CN113593992A - 一种超低铬含量CuW-CuCr整体电触头及其制备方法 - Google Patents

一种超低铬含量CuW-CuCr整体电触头及其制备方法 Download PDF

Info

Publication number
CN113593992A
CN113593992A CN202110778766.2A CN202110778766A CN113593992A CN 113593992 A CN113593992 A CN 113593992A CN 202110778766 A CN202110778766 A CN 202110778766A CN 113593992 A CN113593992 A CN 113593992A
Authority
CN
China
Prior art keywords
cucr
cuw
tungsten
powder
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110778766.2A
Other languages
English (en)
Other versions
CN113593992B (zh
Inventor
周兴
康迪
赵俊
周宁
杨瑞
刘萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Sirui Advanced Materials Co Ltd
Original Assignee
Shaanxi Sirui Advanced Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Sirui Advanced Materials Co Ltd filed Critical Shaanxi Sirui Advanced Materials Co Ltd
Priority to CN202110778766.2A priority Critical patent/CN113593992B/zh
Publication of CN113593992A publication Critical patent/CN113593992A/zh
Application granted granted Critical
Publication of CN113593992B publication Critical patent/CN113593992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/04Contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices

Abstract

本发明公开了一种超低铬含量CuW‑CuCr整体电触头及其制备方法,电触头包括CuW耐弧端与CuCr导电端,CuW耐弧端中W的质量含量为50‑85%,CuCr导电端由纯铜和CuCr中间合金熔融而成,其中,Cr的质量含量为CuCr导电端的0.05‑0.2%。制备方法包括以下步骤:S1预制钨坯块;S2预制CuCr中间合金;S3整体烧结熔渗:将预制的钨坯块放入真空烧结炉中,再放入纯铜块和预制的CuCr中间合金,在真空或气氛保护条件下加温熔渗1‑6h,加热温度为1250‑1400℃,得到CuW‑CuCr合金;S4固溶、时效处理。本发明的超低铬含量CuW‑CuCr整体电触头具有较高的电导率和硬度,CuW耐弧端与CuCr导电端具有较高的抗拉强度。

Description

一种超低铬含量CuW-CuCr整体电触头及其制备方法
技术领域
本发明涉及铜合金电触头技术领域,具体是涉及一种超低铬含量CuW-CuCr整体电触头及其制备方法。
背景技术
铜钨合金是铜和钨组成的合金,铜钨电触头由于综合了钨的高熔点、高硬度、良好的抗电弧烧蚀能力和铜良好的导电性,可承受高温和高应力,因此作为高压断路器触头材料,在大容量油及空气断路器、SF6断路器上得到使用。高压电器开关体积小,易于维护,使用范围广,能在潮湿,易燃易爆及腐蚀的环境中使用,因此要求电触头需要耐电弧烧蚀,抗熔焊,截止电流小,含气量少,热电子发射量低等。
整体电触头是由耐弧端(CuW端)与导电端(Al、Cu、CuCr、CuCrZr等)通过烧结、焊接等方法连接成一体的高压电器用电触头元件。目前,制备整体电触头的方法有:钎焊、整体烧结熔渗法、真空电子束焊接工艺、摩擦焊接工艺等。根据材质不同、形状设计不同采用合适的制备工艺。
针对异性零件的CuW/纯铜材质,如触指、触片等,一般采用整体烧结熔渗法。整体烧结熔渗法在铜熔点之上进行,硬态纯铜在整体烧结熔渗过程中铜重熔,硬态铜变为软态铜,硬度、强度降低。CuW/纯铜整体烧结熔渗后硬度、强度降低,硬度40-50HB,CuW/纯铜抗拉强度<160MPa。
一般提升纯铜硬度的方式为冷挤压,但是冷挤压需要专用模具、挤压机、且需要对CuW与Cu的结合位置进行保护、防止大尺寸变形造成结合面撕裂,冷挤压工艺相对复杂、成本高且结合面位置硬度提升有限。
专利CN101699591B公开了一种铜钨/铜合金整体触头及其制备方法,该铜钨/铜合金整体触头,包括触头部分和导电杆部分,所述触头部分沿头部到尾部的钨含量依次降低;其制备方法中,首先采用湿法机械混粉,制备不同钨含量的铜钨颗粒,然后按钨的重量含量从高到底的顺序依次放入压制模具型腔内进行压制成型,再将压制好的生坯放入石墨舟中在氢气气氛烧结炉中进行烧结熔渗,制得触头部分的铜钨合金;最后,铜钨合金的低钨含量端与铜导电杆部分或铜合金导电杆部分,采用烧结法、电子束焊接法或者扩散焊接法连接为一体烧结连接,制得铜钨/铜合金整体触头,采用烧结法连接铜钨合金与导电杆部分时,可与制造铜钨合金的烧结熔渗过程并为一起完成,减少生产步骤,节约成本。但是,对于导电杆部分的铜合金成分含量没有进行限定,使得导电杆部分的电导率、硬度以及与触头端的结合程度无法进行合理预测,因此可能造成电触头性能受到影响。
发明内容
针对上述存在的问题,本发明提供了一种超低铬含量CuW-CuCr整体电触头及其制备方法。
本发明的技术方案是:
一种超低铬含量CuW-CuCr整体电触头,所述电触头包括CuW耐弧端与CuCr导电端,所述CuW耐弧端中W的质量含量为50-85%,余量为铜及不可避免的杂质,Cr的质量含量为CuCr导电端的0.05-0.2%。
进一步地,所述CuCr导电端由纯铜和CuCr中间合金熔融而成,所述CuCr中间合金中Cr的质量含量为0.5-50%,通过调节CuCr中间合金的质量以及Cr的质量从而调节CuW-CuCr整体电触头中的铬含量。
如上述一种超低铬含量CuW-CuCr整体电触头的制备方法,包括以下步骤:
S1预制钨坯块:称取钨粉进行预处理,将预处理后的钨粉压制成密度为6-13.5g/cm3的钨坯块;
S2预制CuCr中间合金:称取铜粉和铬粉混合后使用热等静压得到CuCr中间合金;
S3整体烧结熔渗:将预制的钨坯块放入真空烧结炉中,再放入纯铜块和预制的CuCr中间合金,在真空或气氛保护条件下加温熔渗1-6h,加热温度为1250-1400℃,得到CuW-CuCr合金;
S4固溶、时效处理:固溶温度为950-1000℃,固溶时间为1-2h,时效温度为400-500℃,时效时间为2-5h,得到CuW-CuCr整体电触头。
进一步地,所述步骤S1中钨粉的粒径为1-10μm,所述预处理步骤为:将钨粉与石墨烯混合,石墨烯的质量为钨粉的0.05-0.2%,随后抽真空并升温至480-550℃进行还原处理1-2h,退火随炉冷却,得到预处理后的钨粉。
更进一步地,所述石墨烯的粒径为0.5-10μm,能够有效降低钨粉中的氧含量。
进一步地,所述步骤S2中CuCr中间合金的具体制备方法为:
S2-1:将粒径为10-100μm的铜粉和铬粉按CuCr0.5-50%的质量比混合后放入真空还原炉中;
S2-2:向真空还原炉中通入氮气和氢气的混合气体,其中,氢气的体积含量为5-10%,在550-600℃条件下还原1h,再向真空还原炉中通入氢气,并将温度调节至450-480℃下还原1h,得到还原除氧后的混合粉末;
S2-3:将还原除氧后的混合粉末放入热等静压炉内,抽真空并压入惰性气体,以12-15℃/min的升温速度升温至1050-1075℃,将保压压力维持在120-130MPa,持续1-2h,随后保持压力在90-95MPa的条件下自然冷却至室温,得到CuCr中间合金,通过该方法能够有效去除铜铬混合粉末中的氧含量,同时避免因氢气密度过低导致氢气沿炉壁流出,确保了氢气与粉末充分接触,使反应更加充分,氧含量去除较为彻底。
进一步地,所述步骤S1中得到的钨坯块置于真空中保存,步骤S2中制备的CuCr中间合金置于真空中保存,在将钨坯块和CuCr中间合金转移至真空烧结炉的过程中始终保持真空状态,避免在整体烧结熔渗前发生再次氧化的现象。
进一步地,所述步骤S3中气氛保护气体为氩气或氮气。
本发明的有益效果是:
(1)本发明的CuW-CuCr整体电触头通过合理的配比调整Cr元素在CuCr导电端中的含量从而使CuW-CuCr整体电触头中Cr的含量极低,得到一种超低铬含量CuW-CuCr整体电触头,使CuCr导电端具有较高的电导率和硬度,CuW耐弧端与CuCr导电端具有较高的抗拉强度。
(2)本发明的超低铬含量CuW-CuCr整体电触头的制备方法通过整体烧结熔渗铜、铜铬合金以及钨坯块,得到的CuW-CuCr整体电触头致密性更好,强度更高,同时工艺流程简洁连贯,成本控制在较低的水平。
(3)本发明的超低铬含量CuW-CuCr整体电触头的制备方法通过对钨粉和铜铬合金粉末去氧化处理,能够有效降低钨粉和铜铬混合粉末中的氧含量,同时避免因氢气密度过低导致氢气沿炉壁流出,确保了氢气与粉末充分接触,使反应更加充分,氧含量去除较为彻底。
附图说明
图1是本发明的CuW-CuCr整体电触头结构示意图;
图2是本发明的工艺流程示意图。
具体实施方式
实施例1
一种超低铬含量CuW-CuCr整体电触头,电触头包括CuW耐弧端与CuCr导电端,CuW耐弧端中W的质量含量为50%,余量为铜及不可避免的杂质,CuCr导电端由纯铜和CuCr中间合金熔融而成,其中,CuCr中间合金中Cr的质量含量为0.5%,Cr的质量含量为CuCr导电端的0.05%。
如上述一种超低铬含量CuW-CuCr整体电触头的制备方法,包括以下步骤:
S1预制钨坯块:称取钨粉进行预处理,钨粉的粒径为1-5μm,预处理步骤为:将钨粉与石墨烯混合,石墨烯的质量为钨粉的0.05%,随后抽真空并升温至480℃进行还原处理1h,退火随炉冷却,得到预处理后的钨粉,石墨烯的粒径为0.5μm,将预处理后的钨粉压制成密度为6g/cm3的钨坯块并置于真空中保存。
S2预制CuCr中间合金:称取铜粉和铬粉混合后使用热等静压得到CuCr中间合金;CuCr中间合金的具体制备方法为:
S2-1:将粒径为10-30μm的铜粉和铬粉按CuCr0.5%的质量比混合后放入真空还原炉中;
S2-2:向真空还原炉中通入氮气和氢气的混合气体,其中,氢气的体积含量为5%,在550℃条件下还原1h,再向真空还原炉中通入氢气,并将温度调节至450℃下还原1h,得到还原除氧后的混合粉末;
S2-3:将还原除氧后的混合粉末放入热等静压炉内,抽真空并压入惰性气体,以12℃/min的升温速度升温至1050℃,将保压压力维持在120MPa,持续1h,随后保持压力在90MPa的条件下自然冷却至室温,得到CuCr中间合金并置于真空中保存。
S3整体烧结熔渗:将预制的钨坯块放入真空烧结炉中,再放入纯铜块和预制的CuCr中间合金,在将钨坯块和CuCr中间合金转移至真空烧结炉的过程中始终保持真空状态,在真空条件下加温熔渗1h,加热温度为1250℃,得到CuW-CuCr合金。
S4固溶、时效处理:固溶温度为950℃,固溶时间为1h,时效温度为400℃,时效时间为2h。
实施例2
本实施例与实施例1基本相同,其不同之处在于:CuW-CuCr整体电触头中各个元素质量比不同。
一种超低铬含量CuW-CuCr整体电触头,电触头包括CuW耐弧端与CuCr导电端,CuW耐弧端中W的质量含量为50%,余量为铜及不可避免的杂质,CuCr导电端由纯铜和CuCr中间合金熔融而成,其中,CuCr中间合金中Cr的质量含量为30%,Cr的质量含量为CuCr导电端的0.1%。
实施例3
本实施例与实施例1基本相同,其不同之处在于:CuW-CuCr整体电触头中各个元素质量比不同。
一种超低铬含量CuW-CuCr整体电触头,电触头包括CuW耐弧端与CuCr导电端,CuW耐弧端中W的质量含量为50%,余量为铜及不可避免的杂质,CuCr导电端由纯铜和CuCr中间合金熔融而成,其中,CuCr中间合金中Cr的质量含量为50%,Cr的质量含量为CuCr导电端的0.2%。
实施例4
本实施例与实施例1基本相同,其不同之处在于:CuW-CuCr整体电触头中各个元素质量比不同。
一种超低铬含量CuW-CuCr整体电触头,电触头包括CuW耐弧端与CuCr导电端,CuW耐弧端中W的质量含量为75%,余量为铜及不可避免的杂质,CuCr导电端由纯铜和CuCr中间合金熔融而成,其中,CuCr中间合金中Cr的质量含量为20%,Cr的质量含量为CuCr导电端的0.1%。
实施例5
本实施例与实施例1基本相同,其不同之处在于:CuW-CuCr整体电触头中各个元素质量比不同。
一种超低铬含量CuW-CuCr整体电触头,电触头包括CuW耐弧端与CuCr导电端,CuW耐弧端中W的质量含量为85%,余量为铜及不可避免的杂质,CuCr导电端由纯铜和CuCr中间合金熔融而成,其中,CuCr中间合金中Cr的质量含量为40%,Cr的质量含量为CuCr导电端的0.15%。
实施例6
本实施例与实施例1基本相同,其不同之处在于:步骤S1中预制钨坯块的具体参数不同。
S1预制钨坯块:称取钨粉进行预处理,钨粉的粒径为4-8μm,预处理步骤为:将钨粉与石墨烯混合,石墨烯的质量为钨粉的0.1%,随后抽真空并升温至500℃进行还原处理1.5h,退火随炉冷却,得到预处理后的钨粉,石墨烯的粒径为5μm,将预处理后的钨粉压制成密度为10g/cm3的钨坯块并置于真空中保存。
实施例7
本实施例与实施例1基本相同,其不同之处在于:步骤S1中预制钨坯块的具体参数不同。
S1预制钨坯块:称取钨粉进行预处理,钨粉的粒径为6-10μm,预处理步骤为:将钨粉与石墨烯混合,石墨烯的质量为钨粉的0.2%,随后抽真空并升温至550℃进行还原处理2h,退火随炉冷却,得到预处理后的钨粉,石墨粉的粒径为10μm,将预处理后的钨粉压制成密度为13.5g/cm3的钨坯块并置于真空中保存。
实施例8
本实施例与实施例1基本相同,其不同之处在于:步骤S2中预制CuCr中间合金的具体参数不同。
S2-1:将粒径为30-40μm的铜粉和铬粉按CuCr0.5%的质量比混合后放入真空还原炉中;
S2-2:向真空还原炉中通入氮气和氢气的混合气体,其中,氢气的体积含量为8%,在580℃条件下还原1h,再向真空还原炉中通入氢气,并将温度调节至460℃下还原1h,得到还原除氧后的混合粉末;
S2-3:将还原除氧后的混合粉末放入热等静压炉内,抽真空并压入惰性气体,以14℃/min的升温速度升温至1060℃,将保压压力维持在125MPa,持续1.5h,随后保持压力在93MPa的条件下自然冷却至室温,得到CuCr中间合金并置于真空中保存。
实施例9
本实施例与实施例1基本相同,其不同之处在于:步骤S2中预制CuCr中间合金的具体参数不同。
S2-1:将粒径为80-100μm的铜粉和铬粉按CuCr0.5%的质量比混合后放入真空还原炉中;
S2-2:向真空还原炉中通入氮气和氢气的混合气体,其中,氢气的体积含量为10%,在600℃条件下还原1h,再向真空还原炉中通入氢气,并将温度调节至480℃下还原1h,得到还原除氧后的混合粉末;
S2-3:将还原除氧后的混合粉末放入热等静压炉内,抽真空并压入惰性气体,以15℃/min的升温速度升温至1075℃,将保压压力维持在130MPa,持续2h,随后保持压力在95MPa的条件下自然冷却至室温,得到CuCr中间合金并置于真空中保存。
实施例10
本实施例与实施例1基本相同,其不同之处在于:步骤S3中整体烧结熔渗的具体参数不同。
S3整体烧结熔渗:将预制的钨坯块放入真空烧结炉中,再放入纯铜块和预制的CuCr中间合金,在将钨坯块和CuCr中间合金转移至真空烧结炉的过程中始终保持真空状态,在氩气气氛保护条件下加温熔渗3h,加热温度为1300℃,得到CuW-CuCr合金。
实施例11
本实施例与实施例1基本相同,其不同之处在于:步骤S3中整体烧结熔渗的具体参数不同。
S3整体烧结熔渗:将预制的钨坯块放入真空烧结炉中,再放入纯铜块和预制的CuCr中间合金,在将钨坯块和CuCr中间合金转移至真空烧结炉的过程中始终保持真空状态,在氮气气氛保护条件下加温熔渗6h,加热温度为1400℃,得到CuW-CuCr合金。
实施例12
本实施例与实施例1基本相同,其不同之处在于:步骤S4中固溶、时效处理的具体参数不同。
S4固溶、时效处理:固溶温度为970℃,固溶时间为1.5h,时效过程包括以下步骤:
S4-1一次时效:一次时效的温度为420℃,时间为2h;
S4-2冷处理:以18℃/min的降温速度对CuW耐弧端进行喷水骤冷处理,同时将CuCr导电端温度保持在250℃;
S4-3二次时效:当冷处理降温至60℃时立即进行二次时效处理,二次时效的温度为460℃,时间为1h,得到CuW-CuCr整体电触头。
实施例13
本实施例与实施例1基本相同,其不同之处在于:步骤S4中固溶、时效处理的具体参数不同。
S4固溶、时效处理:固溶温度为1000℃,固溶时间为2h,时效过程包括以下步骤:
S4-1一次时效:一次时效的温度为430℃,时间为3h;
S4-2冷处理:以20℃/min的降温速度对CuW耐弧端进行喷水骤冷处理,同时将CuCr导电端温度保持在260℃;
S4-3二次时效:当冷处理降温至65℃时立即进行二次时效处理,二次时效的温度为500℃,时间为2h,得到CuW-CuCr整体电触头。
实验例
对实施例1-13中得到的CuW-CuCr整体电触头的电导率、硬度以及抗拉强度进行测定,在测试结果中,每组实施例的电导率均≥95%IACS,符合电触头的使用标准,硬度和抗拉强度的测试结果如下所示:
Figure BDA0003156840790000101
对比实施例1-5可以看出,当提高CuW耐弧端中W的质量含量则CuW-CuCr整体电触头的硬度以及抗拉强度均有所提高,但考虑到成本等因素,选用实施例4中75%W含量为最优,并将Cr含量控制在0.1%左右使CuW-CuCr整体电触头的性能最优;
对比实施例1、6、7可以看出,使用较细粒径的钨粉同时使用较细粒径的石墨粉进行还原处理所得到的电触头性能较好;
对比实施例1、8、9可以看出,使用步骤S2中的CuCr中间合金处理方法对电触头的性能有影响,其中,使用较高氢气浓度的混合气体对CuCr中间合金进行还原处理去氧化效果更好,电触头硬度和抗拉强度均有所提高;
对比实施例1、10、11可以看出,在一定范围内使用较高温度以及较长时间熔渗使CuW-CuCr整体电触头的硬度和抗拉强度均有一定幅度的提升;
对比实施例1、12、13可以看出,改变固溶和时效处理的参数对于CuW-CuCr整体电触头的硬度和抗拉强度影响较小,但是与未使用本发明的时效处理的对比例相比,硬度和抗拉强度均有大幅地提高,说明本发明的时效处理方法对于CuW耐弧端和CuCr导电端性能有效保持在较高的强度,实施例12中的反应参数最优。

Claims (8)

1.一种超低铬含量CuW-CuCr整体电触头,其特征在于,所述电触头包括CuW耐弧端与CuCr导电端,所述CuW耐弧端中W的质量含量为50-85%,余量为铜及不可避免的杂质,Cr的质量含量为CuCr导电端的0.05-0.2%。
2.根据权利要求1所述的一种超低铬含量CuW-CuCr整体电触头,其特征在于,所述CuCr导电端由纯铜和CuCr中间合金熔融而成,所述CuCr中间合金中Cr的质量含量为0.5-50%。
3.如权利要求1或2所述的一种超低铬含量CuW-CuCr整体电触头的制备方法,其特征在于,包括以下步骤:
S1预制钨坯块:称取钨粉进行预处理,将预处理后的钨粉压制成密度为6-13.5g/cm3的钨坯块;
S2预制CuCr中间合金:称取铜粉和铬粉混合后使用热等静压得到CuCr中间合金;
S3整体烧结熔渗:将预制的钨坯块放入真空烧结炉中,再放入纯铜块和预制的CuCr中间合金,在真空或气氛保护条件下加温熔渗1-6h,加热温度为1250-1400℃,得到CuW-CuCr合金;
S4固溶、时效处理:固溶温度为950-1000℃,固溶时间为1-2h,时效温度为400-500℃,时效时间为2-5h,得到CuW-CuCr整体电触头。
4.根据权利要求3所述的一种超低铬含量CuW-CuCr整体电触头的制备方法,其特征在于,所述步骤S1中钨粉的粒径为1-10μm,所述预处理步骤为:将钨粉与石墨烯混合,石墨烯的质量为钨粉的0.05-0.2%,随后抽真空并升温至480-550℃进行还原处理1-2h,退火随炉冷却,得到预处理后的钨粉。
5.根据权利要求4所述的一种超低铬含量CuW-CuCr整体电触头的制备方法,其特征在于,所述石墨烯的粒径为0.5-10μm。
6.根据权利要求3所述的一种超低铬含量CuW-CuCr整体电触头的制备方法,其特征在于,所述步骤S2中CuCr中间合金的具体制备方法为:
S2-1:将粒径为10-100μm的铜粉和铬粉按CuCr0.5-50%的质量比混合后放入真空还原炉中;
S2-2:向真空还原炉中通入氮气和氢气的混合气体,其中,氢气的体积含量为5-10%,在550-600℃条件下还原1h,再向真空还原炉中通入氢气,并将温度调节至450-480℃下还原1h,得到还原除氧后的混合粉末;
S2-3:将还原除氧后的混合粉末放入热等静压炉内,抽真空并压入惰性气体,以12-15℃/min的升温速度升温至1050-1075℃,将保压压力维持在120-130MPa,持续1-2h,随后保持压力在90-95MPa的条件下自然冷却至室温,得到CuCr中间合金。
7.根据权利要求3所述的一种超低铬含量CuW-CuCr整体电触头的制备方法,其特征在于,所述步骤S1中得到的钨坯块置于真空中保存,步骤S2中制备的CuCr中间合金置于真空中保存,在将钨坯块和CuCr中间合金转移至真空烧结炉的过程中始终保持真空状态。
8.根据权利要求3所述的一种超低铬含量CuW-CuCr整体电触头的制备方法,其特征在于,所述步骤S3中气氛保护气体为氩气或氮气。
CN202110778766.2A 2021-07-09 2021-07-09 一种超低铬含量CuW-CuCr整体电触头及其制备方法 Active CN113593992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110778766.2A CN113593992B (zh) 2021-07-09 2021-07-09 一种超低铬含量CuW-CuCr整体电触头及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110778766.2A CN113593992B (zh) 2021-07-09 2021-07-09 一种超低铬含量CuW-CuCr整体电触头及其制备方法

Publications (2)

Publication Number Publication Date
CN113593992A true CN113593992A (zh) 2021-11-02
CN113593992B CN113593992B (zh) 2023-09-15

Family

ID=78246694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110778766.2A Active CN113593992B (zh) 2021-07-09 2021-07-09 一种超低铬含量CuW-CuCr整体电触头及其制备方法

Country Status (1)

Country Link
CN (1) CN113593992B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116475422A (zh) * 2023-05-19 2023-07-25 福建国福中亚电气机械有限公司 一种铜钨合金电触头制备方法及其设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353933A (en) * 1966-03-11 1967-11-21 Mallory & Co Inc P R Tungsten powder bodies infiltrated with copper-titanium alloys
DE102005043484A1 (de) * 2005-09-13 2007-04-19 Abb Technology Ag Vakuumschaltkammer
US20080163476A1 (en) * 2005-01-27 2008-07-10 Abb Technology Ag Process For Producing A Contact Piece, And Contact Piece For A Vacuum Interrupter Chamber Itself
JP2012134014A (ja) * 2010-12-21 2012-07-12 Toshiba Corp 真空バルブ用接点材料
CN102760597A (zh) * 2012-06-25 2012-10-31 西安理工大学 用于高压电触头的CuW与CuCr整体材料的制备方法
CN106623947A (zh) * 2016-12-06 2017-05-10 中国西电电气股份有限公司 一种铜钨触头及其制备方法
CN112530724A (zh) * 2020-10-19 2021-03-19 陕西斯瑞新材料股份有限公司 一种利用钨粉制造电子束焊接铜钨触片的方法
CN112908733A (zh) * 2019-12-04 2021-06-04 西安西电高压开关有限责任公司 一种合金弧触头、其制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353933A (en) * 1966-03-11 1967-11-21 Mallory & Co Inc P R Tungsten powder bodies infiltrated with copper-titanium alloys
US20080163476A1 (en) * 2005-01-27 2008-07-10 Abb Technology Ag Process For Producing A Contact Piece, And Contact Piece For A Vacuum Interrupter Chamber Itself
DE102005043484A1 (de) * 2005-09-13 2007-04-19 Abb Technology Ag Vakuumschaltkammer
JP2012134014A (ja) * 2010-12-21 2012-07-12 Toshiba Corp 真空バルブ用接点材料
CN102760597A (zh) * 2012-06-25 2012-10-31 西安理工大学 用于高压电触头的CuW与CuCr整体材料的制备方法
CN106623947A (zh) * 2016-12-06 2017-05-10 中国西电电气股份有限公司 一种铜钨触头及其制备方法
CN112908733A (zh) * 2019-12-04 2021-06-04 西安西电高压开关有限责任公司 一种合金弧触头、其制备方法及其应用
CN112530724A (zh) * 2020-10-19 2021-03-19 陕西斯瑞新材料股份有限公司 一种利用钨粉制造电子束焊接铜钨触片的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116475422A (zh) * 2023-05-19 2023-07-25 福建国福中亚电气机械有限公司 一种铜钨合金电触头制备方法及其设备

Also Published As

Publication number Publication date
CN113593992B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
US4032301A (en) Composite metal as a contact material for vacuum switches
CN112658243B (zh) 一种CuW/CuCr整体触头的制备方法
CN101699591B (zh) 一种由铜钨合金制成的触头部分、铜或铜合金制成的导电杆部分组成的整体触头及其制备方法
US5480472A (en) Method for forming an electrical contact material
CN100388403C (zh) 烧结合金制成的电触点及其制造方法
US3385677A (en) Sintered composition material
EP0682351A1 (en) Vacuum interrupter and method for manufacturing the same
CN102044347B (zh) 银铜镍陶瓷高抗熔焊合金触头材料的制备方法及其产品
CN113593992B (zh) 一种超低铬含量CuW-CuCr整体电触头及其制备方法
US6524525B2 (en) Method for producing a contact material for contact pieces for vacuum switch devices, and a contact material and contact pieces therefor
JP4620071B2 (ja) 真空遮断器用接点材料
US4546222A (en) Vacuum switch and method of manufacturing the same
US7686864B2 (en) Method for the manufacture of liquid-metal composite contact
CN101667496A (zh) 电触点及其制造方法以及电力开关
CN1239723C (zh) 铜基合金电真空触头材料及其制备方法
JP4129304B2 (ja) 真空遮断器用接点材料,その製造方法および真空遮断器
JP2005533175A (ja) 電気接点材料及びその製造方法
JP2004076141A (ja) 真空遮断器に用いる真空バルブ及び電気接点の製法
JPH0813065A (ja) 電気接点用焼結材料及びその製造方法
JPH01258330A (ja) 真空バルブ用接点材料の製造方法
JP2001307602A (ja) 真空バルブ用接点材料およびその製造方法
JP2000188045A (ja) 真空遮断器及びそれに用いる真空バルブとその電極
JP2511043B2 (ja) 真空バルブ用接点合金の製造方法
KR0171607B1 (ko) 진공회로 차단기용 전극 및 진공회로 차단기
JP3443516B2 (ja) 真空バルブ用接点材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant