CN113577313B - 一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法 - Google Patents

一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法 Download PDF

Info

Publication number
CN113577313B
CN113577313B CN202110814225.0A CN202110814225A CN113577313B CN 113577313 B CN113577313 B CN 113577313B CN 202110814225 A CN202110814225 A CN 202110814225A CN 113577313 B CN113577313 B CN 113577313B
Authority
CN
China
Prior art keywords
hyperbranched polysiloxane
fluorescent material
targeted
grafted
cysteine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110814225.0A
Other languages
English (en)
Other versions
CN113577313A (zh
Inventor
颜红侠
贺苗苗
赵艳
高天
孙语遥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110814225.0A priority Critical patent/CN113577313B/zh
Publication of CN113577313A publication Critical patent/CN113577313A/zh
Application granted granted Critical
Publication of CN113577313B publication Critical patent/CN113577313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法,以3‑氨丙基三乙氧基硅烷与二元醇为原料通过亲核取代缩聚反应合成超支化聚硅氧烷,再对其接枝半胱氨酸,最后接枝VEGF核酸适配体,从而得到靶向识别型超支化聚硅氧烷荧光材料。通过该方法合成的靶向识别型超支化聚硅氧烷荧光材料可发射明亮的荧光,具有良好的生物相容性,低生物毒性。并且,由于接枝了VEGF核酸适配体,其可以与癌细胞表面过度表达的膜蛋白特异性结合,使其能够靶向特异识别癌细胞,在特定的癌细胞表面积累,并通过内吞作用进入癌细胞内部,实现靶向癌细胞成像,同时,结合其良好的药物负载能力实现靶向药物控释,进而实现靶向药物运输和体内示踪一体化。

Description

一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用 方法
技术领域
本发明属于高分子发光材料领域,涉及一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法。
背景技术
靶向识别在癌症治疗中有重要意义,赋予荧光探针以靶向性,可以使其在在特定的肿瘤内积累,提高荧光成像的精确性。此外,具有靶向性的药物输送系统可以使药物输送体系在适应机体内复杂多变的生理环境的同时,在特定部位提高药物浓度,实现高效、精准的特异性识别,减少对正常细胞的影响。因此,构建具有靶向性的可视化药物输送体系,实现高效、精准的靶向特异性癌细胞成像及可视化药物控释,具有极大应用前景。采用共价/非共价作用将荧光团与药物载体相连接是构建可视化药物载体最常用的途径。然而,常用的荧光团多具有稠环芳烃结构,易发生聚集导致猝灭(ACQ)现象,并且生物毒性高,生物相容性差,严重阻碍了其发展和应用。因此,开发克服ACQ缺点且具有良好生物相容性的新型可视化药物载体,并赋予其靶向识别特性,具有重要意义。
传统的共轭型聚集诱导发光(AIE)材料虽然克服了ACQ的难题,并且已有对其进行靶向功能化的探索,但是该类材料仍存在生物毒性高,生物相容性差的缺点,并且该类材料需要和药物载体结合才能用于药物负载[Analytical Chemistry,2018,90(2):1063-1067;Acs Applied Materials&Interfaces,2014,6(7):5212-20]。而非共轭型AIE材料因不含大π共轭基元而在生物相容性、环境友好性等方面具有极大的优势,有望用作新型可视化药物载体[化学学报,2013,71(007):979-990]。超支化聚硅氧烷(HBPSi)作为一种非共轭AIE荧光聚合物,其分子结构中仅含氨基、羟基、酯基、羧基等助色团,不含大π共轭基元,具有优异的生物相容性,其可用于细胞成像以及药物控释可视化等领域,但缺乏靶向识别癌细胞的功能,限制了其在细胞成像和药物控释等领域的应用[Journal of Hazardous Materials,2015,287(0):259-267;Macromolecular Rapid Communications,2015,36(8):739-743;Macromolecular Rapid Communications,2016,37(2):136-142;Journal of MaterialsChemistry C,2016,4(28):6881-689;Polymer Chemistry,2016,7:3747-3755;RSCAdvances,2016,6(108):106742-106753;Macromolecular Chemistry and Physics,2016,217(10):1185-1190]。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法,通过在超支化聚硅氧烷表面接枝核酸适配体的方式合成具有靶向识别能力的超支化聚硅氧烷药物载体,使其具有良好生物相容性,且能够集靶向运输和体内示踪一体化,在药理研究、局部治疗等领域具有重要的应用价值。
技术方案
一种靶向识别型超支化聚硅氧烷荧光材料,其特征在于以质量比30~50∶1在接枝了半胱氨酸的超支化聚硅氧烷表面接枝血管内皮生长因子VEGF核酸适配体,得到靶向识别型超支化聚硅氧烷荧光材料;所述接枝了半胱氨酸的超支化聚硅氧烷是超支化聚硅氧烷与半胱氨酸按质量比为6~10∶1合成;所述超支化硅氧烷是以摩尔比为1∶1~2.5的3-氨丙基三乙氧基硅烷与二元醇为原料合成得到超支化硅氧烷。
所述二元醇包括但不限于二乙醇胺、N-甲基二乙醇胺、1,4-丁二醇、1,6-己二醇、丙二醇。
一种制备所述靶向识别型超支化聚硅氧烷荧光材料的方法,其特征在于步骤如下:
步骤1:将3-氨丙基三乙氧基硅烷与二元醇按摩尔比为1∶1~2.5混合,在氮气保护下,升温至90~120℃,保持10~60min后,有馏出物产生,反应升温至140~200℃,继续反应至无馏出物产生时反应停止,降至室温即得到含氨基的超支化聚硅氧烷;
步骤2:将超支化聚硅氧烷与半胱氨酸按质量比为6~10∶1混合,升温至60~80℃,反应10~60min后固体溶解,继续反应24~48h后降至室温即得到接枝了半胱氨酸的超支化聚硅氧烷;
步骤3:最后,将接枝了半胱氨酸的超支化聚硅氧烷与VEGF核酸适配体按质量比为30~50∶1混合,在氮气保护下,降温至0~10℃,反应24~48h,然后升至室温即得到靶向识别型超支化聚硅氧烷荧光材料。
一种所述靶向识别型超支化聚硅氧烷荧光材料的用途,其特征在于:所述靶向识别型超支化聚硅氧烷荧光材料,接枝的VEGF核酸适配体与癌细胞表面过度表达的膜蛋白特异性结合,使其能够靶向特异识别癌细胞,在特定的癌细胞表面积累,并通过内吞作用进入癌细胞内部,实现靶向癌细胞成像,同时,结合其良好的药物负载能力实现靶向药物控释,进而实现靶向药物运输和体内示踪一体化。
有益效果
本发明提出的一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法,以3-氨丙基三乙氧基硅烷与二元醇为原料通过亲核取代缩聚反应合成超支化聚硅氧烷,再对其接枝半胱氨酸,最后接枝VEGF核酸适配体,从而得到靶向识别型超支化聚硅氧烷荧光材料。通过该方法合成的靶向识别型超支化聚硅氧烷荧光材料可发射明亮的荧光,具有良好的生物相容性,低生物毒性。并且,由于接枝了VEGF核酸适配体,其可以与癌细胞表面过度表达的膜蛋白特异性结合,使其能够靶向特异识别癌细胞,在特定的癌细胞表面积累,并通过内吞作用进入癌细胞内部,实现靶向癌细胞成像,同时,结合其良好的药物负载能力实现靶向药物控释,进而实现靶向药物运输和体内示踪一体化。
本发明通过接枝血管内皮生长因子(Vascular endothelial growth factor,VEGF)核酸适配体,利用VEGF核酸适配体与癌细胞表面过度表达的膜蛋白的特异性结合能力赋予超支化聚硅氧烷靶向识别特性。其不仅具有优异的生物相容性,低的细胞毒性,还可以实现靶向癌细胞成像和可视化药物控释,进而实现靶向药物运输和体内示踪一体化。
附图说明
图1:靶向识别型超支化聚硅氧烷荧光材料的合成原理图。3-氨丙基三乙氧基硅烷与二元醇(包括但不限于二乙醇胺、N-甲基二乙醇胺、1,4-丁二醇、1,6-己二醇、丙二醇),采用亲核取代缩聚反应合成超支化硅氧烷,再对其接枝半胱氨酸,最后接枝VEGF核酸适配体,从而得到靶向识别型超支化聚硅氧烷荧光材料。
图2:靶向识别型的超支化聚硅氧烷荧光材料的靶向识别及药物控释机理图。靶向识别型超支化聚硅氧烷荧光材料表面的VEGF核酸适配体可以与癌细胞表面过度表达的膜蛋白特异性结合,从而靶向特异识别癌细胞,在特定的癌细胞表面积累,并通过内吞作用进入癌细胞内部,实现靶向癌细胞成像,同时,可以将其负载的药物阿霉素靶向特异地运送到癌细胞内部,并在癌细胞内部高浓度的谷胱甘肽(GSH)的作用下破坏其自组装结构使得药物释放,由此实现靶向药物控释,进而实现靶向药物运输和体内示踪一体化。
图3:靶向识别型的超支化聚硅氧烷荧光材料的细胞成像。加入靶向识别型超支化聚硅氧烷荧光材料,三阴性乳腺癌细胞(Mda mb 231)的表面会附着更多的荧光分子而发出明显蓝色荧光,而荧光分子在正常细胞(L929)表面无法积累,因此正常细胞无明显荧光,表明该荧光材料对癌细胞有明显的靶向识别能力。
图4:靶向识别型的超支化聚硅氧烷荧光材料的最佳载药浓度。用靶向识别型的超支化聚硅氧烷荧光材料负载药物阿霉素(DOX),随着DOX浓度的增大,该荧光材料的载药量逐渐增加。由于该荧光材料内部的网络状结构有利于DOX被有效包裹在载体内部空腔中,从而使其具有良好的药物负载能力。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明内容中:以3-氨丙基三乙氧基硅烷与二元醇为原料通过亲核取代缩聚反应合成超支化聚硅氧烷,再对其接枝半胱氨酸,最后接枝VEGF核酸适配体,从而得到靶向识别型超支化聚硅氧烷荧光材料。具体的制备方法如下:将3-氨丙基三乙氧基硅烷与二元醇(包括但不限于二乙醇胺、N-甲基二乙醇胺、1,4-丁二醇、1,6-己二醇、丙二醇)按摩尔比为1∶(1~2.5)混合,加入到250mL三口烧瓶中,在氮气保护下,升温至90~120℃,10~60min后,有馏出物产生,反应升温至140~200℃,继续反应至无馏出物产生时反应停止,降至室温即得到含氨基的超支化聚硅氧烷。之后,将超支化聚硅氧烷与半胱氨酸按质量比为(6~10)∶1混合,加入到100mL单口烧瓶中,升温至60~80℃,反应10~60min后固体溶解,反应24~48h,降至室温即得到接枝了半胱氨酸的超支化聚硅氧烷。最后,将接枝了半胱氨酸的超支化聚硅氧烷与VEGF核酸适配体按质量比为(30~50)∶1混合,加入到100mL三口烧瓶中,在氮气保护下,降温至0~10℃,反应24~48h,升至室温即得到靶向识别型超支化聚硅氧烷荧光材料。
下面结合实例对本发明进一步说明,本发明包括但不仅限于下述实例。
实例1
将3-氨丙基三乙氧基硅烷与二乙醇胺按摩尔比为1∶(1~2.5)混合,加入到250mL三口烧瓶中,在氮气保护下,升温至90~120℃,10~60min后,有馏出物产生,反应升温至140~200℃,继续反应至无馏出物产生时反应停止,降至室温即得到超支化聚硅氧烷。之后,将超支化聚硅氧烷与半胱氨酸按质量比为(6~10)∶1混合,加入到100mL单口烧瓶中,升温至60~80℃,反应10~60min后固体溶解,反应24~48h,降至室温即得到接枝了半胱氨酸的超支化聚硅氧烷。最后,将接枝了半胱氨酸的超支化聚硅氧烷与VEGF核酸适配体按质量比为(30~50)∶1混合,加入到100mL三口烧瓶中,在氮气保护下,降温至0~10℃,反应24~48h,升至室温即得到靶向识别型超支化聚硅氧烷荧光材料。
实例2
将3-氨丙基三乙氧基硅烷与N-甲基二乙醇胺按摩尔比为1:(1~2.5)混合,加入到250mL三口烧瓶中,在氮气保护下,升温至90~120℃,10~60min后,有馏出物产生,反应升温至140~200℃,继续反应至无馏出物产生时反应停止,降至室温即得到超支化聚硅氧烷。之后,将超支化聚硅氧烷与半胱氨酸按质量比为(6~10):1混合,加入到100mL单口烧瓶中,升温至60~80℃,反应10~60min后固体溶解,反应24~48h,降至室温即得到接枝了半胱氨酸的超支化聚硅氧烷。最后,将接枝了半胱氨酸的超支化聚硅氧烷与VEGF核酸适配体按质量比为(30~50):1混合,加入到100mL三口烧瓶中,在氮气保护下,降温至0~10℃,反应24~48h,升至室温即得到靶向识别型超支化聚硅氧烷荧光材料。
实例3
将3-氨丙基三乙氧基硅烷与1,4-丁二醇按摩尔比为1:(1~2.5)混合,加入到250mL三口烧瓶中,在氮气保护下,升温至90~120℃,10~60min后,有馏出物产生,反应升温至140~200℃,继续反应至无馏出物产生时反应停止,降至室温即得到超支化聚硅氧烷。之后,将超支化聚硅氧烷与半胱氨酸按质量比为(6~10):1混合,加入到100mL单口烧瓶中,升温至60~80℃,反应10~60min后固体溶解,反应24~48h,降至室温即得到接枝了半胱氨酸的超支化聚硅氧烷。最后,将接枝了半胱氨酸的超支化聚硅氧烷与VEGF核酸适配体按质量比为(30~50):1混合,加入到100mL三口烧瓶中,在氮气保护下,降温至0~10℃,反应24~48h,升至室温即得到靶向识别型超支化聚硅氧烷荧光材料。
实例4
将3-氨丙基三乙氧基硅烷与1,6-己二醇按摩尔比为1:(1~2.5)混合,加入到250mL三口烧瓶中,在氮气保护下,升温至90~120℃,10~60min后,有馏出物产生,反应升温至140~200℃,继续反应至无馏出物产生时反应停止,降至室温即得到超支化聚硅氧烷。之后,将超支化聚硅氧烷与半胱氨酸按质量比为(6~10)∶1混合,加入到100mL单口烧瓶中,升温至60~80℃,反应10~60min后固体溶解,反应24~48h,降至室温即得到接枝了半胱氨酸的超支化聚硅氧烷。最后,将接枝了半胱氨酸的超支化聚硅氧烷与VEGF核酸适配体按质量比为(30~50)∶1混合,加入到100mL三口烧瓶中,在氮气保护下,降温至0~10℃,反应24~48h,升至室温即得到靶向识别型超支化聚硅氧烷荧光材料。

Claims (1)

1.一种靶向识别型超支化聚硅氧烷荧光材料,其特征在于以质量比30~50∶1在接枝了半胱氨酸的超支化聚硅氧烷表面接枝血管内皮生长因子VEGF核酸适配体,得到靶向识别型超支化聚硅氧烷荧光材料;所述接枝了半胱氨酸的超支化聚硅氧烷是超支化聚硅氧烷与半胱氨酸按质量比为6~10∶1合成;所述超支化硅氧烷是以摩尔比为1∶1~2.5的3-氨丙基三乙氧基硅烷与二元醇为原料合成得到超支化硅氧烷;所述靶向识别型超支化聚硅氧烷荧光材料的制备步骤如下:
步骤1:将3-氨丙基三乙氧基硅烷与二元醇按摩尔比为1∶1~2.5混合,在氮气保护下,升温至90~120oC,保持10~60min后,有馏出物产生,反应升温至140~200oC,继续反应至无馏出物产生时反应停止,降至室温即得到含氨基的超支化聚硅氧烷;
所述二元醇为二乙醇胺;
步骤2:将超支化聚硅氧烷与半胱氨酸按质量比为6~10∶1混合,升温至60~80oC,反应10~60min后固体溶解,继续反应24~48h后降至室温即得到接枝了半胱氨酸的超支化聚硅氧烷;
步骤3:最后,将接枝了半胱氨酸的超支化聚硅氧烷与VEGF核酸适配体按质量比为30~50∶1混合,在氮气保护下,降温至0~10oC,反应24~48h,然后升至室温即得到靶向识别型超支化聚硅氧烷荧光材料。
CN202110814225.0A 2021-07-19 2021-07-19 一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法 Active CN113577313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110814225.0A CN113577313B (zh) 2021-07-19 2021-07-19 一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110814225.0A CN113577313B (zh) 2021-07-19 2021-07-19 一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法

Publications (2)

Publication Number Publication Date
CN113577313A CN113577313A (zh) 2021-11-02
CN113577313B true CN113577313B (zh) 2023-05-23

Family

ID=78248100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110814225.0A Active CN113577313B (zh) 2021-07-19 2021-07-19 一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法

Country Status (1)

Country Link
CN (1) CN113577313B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115068440B (zh) * 2022-06-27 2023-04-14 电子科技大学 靶向定位与超声电刺激癌细胞修复的分子机器及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129577A (zh) * 2017-04-13 2017-09-05 华南理工大学 接枝半胱氨酸的聚硅氧烷嵌段共聚物及制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162307A2 (en) * 2011-05-23 2012-11-29 University Of Massachusetts Crosslinked polymer nano-assemblies and uses thereof
CN102924722B (zh) * 2012-08-14 2014-10-15 西北工业大学 一种氨基含量可控的超支化聚硅氧烷制备方法
EP3253414A4 (en) * 2015-02-05 2018-07-11 The University Of Queensland Targeting constructs for delivery of payloads
CN107753946B (zh) * 2017-10-23 2020-11-27 福州大学 一种适配体修饰的靶向载药纳米粒及其制备方法与应用
CN108659224B (zh) * 2018-05-29 2021-01-05 西北工业大学 一种超支化聚硅氧烷荧光材料及制备方法
EP3835338A1 (en) * 2019-12-11 2021-06-16 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Siloxane based polymeric liquid material and method for preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129577A (zh) * 2017-04-13 2017-09-05 华南理工大学 接枝半胱氨酸的聚硅氧烷嵌段共聚物及制备方法与应用

Also Published As

Publication number Publication date
CN113577313A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
Hu et al. Multimodal‐luminescence core–shell nanocomposites for targeted imaging of tumor cells
Liu et al. pH-mediated fluorescent polymer particles and gel from hyperbranched polyethylenimine and the mechanism of intrinsic fluorescence
Xu et al. A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging
CN1304523C (zh) 基于荧光能量转移原理发光的稀土纳米粒子及制备方法
Huang et al. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging
CN113577313B (zh) 一种靶向识别型超支化聚硅氧烷荧光材料及制备方法和使用方法
Li et al. Specific recognition of breast cancer cells in vitro using near infrared-emitting long-persistence luminescent Zn 3 Ga 2 Ge 2 O 10: Cr 3+ nanoprobes
Maity et al. Folic Acid Functionalized Nanoprobes for Fluorescence‐, Dark‐Field‐, and Dual‐Imaging‐Based Selective Detection of Cancer Cells and Tissue
Feng et al. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells
Martínez et al. 808 nm-activable core@ multishell upconverting nanoparticles with enhanced stability for efficient photodynamic therapy
Niu et al. A new AIE multi-block polyurethane copolymer material for subcellular microfilament imaging in living cells
Ding et al. Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals
Du et al. Highly fluorescent hyperbranched BODIPY-based conjugated polymer dots for cellular imaging
Phuong et al. Synthesis and characterization of NaYF4: Yb3+, Er3+@ silica-N= folic acid nanocomplex for bioimaginable detecting MCF-7 breast cancer cells
Chen et al. Fabrication of AIE-active amphiphilic fluorescent polymeric nanoparticles through host–guest interaction
Trzepiński et al. Dendrimers for fluorescence‐based bioimaging
Cui et al. Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce (IV) redox polymerization
Liu et al. One-pot synthesis of SiO 2-coated Gd 2 (WO 4) 3: Yb 3+/Ho 3+ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition
CN113082206B (zh) 一种大分子一氧化氮供体修饰的上转换纳米粒子、制备方法和应用
Wang et al. Ultra long-term cellular tracing by a fluorescent AIE bioconjugate with good water solubility over a wide pH range
Xu et al. Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics
Li et al. Dynamic rotaxane-branched dendrimers with precisely arranged luminogens for efficient light harvesting
KR101928037B1 (ko) 알지네이트 기반 생체적합성 양친매성 중합체로 기능화된 바이오 이미징용 업컨버젼 발광 나노 입자
Xu et al. Facile fabrication of biodegradable lanthanide ions containing fluorescent polymeric nanoparticles: Characterization, optical properties and biological imaging
CN109646681B (zh) 一种用于体内靶向肿瘤成像与治疗的纳米基因载体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant