺。本发明的忆阻器以无机分子晶体作为介质层,并通过活性金属扩散形成导电细丝,符合电化学金属化阻变机制。本发明的忆阻器具有置位电压低、功耗低、开关比大等优点。

Description

一种基于无机分子晶体的忆阻器件、制备方法及其应用
技术领域
本发明属于半导体器件技术领域,更具体地,涉及一种基于无机分子晶体的忆阻器件、制备方法及其应用。
背景技术
忆阻器是除常用的电容、电感、电阻以外第四种无源电子电路元件,于1971年由蔡少棠基于对称性理论预测提出。其特性在于电阻并非固定不变,而是与通过的电荷相关。除此之外,忆阻器具有可扩展性、开关阻态多、开关速度快、阻态保持时间长、功耗低等特点,这使其可以在集成电路中展示丰富的电路功能,在未来数据存储、开发人工突触以实现神经形态计算等领域有很大的应用潜力。
自忆阻器的概念被提出以来,直到2008年,惠普实验室报道了首个以Pt/TiO2/Pt为结构的忆阻器器件。自此,忆阻器引起了全球相关研究人员极大关注,各种各样的材料体系中都发现了阻变特性,并提出了多种电阻切换机制。目前,丝状切换机制得到了较多的认可,它包括电化学金属化、价变机制、热化学机制三类。其中电化学金属化是基于活性金属氧化成金属离子的电化学反应和金属离子的物理迁移。当在顶电极上施加正电压时,顶电极层或活性金属层中的电化学活性金属被氧化成金属离子,并迁移至惰性底电极处被还原成金属原子。随着被还原的金属原子不断累积,最终在顶电极和底电极之间形成一个金属导电细丝,该金属导电细丝极大提高了器件的电导,将器件从高阻态切换到低阻态,实现器件的置位(SET)过程。器件的复位(RESET)过程与之类似,在顶电极上施加负电压,金属离子将回到顶电极层或活性金属层中,导致金属导电细丝破裂,使器件电导降低,重新回到高阻态。
目前,传统氧化物材料(如TiO2、SiO2等)、以二维材料为代表的新材料(如六方氮化硼、二维过渡金属硫族化合物等)等是主要研究对象;其中,将二维材料应用到忆阻器中停留在原子晶体的范围。因此,开发一种更理想的材料以应用到忆阻器中,进一步提升忆阻器的性能是目前研发人员关注的问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于无机分子晶体的忆阻器件、制备方法及其应用,其目的在于以无机分子晶体作为介质层,通过活性金属扩散形成导电细丝,活性金属离子更易于从分子间扩散通过,金属导电细丝更容易形成或断开,具有置位电压低、功耗低、开关比大等优点。
为实现上述目的,按照本发明的一个方面,提供了一种基于无机分子晶体的忆阻器件,包括:自下而上依次排列的衬底、底电极层、介质层、活性金属层和顶电极层,其中所述介质层包括无机分子晶体薄膜、活性金属掺杂的无机分子晶体薄膜和二维无机分子晶体单晶中的一种。
优选地,所述无机分子晶体薄膜和二维无机分子晶体单晶的材料包括α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3和TeCl4中的一种。其中Sb2O3在α相时为分子晶体,Bi2O3在α相时为分子晶体。
优选地,所述活性金属掺杂的无机分子晶体薄膜包括在α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3或TeCl4中掺杂活性金属Ag、Cu或Ni;该活性金属的掺杂量为10%~20%,所述掺杂量为活性金属与无机分子晶体薄膜中所有原子的原子比。
优选地,所述介质层的厚度为10-500nm。
优选地,所述活性金属层包括Ag、Cu或Ni,所述活性金属层的厚度为10-100nm;所述底电极层包括Au或Pt,所述底电极层的厚度为10-500nm;所述顶电极层包括Au、Pt、Ag、Cu、Ni或ITO,所述顶电极层的厚度为50-200nm。
按照本发明的另一个方面,提供了一种忆阻器件的应用,用于功耗低于40nW的领域,所述功耗为PSET通过下式表示PSET=VSET×ISET,其中,VSET为忆阻器件从高阻态切换至低阻态时,高阻态的电压值,ISET为忆阻器件从高阻态切换至低阻态时,高阻态的电流值。
按照本发明的另一个方面,提供了一种基于无机分子晶体的忆阻器件的制备方法,所述方法包括:
(1)在衬底表面沉积底电极层,在底电极层上形成无机分子晶体薄膜、活性金属掺杂的无机分子晶体薄膜或二维无机分子晶体单晶,得到介质层;
(2)在所述介质层上依次形成活性金属层和顶电极层,得到忆阻器件。
优选地,所述步骤(1)中在底电极层上形成无机分子晶体薄膜包括:采用镀膜的方法在底电极层上形成无机分子晶体薄膜;所述在底电极层上形成二维无机分子晶体单晶:采用化学气相沉积法得到二维无机分子晶体单晶薄片后并将薄片转移至底电极上,形成二维无机分子晶体单晶;所述在底电极层上形成活性金属掺杂的无机分子晶体薄膜包括:采用共溅射的方法在底电极层上共沉积无机分子晶体材料和活性金属材料形成活性金属掺杂的无机分子晶体薄膜。
优选地,所述无机分子晶体薄膜和二维无机分子晶体单晶的材料包括α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3和TeCl4中的一种;所述活性金属掺杂的无机分子晶体薄膜包括在α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3或TeCl4中掺杂活性金属Ag、Cu或Ni;该活性金属的掺杂量为10%~20%,所述掺杂量为活性金属与无机分子晶体薄膜中所有原子的原子比。
优选地,所述底电极层通过采用电子束蒸发法在衬底上沉积一层Au薄膜或Pt薄膜得到;所述活性金属层通过采用电子束蒸发法在介质层上沉积活性金属材料得到;所述顶电极层通过采用电子束蒸发法在活性金属层上沉积Au、Pt、Ag、Cu、Ni、ITO中的一种得到。总体而言,通过本发明所构思的以上技术方案与现有技术相比,至少能够取得下列有益效果。
(1)本发明中首次将无机分子晶体材料应用到忆阻器件中,填补了无机分子晶体在忆阻器研究中的空缺。本发明以无机分子晶体作为介质层,并通过活性金属扩散形成导电细丝,构筑了符合电化学金属化阻变机制的忆阻器。与常见忆阻器中的原子晶体介质层相比,本发明的介质层为无机分子晶体,由分子团簇依靠范德华力结合而成,活性金属离子更易于从分子间扩散通过,金属导电细丝更容易形成或断开。其中,二维无机分子晶体还具有量子隧穿效应、分子级的均匀厚度、稳定性好、结构简单等优点,且分子与分子间同样由范德华力结合,有利于离子在分子间扩散通过,这为丝状切换机制下的忆阻器研究提供了便利和机会。本发明的忆阻器具有置位电压低、功耗低、开关比大等优点。
(2)本发明提供的忆阻器件表现出非易失双极性阻变特性,置位时的功耗低,具有在数据存储和低功耗领域应用的潜力。本发明中控制了介质层的厚度,在该优化的厚度10-500nm下,减小介质层厚度将有利于提升器件性能,但不是越薄越好,对于本发明中的忆阻器,其开关机制符合丝状切换机制,介质层厚度过薄将影响活性金属的迁移和导电细丝的形成,对忆阻器的稳定性和开关比等性能造成影响。
(3)本发明提供的忆阻器件制备方法简单易行,有利于大规模生产应用。
附图说明
图1为本发明提供的忆阻器件结构示意图;
图2为本发明提供的忆阻器件阵列示意图;
图3中(a)为本发明制备的忆阻器件在高阻态时的垂直截面示意图;
图3中(b)为本发明制备的忆阻器件在中间阻态时的垂直截面示意图;图3中(c)为本发明制备的忆阻器件在中间阻态时的垂直截面示意图;图3中(d)为本发明制备的忆阻器件在低阻态时的垂直截面示意图;
图4为实施例1中基于Sb2O3分子晶体薄膜的忆阻器的I-V特性图;
图5为实施例2中基于Sb2O3分子晶体薄膜的忆阻器的阈值电阻切换特性曲线;
图6为实施例2中基于Sb2O3分子晶体薄膜的忆阻器的双极性阻变特性曲线;
图7为实施例1与实施例2中基于Sb2O3分子晶体薄膜的忆阻器与其他基于金属导电细丝的忆阻器的介质层厚度和置位电压对比结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
本实施例1提供一种忆阻器件,其结构如图1和2所示,其中介质层为Sb2O3分子晶体薄膜。
本实施例1忆阻器件的制备方法包括以下步骤:
(1)采用表面洁净的硅片作为衬底,采用电子束蒸发法,在衬底上沉积一层Au作为底电极,Au薄膜的厚度为90nm。工艺条件为:以Au作为蒸发源,以氮气作为蒸发气氛,蒸发速率为
Figure BDA0003168741170000051
腔室压力小于5×10-6Torr。
(2)采用热蒸镀,在底电极上沉积一层Sb2O3作为介质层,Sb2O3薄膜的厚度为40nm。工艺条件为:以Sb2O3作为蒸发源,以氮气作为蒸发气氛,蒸发速率为
Figure BDA0003168741170000052
腔室压力小于5×10-6Torr。
(3)利用激光直写的方法在Sb2O3介质层上制作出电极图案。所用的激光直写胶可以为AZ5214型光刻胶,旋胶后在95℃的温度下烘胶90s。曝光完成后,在显影液TMAH2.3.8%中浸泡35-50s,再使用去离子水洗净并吹干。
(4)采用电子束蒸发法,在步骤(3)制作出的图案上沉积一层Ag作为活性金属层,Ag薄膜的厚度为20nm。工艺条件为:以Ag作为蒸发源,以氮气作为蒸发气氛,蒸发速率为
Figure BDA0003168741170000061
腔室压力小于5×10-6Torr。
(5)采用电子束蒸发法,在Ag薄膜上沉积一层Au作为顶电极,Au薄膜的厚度为100nm。工艺条件为:以Au作为蒸发源,以氮气作为蒸发气氛,蒸发速率为
Figure BDA0003168741170000062
腔室压力小于5×10-6Torr。将沉积有顶电极的样品放入丙酮中,并将丙酮加热至60-70℃,浸泡20min完成去胶,得到所述忆阻器件。
结果分析:
本实施例1中基于Sb2O3分子晶体薄膜忆阻器的I-V特性曲线如图4所示,在0.5mA的限流下,器件表现出典型的双极性阻变特性,且具有较低的置位电压(0.28V)和复位电压(-0.20V),器件的开关比(RON/ROFF)大于105,高低阻态区分明显,有利于在数据存储方面的应用。通过计算,该器件置位时功耗仅为6.11nW(PSET=VSET×ISET),远低于常见原子晶体忆阻器的置位功耗,具有在低功耗领域应用的潜力。该器件的开关机制示意图如图3中(a)-(d)所示。
实施例2
本实施例2采用与实施例1相同的步骤制备忆阻器件,与实施例1的不同之处在于,所述介质层Sb2O3薄膜的厚度为200nm,Ag薄膜的厚度为50nm。
结果分析:
本实施例2中基于Sb2O3分子晶体薄膜忆阻器表现出阈值电阻切换和双极性电阻切换这两种不同的阻态变化。其中阈值电阻切换特性曲线如图5所示,在较低的限制电流下(ICC=10μA),器件表现出典型的阈值电阻切换特性,正向电压扫描过程中的阈值电压分别为0.25V和0.09V,反向电压扫描过程中的阈值电压分别为-0.55V和-0.19V,对于介质层厚度为200nm的忆阻器而言,该切换电压是非常低的。器件的双极性阻变特性曲线如图6所示,在100μA的限流下,器件表现出非易失双极性阻变特性,其置位电压为0.80V,复位电压为-0.54V,开关比(RON/ROFF)大于104,且置位时的功耗仅为38.90nW(PSET=VSET×ISET),具有在数据存储和低功耗领域应用的潜力。该器件的开关机制示意图如图3所示。
将本实施例2、实施例1中的器件与其他利用金属导电细丝实现阻态变化的忆阻器的功能层厚度及置位电压进行比较,对比结果如图7所示,发现本实施例2与实施例1中所述器件在低置位电压方面具有显著优势,低于绝大部分近似介质层厚度的忆阻器。本实施例2中的器件在置位电压和置位功耗方面稍逊于实施例1中的器件,说明一定程度上减小介质层厚度将有利于提升器件性能,但不是越薄越好,对于本发明中的忆阻器,其开关机制符合丝状切换机制,介质层厚度过薄将影响活性金属的迁移和导电细丝的形成,对忆阻器的稳定性和开关比等性能造成影响。
实施例3
本实施例3采用与实施例1相同的步骤制备忆阻器件,与实施例1的不同之处在于,所述介质层为采用共溅射方法沉积形成的由活性金属掺杂的无机分子晶体薄膜,其中掺杂的活性金属为Ag,选用的无机分子晶体材料为Sb2O3,其中活性金属Ag的掺杂量为10%(原子比)。
实施例4
本实施例4提供的忆阻器的介质层为二维Sb2O3单晶,制备方法包括以下步骤:
(1)准备表面洁净的硅片作为衬底,采用电子束蒸发法,在衬底上沉积一层Au作为底电极,Au薄膜的厚度为90nm。工艺条件为:以Au作为蒸发源,以氮气作为蒸发气氛,蒸发速率为
Figure BDA0003168741170000081
腔室压力小于5×10-6Torr。
(2)通过范德华外延法在三区CVD管式炉中生长二维Sb2O3单晶薄片。将67mg Se、40mg Sb2O3和新鲜的云母片分别放置在三区CVD管式炉的1区、2区和3区,其中1区的温度为280℃、2区的温度为650℃、3区的温度为400℃。云母位于距离2区中心约22-26cm处。采用氩气作为载气,流量为80sccm,并在环境压力下维持合成过程20min。然后在氩气流作用下将炉子冷却至室温,得到二维Sb2O3单晶薄片。
(3)将PMMA旋涂到步骤(2)得到的样品上,旋涂转速3000rpm,持续时间1min,然后在150℃温度下烘烤5min。将这个过程重复三遍。接着将该样品放入50ml去离子水中,并在190℃下加热1.5h。然后用镊子将带有二维Sb2O3单晶薄片的PMMA薄膜从云母衬底上剥落,并附着在步骤(1)中得到的镀有Au底电极的硅片上。最后,将该样品放在100℃下烘烤5min,然后将样品浸泡在丙酮中,完全去除PMMA,得到转移好的二维Sb2O3单晶薄片介质层。
(4)利用激光直写的方法在Sb2O3介质层上制作出电极图案。所用的激光直写胶可以为AZ5214型光刻胶,旋胶后在95℃的温度下烘胶90s。曝光完成后,在显影液TMAH2.3.8%中浸泡35-50s,再使用去离子水洗净并吹干。
(5)采用电子束蒸发法,在步骤(4)制作出的图案上沉积一层Ag作为活性金属层,Ag薄膜的厚度为50nm。工艺条件为:以Ag作为蒸发源,以氮气作为蒸发气氛,蒸发速率为
Figure BDA0003168741170000082
腔室压力小于5×10-6Torr。
(6)采用电子束蒸发法,在导电金属层Ag薄膜上沉积一层Au作为顶电极,Au薄膜的厚度为100nm。工艺条件为:以Au作为蒸发源,以氮气作为蒸发气氛,蒸发速率为
Figure BDA0003168741170000083
腔室压力小于5×10-6Torr。将沉积有顶电极的样品放入丙酮中,并将丙酮加热至60-70℃,浸泡20min完成去胶,得到忆阻器件。
实施例5
本实施例5中,除了介质层为通过蒸镀方法沉积形成的Bi2O3薄膜,其他具体实施方式与上述实例1相同。
实施例6
本实施例6中,除了介质层为通过CVD方法沉积形成的P4Se3单晶薄片,其他具体实施方式与上述实例4相同。
实施例7-14
实施例7-14采用与实施例1相同的方式制备忆阻器件,不同之处在于,介质层不同,具体请参见表1。
表1不同无机分子晶体薄膜作为介质层
无机分子晶体薄膜 介质层厚度
实施例7 SbN<sub>9</sub> 10nm
实施例8 P<sub>4</sub>Se<sub>3</sub> 500nm
实施例9 S<sub>8</sub> 400nm
实施例10 HgI<sub>2</sub> 300nm
实施例11 InI<sub>3</sub> 200nm
实施例12 GeI<sub>4</sub> 100nm
实施例13 SbI<sub>3</sub> 90nm
实施例14 TeCl<sub>4</sub> 50nm
实施例15-22
实施例15-22采用与实施例4相同的方式制备忆阻器件,不同之处在于,介质层不同,具体请参见表2。
表2不同二维无机分子晶体单晶作为介质层
Figure BDA0003168741170000091
Figure BDA0003168741170000101
实施例23-30
实施例23-30采用与实施例3相同的方式制备忆阻器件,不同之处在于,介质层不同,具体请参见表3。
表3不同导电金属掺杂的无机分子晶体薄膜作为介质层
Figure BDA0003168741170000102
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于无机分子晶体的忆阻器件,其特征在于,包括:自下而上依次排列的衬底、底电极层、介质层、活性金属层和顶电极层,其中所述介质层包括无机分子晶体薄膜、活性金属掺杂的无机分子晶体薄膜和二维无机分子晶体单晶中的一种。
2.如权利要求1所述的忆阻器件,其特征在于,所述无机分子晶体薄膜和二维无机分子晶体单晶的材料包括α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3和TeCl4中的一种。
3.如权利要求1所述的忆阻器件,其特征在于,所述活性金属掺杂的无机分子晶体薄膜包括在α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3或TeCl4中掺杂活性金属Ag、Cu或Ni;该活性金属的掺杂量为10%~20%,所述掺杂量为活性金属与无机分子晶体薄膜中所有原子的原子比。
4.如权利要求1所述的忆阻器件,其特征在于,所述介质层的厚度为10-500nm。
5.如权利要求1所述的忆阻器件,其特征在于,所述活性金属层包括Ag、Cu或Ni,所述活性金属层的厚度为10-100nm;所述底电极层包括Au或Pt,所述底电极层的厚度为10-500nm;所述顶电极层包括Au、Pt、Ag、Cu、Ni或ITO,所述顶电极层的厚度为50-200nm。
6.一种权利要求1-5任一项所述的忆阻器件的应用,其特征在于,用于功耗低于40nW的领域,所述功耗PSET通过下式表示:PSET=VSET×ISET,VSET为忆阻器件从高阻态切换至低阻态时,高阻态的电压值,ISET为忆阻器件从高阻态切换至低阻态时,高阻态的电流值。
7.一种权利要求1-5任一项所述的基于无机分子晶体的忆阻器件的制备方法,其特征在于,所述方法包括:
(1)在衬底表面沉积底电极层,在底电极层上形成无机分子晶体薄膜、活性金属掺杂的无机分子晶体薄膜或二维无机分子晶体单晶,得到介质层;
(2)在所述介质层上依次形成活性金属层和顶电极层,得到忆阻器件。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤(1)中在底电极层上形成无机分子晶体薄膜包括:采用镀膜的方法在底电极层上形成无机分子晶体薄膜;所述在底电极层上形成二维无机分子晶体单晶:采用化学气相沉积法得到二维无机分子晶体单晶薄片后并将薄片转移至底电极上,形成二维无机分子晶体单晶;所述在底电极层上形成活性金属掺杂的无机分子晶体薄膜包括:采用共溅射的方法在底电极层上共沉积无机分子晶体材料和活性金属材料形成活性金属掺杂的无机分子晶体薄膜。
9.根据权利要求7或8所述的制备方法,其特征在于,所述无机分子晶体薄膜和二维无机分子晶体单晶的材料包括α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3和TeCl4中的一种;所述活性金属掺杂的无机分子晶体薄膜包括在α-Sb2O3、α-Bi2O3、SbN9、P4Se3、S8、HgI2、InI3、GeI4、SbI3或TeCl4中掺杂活性金属Ag、Cu或Ni;该活性金属的掺杂量为10%~20%,所述掺杂量为活性金属与无机分子晶体薄膜中所有原子的原子比。
10.根据权利要求7所述的制备方法,其特征在于,所述底电极层通过采用电子束蒸发法在衬底上沉积一层Au薄膜或Pt薄膜得到;所述活性金属层通过采用电子束蒸发法在介质层上沉积活性金属材料得到;所述顶电极层通过采用电子束蒸发法在活性金属层上沉积Au、Pt、Ag、Cu、Ni、ITO中的一种得到。
CN202110812068.XA 2021-07-19 2021-07-19 一种基于无机分子晶体的忆阻器件、制备方法及其应用 Active CN113594360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110812068.XA CN113594360B (zh) 2021-07-19 2021-07-19 一种基于无机分子晶体的忆阻器件、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110812068.XA CN113594360B (zh) 2021-07-19 2021-07-19 一种基于无机分子晶体的忆阻器件、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113594360A true CN113594360A (zh) 2021-11-02
CN113594360B CN113594360B (zh) 2024-08-06

Family

ID=78247911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110812068.XA Active CN113594360B (zh) 2021-07-19 2021-07-19 一种基于无机分子晶体的忆阻器件、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113594360B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161761A (zh) * 2022-06-27 2022-10-11 华中科技大学 一种晶圆级二维氧化锑单晶薄膜的批量化制备方法及产品
CN115207214A (zh) * 2022-07-14 2022-10-18 东北师范大学 一种基于非晶碳的低电流热稳定互补型忆阻器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098932A (zh) * 2016-06-16 2016-11-09 北京大学 一种线性缓变忆阻器及其制备方法
DE102017005884A1 (de) * 2016-07-07 2018-01-11 Merck Patent Gmbh Elektronisches Schaltelement
CN109148683A (zh) * 2018-08-07 2019-01-04 北京航空航天大学 一种基于黑磷和黑磷氧化物的范德华异质结忆阻器
CN110284191A (zh) * 2019-07-26 2019-09-27 华中科技大学 一种二维无机分子晶体材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098932A (zh) * 2016-06-16 2016-11-09 北京大学 一种线性缓变忆阻器及其制备方法
DE102017005884A1 (de) * 2016-07-07 2018-01-11 Merck Patent Gmbh Elektronisches Schaltelement
CN109148683A (zh) * 2018-08-07 2019-01-04 北京航空航天大学 一种基于黑磷和黑磷氧化物的范德华异质结忆阻器
CN110284191A (zh) * 2019-07-26 2019-09-27 华中科技大学 一种二维无机分子晶体材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161761A (zh) * 2022-06-27 2022-10-11 华中科技大学 一种晶圆级二维氧化锑单晶薄膜的批量化制备方法及产品
CN115207214A (zh) * 2022-07-14 2022-10-18 东北师范大学 一种基于非晶碳的低电流热稳定互补型忆阻器及其制备方法
CN115207214B (zh) * 2022-07-14 2024-02-09 东北师范大学 一种基于非晶碳的低电流热稳定互补型忆阻器及其制备方法

Also Published As

Publication number Publication date
CN113594360B (zh) 2024-08-06

Similar Documents

Publication Publication Date Title
KR100693409B1 (ko) 산화막의 저항변화를 이용한 비휘발성 기억소자 및 그제조방법
EP3381066B1 (en) A memristor device and a method of fabrication thereof
US20080007988A1 (en) Non-volatile memory device including variable resistance material and method of fabricating the same
CN113594360B (zh) 一种基于无机分子晶体的忆阻器件、制备方法及其应用
CN113285020B (zh) 一种单通道忆阻器及其制备方法
JP2018538701A5 (zh)
CN108987567A (zh) 相变超晶格薄膜、相变存储器单元及其制备方法
JP5525090B2 (ja) 多元系ナノワイヤーの製造方法
CN108321294B (zh) 一种存储机制可调的薄膜阻变存储器及其制备方法
WO2022134211A1 (zh) 一种基于纳米电流通道的相变存储器
He et al. Interconversion between bipolar and complementary behavior in nanoscale resistive switching devices
CN108666416B (zh) 相变存储器单元及其制备方法
CN109728162A (zh) 相变薄膜、相变存储单元及其制备方法及相变存储器
RU2706207C1 (ru) Способ изготовления мемристора с наноконцентраторами электрического поля
CN113078262A (zh) 一种具有类超晶格材料功能层的忆阻器及其制备方法
Zhang et al. Strongly correlated nickelate: Recent progress of synthesis and applications in artificial intelligence
CN106887519B (zh) 一种实现多值存储的阻变存储器的制备方法
CN115084368A (zh) 一种基于导电丝电极的相变存储器及其制备方法
KR20100137608A (ko) 비휘발성 저항 변화 메모리 소자
CN117529222B (zh) 一种导电丝形成区域可控的拓扑相变忆阻器及其制备方法
CN113921711B (zh) 一种岛状低阻通路忆阻功能层材料、忆阻器及制备方法
Chen et al. Gradual RESET modulation by intentionally oxidized titanium oxide for multilayer-hBN RRAM
CN116806117B (zh) 基于直流偏压调控的氧化物忆阻器的制备方法
CN219834828U (zh) 双功能层忆阻器
Li et al. Memristors Based on 2D Semiconducting Materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant