CN113570826A - 一种河道滑坡形变识别实现灾害预警的方法与系统 - Google Patents

一种河道滑坡形变识别实现灾害预警的方法与系统 Download PDF

Info

Publication number
CN113570826A
CN113570826A CN202110800400.0A CN202110800400A CN113570826A CN 113570826 A CN113570826 A CN 113570826A CN 202110800400 A CN202110800400 A CN 202110800400A CN 113570826 A CN113570826 A CN 113570826A
Authority
CN
China
Prior art keywords
landslide
monitoring
data
area
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110800400.0A
Other languages
English (en)
Inventor
林格
全绍军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longse Technology Co ltd
Sun Yat Sen University
Original Assignee
Longse Technology Co ltd
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longse Technology Co ltd, Sun Yat Sen University filed Critical Longse Technology Co ltd
Priority to CN202110800400.0A priority Critical patent/CN113570826A/zh
Publication of CN113570826A publication Critical patent/CN113570826A/zh
Priority to PCT/CN2022/086864 priority patent/WO2023284344A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Abstract

本发明公开了一种河道滑坡形变识别实现灾害预警的方法与系统。包括:硬件设置部分,在监测点设置阵列传感器,传感器内部由模块组成,姿态监测模块采集坐标、位移和角度数据,数据采用DTU外部传输,使用太阳能供电方案;模型构建部分,利用采集的数据坐标变换后曲面拟合,结合角度数据搭建滑坡区域的三维模型,并划分滑坡区域和非滑坡区域;监测预警部分,采用灰色Verhulst模型预测滑坡区域监测点位移,结合三维模型,实现对滑坡区域的预警和监测。本发明实现低功耗和可靠性的同时降低设备运行成本,三维模型划分滑坡和非滑坡区域,直观把握滑坡体的实时情况,灰色Verhulst模型能够预测下一时刻的滑坡趋势,达到监测和预警相结合的效果。

Description

一种河道滑坡形变识别实现灾害预警的方法与系统
技术领域
本发明涉及地质监测技术领域,具体涉及一种河道滑坡形变识别实现灾害预警的方法、系统、设备及存储介质。
背景技术
河道滑坡是一种普遍的全球性的自然地质灾害,具有隐蔽性强、破坏性大的特点,滑坡灾害来临时往往只在分秒之间,预防困难,给人类生命财产安全带来了严重危害。因此,对边坡地质结构的监控成为预防河道滑坡地质灾害的重要课题。
目前,现有技术一比如采用GNSS高精度北斗卫星定位系统作为主要监测手段,以雨量计、测斜仪、温湿度计等仪器作为传感器进行综合辅助进行构建。但是,现有滑坡自动化监测系统存在如下缺陷:首先,对于蠕动型地质条件的土质边坡进行大面积监测,为保证监测系统实现安全预警,需要达到一定的监测密度;采用GNSS监测虽然能够保证监测精度,但大量布置GNSS监测设备,会加大监测系统成本,给监测系统的运行带来很大的成本压力。其次,GNSS监测设备功耗高,较难实现低功耗运行,在目前技术条件下,难于在一定区域内大规模密集布设GNSS监测设备。如果监测设备布设密度不足,对某些滑坡灾害可能无法及时发现。
现有技术二通过设置裂缝传感器,当滑坡裂缝产生时,识别形变,通过摄像机采集二维图片,基于计算机图像学将其转换成三维图,达到监测的目的。其缺点是:首先,监测精度较低,可监测参数单一;其次,只能识别裂缝形变达不到整体监测的效果,无法精确监测滑坡状态,无法建立精确的三维模型;最后,实时性较差,无法预测滑坡趋势。
发明内容
本发明的目的是克服现有方法的不足,提出了一种河道滑坡形变识别实现灾害预警的方法。本发明解决的主要问题:一是针对大面积滑坡监测,为了实现可靠性所需要的过高密度监测布置;二是为了保证监测进度而布置的设备运行成本过高;三是应对野外监测环境无法实现低功耗运行;四是解决精度较低,实时性较差,无法建立三维模型,无法预测滑坡趋势。
为了解决上述问题,本发明提出了一种河道滑坡形变识别实现灾害预警的方法,所述方法包括:
在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,姿态监测模块采集坐标数据、位移数据和角度数据,阻抗监测模块采集电缆阻抗数据;
将所述姿态监测模块采集的坐标数据进行变换处理,获得所述阵列传感器离散点的坐标数据,并将数据进行DTU外部传输;
将所述阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型;
输入所述阵列传感器离散点的坐标数据和所述位移数据,利用支持向量机原理将所述滑坡监测区域三维模型划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置;
输入所述阵列传感器离散点的坐标数据和所述位移数据,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
优选地,所述在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,姿态监测模块采集坐标数据、位移数据和角度数据,阻抗监测模块采集电缆阻抗数据,具体为:
监测点设置在靠近滑坡监测剖面,应控制在5m范围内,在滑坡体外稳定的岩层或土层上选取基准点,为监测点提供基准信息;
每个监测点的阵列传感器内部由模块组成,姿态监测模块采集位移数据、坐标数据和角度数据,角度数据对监测点的位姿信息进行确定,帮助建立整个监测区域的三维模型,并监测所在区域的坡度信息;
阻抗监测模块采集电缆阻抗数据,当监测线缆发生断裂或形变时,应力作用导致其阻抗信息发生变化,此时姿态监测模块开始记录对应数据;
通讯模块内部数据传输采用CAN通讯方式,供电模块采用太阳能供电方式。
优选地,所述将所述姿态监测模块采集的坐标数据进行变换处理,获得所述阵列传感器离散点的坐标数据,并将数据进行DTU外部传输,具体为:
将一个所述监测点作为三维坐标的原点,通过点平移的齐次变换和旋转齐次变换方式确定其余每个所述监测点的坐标,获得所有监测点阵列传感器离散点的坐标数据;
所述阵列传感器通常设置在野外河道滑坡区域,采用DTU外部传输和所述CAN内部传输结合,保证传输稳定性;
DTU通过SOCKET方式进行数据之间的传输,需要客户端和服务端,将DTU作为客户端,数据中心作为服务端,DTU之间的传输需要GPRS网络,将云端作为数据中心建立关系以完成DTU之间的无线透传;
选择GPRS DTU的TCP Client协议模式,可四路连接,在此协议下支持长连接和短连接,长连接在完成数据传输后不断开,若没有数据传输则使用心跳包维持连接,短连接在数据传输时先建立一个连接,数据传输完成便断开。
优选地,所述将所述阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型,具体为:
输入所述阵列传感器离散点的坐标数据,根据一定的次序连成曲线,采用三次样条插值法进行曲面拟合;
根据样条函数对定区间[a,b]分段,使用光滑曲线实现分段多项式,
Δ:a=x0<x1<...<xn-1<xn=b上的值yi=f(xi)(i=0,1,...,n)求插值函数S(x),满足(1)S(xi)=yi(i=0,...n),(2)在每一个区间[xi,xi+1](i=0,...n)上S(x)是三次多项式,记Si=(x),(3)S(x)在[a,b]上二阶可微,函数S(x)称为f(x)的三次样条插值函数;
由条件(2),可记S(x)={Si(x),x∈[xi,xi+1],i=0,1,...,n-1},
Si(x)=aix3+bix2+cix+di,其中:ai,bi,ci,di为待定系数,共4n个;
由条件(3),可记,
Figure BDA0003164457920000041
采用上述三次样条插值的方式可将所述阵列传感器离散点的坐标曲面拟合,结合所述角度数据,完成滑坡监测区域三维模型的建立。
优选地,所述输入所述阵列传感器离散点的坐标数据和所述位移数据,利用支持向量机原理将所述滑坡监测区域三维模型划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置,具体为:
输入所述阵列传感器离散点的坐标数据和所述位移数据,判断较大位移的监测点,将位移超过危险阈值的监测点设为原点,物体移动速度的衡量尺度在不同地质滑坡临滑变形速率不相同,一般粘土边坡的临界变形速率为0.1mm/d,岩质边坡一般为10mm/d、14.4mm/d或24mm/d;
采用支持向量机原理,D={(x1,y1),(x2,y2),...,(xm,ym)},D为监测区域,(xi,yi)是监测点传感器离散点的坐标数据;
通过在数据空间中找到对应的划分超平面,可由线性方程公式ωTx+b=0表示,其中ω=(ω1;ω2;...;ωd)是法向量,决定超平面的方向,b是偏移,决定超平面与原点的间距,记为(ω,b),空间中一点x到超平面(ω,b)的距离为:
Figure BDA0003164457920000051
假设超平面(ω,b)能正确分类,对于任意一个监测点(xi,yi)∈D,如果yi=+1,有ωTx+b>0,如果yi=-1,有ωTx+b<0,令:
Figure BDA0003164457920000052
距离超平面最近的几个点使得上式成立,称为“支持向量”,两个异类支持向量到超平面的距离之和为:
Figure BDA0003164457920000053
该式称为“间隔”,计算获得最大的间隔来划分超平面,进而划分出滑坡区域和非滑坡区域,结合所述滑坡监测区域三维模型整体判断滑坡位置。
优选地,所述输入所述阵列传感器离散点的坐标数据和所述位移数据,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警,具体为:
输入所述阵列传感器离散点的坐标数据和所述位移数据,获得需要预测的监测点的阵列传感器的一段时间的位移量数据序列;
Verhulst非线性微分动态位移预报模型公式如下,
Figure BDA0003164457920000061
t0为初始时刻取零,a,b为待定系数,X(0)(t):X(0)(t)={X(0)(1),X(0)(2),...,X(0)(n)}为输入的监测点位移量数据序列;
做一次AGO变换后可得X(1)(t),X(1)(t)={X(1)(1),X(1)(2),...,X(1)(n)},将a/2b代替
Figure BDA0003164457920000062
可得滑坡破坏时刻t:
Figure BDA0003164457920000063
根据上述输出数据t、
Figure BDA0003164457920000064
可以描绘出监测点下一时刻的预测位移-时间图;
监测点灰色Verhulst模型的精度判定公式:
Figure BDA0003164457920000065
其中s1是输入的监测点位移量数据离差,s2是残差的离差,
Figure BDA0003164457920000066
其中C为后验比,P为最小误差,当P≥0.95,C≤0.35时,模型可靠,精度判定合格,此时可根据模型进行预测;
输出的监测点下一时刻的预测位移,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
相应地,本发明还提供了一种河道滑坡形变识别实现灾害预警系统,包括:
硬件设置单元,在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,将采集的坐标数据进行变换处理,并将数据进行DTU外部传输;
模型构建单元,将阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型,并划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置;
监测预警单元,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
相应地,本发明还提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行上述一种河道滑坡形变识别实现灾害预警的方法的步骤。
相应地,本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述一种河道滑坡形变识别实现灾害预警的方法的步骤。
实施本发明,具有如下有益效果:
第一,本发明通过合理布置并充分利用阵列传感器建立监测线组成监测网,根据复杂环境利用太阳能供电方案和可靠的数据传输方案,实现低功耗和可靠性的同时降低设备运行成本;第二,阵列传感器采集不同数据提高数据的精度,并建立的三维模型划分滑坡和非滑坡区域,直观把握滑坡体的实时情况;第三,本发明采用灰色Verhulst模型体现事物的繁衍、生长、成熟、消亡的过程,与滑坡的演变具有相似性,同时Verhulst模型需要数据量小,能够预测下一时刻的滑坡趋势,达到监测和预警相结合的效果。
附图说明
图1一种河道滑坡形变识别实现灾害预警的方法总体流程图;
图2传感器数据DTU远传图;
图3滑坡监测区域三维模型构建流程图;
图4滑坡区域划分流程图;
图5监测点位移预测模型逻辑图;
图6一种河道滑坡形变识别实现灾害预警系统图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术发明进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例的一种河道滑坡形变识别实现灾害预警的方法总体流程图,如图1所示,该方法包括:
S1,在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,姿态监测模块采集坐标数据、位移数据和角度数据,阻抗监测模块采集电缆阻抗数据;
S2,将所述姿态监测模块采集的坐标数据进行变换处理,获得所述阵列传感器离散点的坐标数据,并将数据进行DTU外部传输;
S3,将所述阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型;
S4,输入所述阵列传感器离散点的坐标数据和所述位移数据,利用支持向量机原理将所述滑坡监测区域三维模型划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置;
S5,输入所述阵列传感器离散点的坐标数据和所述位移数据,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
步骤S1,具体如下:
S1-1:监测点要尽量靠近滑坡的监测剖面,应控制在5m范围之内,在滑坡体30m以外稳定的岩层或稳定的土层上选取基准点,每个监测点的传感器内部由模块组成,姿态监测模块采集位移、角度和坐标数据,阻抗监测模块采集电缆阻抗,CAN通讯模块实现内部通讯功能,同时还有供电模块实现稳定供电。
S1-2:对S1-1中的模块采集的各种数据进行内部CAN传输。CAN通讯方式传递裂变信息、姿态信息、位移信息等滑坡体信息。
S1-3:供电模块采用太阳能供电方案。能电池板受到太阳光的辐射,基于光电效应的原理将太阳光能转换成电能,并对蓄电池进行充电将电能转化成化学能,与此同时通过DC-DC电源变换模块对整个阵列传感器和其他设备进行供电。
步骤S2,具体如下:
S2-1:如图2所示,阵列传感器通常设置在野外河道滑坡区域,监测地段环境复杂且距离一般较远,本实施例中采用DTU传输方式与传感器内部CAN传输方式结合。
S2-2:DTU通过SOCKET方式进行数据之间的传输,需要客户端和服务端。将DTU作为客户端,数据中心作为服务端。DTU之间的传输需要GPRS网络,将云端作为数据中心建立关系以完成DTU之间的无线透传。GPRS DTU进行GPRS通讯,将串口端的数据发送到网络端,也可接受网络端的数据以串口数据形式输出。本实施例中选择GPRS DTU的TCP Client协议模式,可四路连接。在此协议下支持长连接和短连接。长连接在完成数据传输后不断开,若没有数据传输则使用心跳包维持连接。短连接在数据传输时先建立一个连接,数据传输完成便断开。
步骤S3,具体如下:
S3-1:如图3所示,输入S1中的每个传感器监测点的坐标和传感器姿态模块采集的位姿数据,经过S2的数据传输后,进行插值曲面拟合,划分滑坡区域和非滑坡区域,建立三维模型。
S3-2:输入S1中阵列传感器的xyz坐标数据,将一个监测点设为三维坐标的原点,可通过点平移的齐次变换和旋转齐次变换方式确定每个监测点的坐标,便可以等到整个阵列传感器的所有监测点的坐标关系。
S3-3:输入S3-2得到的阵列传感器的离散点坐标,根据一定的次序连成曲线,进行曲面拟合,本实施例中采用三次样条插值法。
根据样条函数对定区间[a,b]分段,使用光滑曲线实现分段多项式。
Δ:a=x0<x1<...<xn-1<xn=b上的值yi=f(xi)(i=0,1,...,n)求插值函数S(x),使得
1).S(xi)=yi(i=0,...n),
2).在每一个区间[xi,xi+1](i=0,...n)上S(x)是三次多项式,记Si=(x)
3).S(x)在[a,b]上二阶可微,函数S(x)称为f(x)的三次样条插值函数。
由条件2,可记
S(x)={Si(x),x∈[xi,xi+1],i=0,1,...,n-1}
Si(x)=aix3+bix2+cix+di,其中:ai,bi,ci,di为待定系数,共4n个。
由条件3,可记
Figure BDA0003164457920000101
采用三次样条插值的方式,可将坐标曲面拟合。经过曲面拟合之后,便完成滑坡的三维模型的构建,但仍需要进行滑坡区域划分,以便在三维模型上更直观看出滑坡区域和非滑坡区域。
步骤S4,具体如下:
S4-1:如图4所示,输入S3-2中监测点的离散坐标和S1中传感器的姿态模块的位移,判断较大位移的监测点,将位移超过危险阈值的监测点作为滑坡的区域,对监测域进行划分为滑坡区域和非滑坡区域,输出原始数据,结合S3-3中建立的三维模型,监测人员根据此模型对滑坡形变整体判断。物体移动速度的衡量尺度在不同地质滑坡临滑变形速率不相同,一般粘土边坡的临界变形速率为0.1mm/d,岩质边坡一般为10mm/d、14.4mm/d或24mm/d。
S4-2:本发明利用支持向量原理进行区域划分。支持向量机原理,令监测区域为D,D={(x1,y1),(x2,y2),...,(xm,ym)},(xi,yi)是监测点坐标,通过在数据空间中找到对应的划分超平面,将检测面划分为滑坡区域和非滑坡区域,可由线性方程公式表示。
ωTx+b=0
其中ω=(ω1;ω2;...;ωd)是法向量,决定超平面的方向,b是偏移,决定超平面与原点的间距,记为(ω,b)。空间中一点x到超平面(ω,b)的距离为:
Figure BDA0003164457920000111
假设超平面(ω,b)能正确分类,对于任意一点(xi,yi)∈D,如果yi=+1,有ωTx+b>0;如果yi=-1,有ωTx+b<0。令:
Figure BDA0003164457920000112
距离超平面最近的几个点使得上式成立,称为“支持向量”,两个异类支持向量到超平面的距离之和为:
Figure BDA0003164457920000113
该式称为“间隔”,计算获得最大的间隔来划分超平面,进而划分滑坡区域和非滑坡区域。
步骤S5,具体如下:
S5-1:如图5所示,输入S1中阵列传感器姿态模块读取监测点离散的坐标信息和S4-2中划分的滑坡区域中传感器监测点一段时间内的滑坡位移量,利用灰色Verhulst模型模拟预测监测点位移,输出下一时刻该监测点的预测位移值,在S3-3建立的三维模型辅助下,监测人员可以实现对整体滑坡监测和预警。
S5-2:Verhulst非线性微分动态预报模型公式如下,输出的是滑坡监测点下一时刻预测位移值:
Figure BDA0003164457920000121
t0为初始时刻取零,a,b为待定系数,X(0)(t):X(0)(t)={X(0)(1),X(0)(2),...,X(0)(n)}为输入的监测数据序列,做一次AGO变换后可得X(1)(t),X(1)(t)={X(1)(1),X(1)(2),...,X(1)(n)}。
将a/2b代替
Figure BDA0003164457920000122
可得滑坡破坏时刻t:
Figure BDA0003164457920000123
根据上述输出数据t、
Figure BDA0003164457920000124
可以描绘出滑坡监测点下一时刻的预测位移-时间图。
S5-3:监测点灰色Verhulst模型的精度判定公式:
Figure BDA0003164457920000125
其中s1是S4-1输入的监测数据离差,s2是残差的离差,
Figure BDA0003164457920000126
其中C为后验比,P为最小误差,当P≥0.95,C≤0.35时,模型可靠,精度判定合格,此时可根据模型进行预测。
相应地,本发明还提供了一种河道滑坡形变识别实现灾害预警系统,如图6所示,包括:
硬件设置单元1,在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,将采集的坐标数据进行变换处理,并将数据进行DTU外部传输。
具体地,监测点设置在靠近滑坡监测剖面,应控制在5m范围内,在滑坡体外稳定的岩层或土层上选取基准点,为监测点提供基准信息,每个监测点的阵列传感器内部由模块组成,姿态监测模块采集位移数据、坐标数据和角度数据,角度数据对监测点的位姿信息进行确定,帮助建立整个监测区域的三维模型,并监测所在区域的坡度信息,阻抗监测模块采集电缆阻抗数据,当监测线缆发生断裂或形变时,应力作用导致其阻抗信息发生变化,此时姿态监测模块开始记录对应数据,通讯模块内部数据传输采用CAN通讯方式,供电模块采用太阳能供电方式,所述阵列传感器通常设置在野外河道滑坡区域,采用DTU外部传输和所述CAN内部传输结合,保证传输稳定性。
模型构建单元2,将阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型,并划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置。
具体地,将阵列传感器离散点的坐标数据进行插值曲面拟合,采用三次样条插值法,结合所述角度数据,建立滑坡监测区域的三维模型,利用支持向量机原理将滑坡监测区域三维模型划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置。
监测预警单元3,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
具体地,输入所述阵列传感器离散点的坐标数据和所述位移数据,获得需要预测的监测点的阵列传感器的一段时间的位移量数据序列,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合滑坡监测区域三维模型整体实现滑坡监测和预警。
因此,本发明通过布置阵列传感器,设置数据处理和传输硬件,实现低成本下对滑坡区域进行高密度的监测,满足精度要求的同时采用太阳能供电,设备运行功耗低且稳定性高;同时搭建滑坡区域的三维模型,实现对滑坡区域的整体监测,有利于对滑坡发生时的应急反应;最后通过灰色Verhulst模型预测滑坡区域监测点位移,与滑坡区域三维模型结合,真正实现了动态的滑坡监测和预警。
相应地,本发明还提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述一种河道滑坡形变识别实现灾害预警的方法的步骤。同时,本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述船舶识别方法的步骤。
以上对本发明实施例所提供的一种河道滑坡形变识别实现灾害预警的方法、系统、设备及存储介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (12)

1.一种河道滑坡形变识别实现灾害预警的方法,其特征在于,所述方法包括:
在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,姿态监测模块采集坐标数据、位移数据和角度数据,阻抗监测模块采集电缆阻抗数据;
将所述姿态监测模块采集的坐标数据进行变换处理,获得所述阵列传感器离散点的坐标数据,并将数据进行DTU外部传输;
将所述阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型;
输入所述阵列传感器离散点的坐标数据和所述位移数据,利用支持向量机原理将所述滑坡监测区域三维模型划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置;
输入所述阵列传感器离散点的坐标数据和所述位移数据,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
2.如权利要求1所述的一种河道滑坡形变识别实现灾害预警的方法,其特征在于,所述在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,姿态监测模块采集坐标数据、位移数据和角度数据,阻抗监测模块采集电缆阻抗数据,具体为:
监测点设置在靠近滑坡监测剖面,应控制在5m范围内,在滑坡体外稳定的岩层或土层上选取基准点,为监测点提供基准信息;
每个监测点的阵列传感器内部由模块组成,姿态监测模块采集位移数据、坐标数据和角度数据,角度数据对监测点的位姿信息进行确定,帮助建立整个监测区域的三维模型,并监测所在区域的坡度信息;
阻抗监测模块采集电缆阻抗数据,当监测线缆发生断裂或形变时,应力作用导致其阻抗信息发生变化,此时姿态监测模块开始记录对应数据;
通讯模块内部数据传输采用CAN通讯方式,供电模块采用太阳能供电方式。
3.如权利要求1所述的一种河道滑坡形变识别实现灾害预警的方法,其特征在于,将所述姿态监测模块采集的坐标数据进行变换处理,获得所述阵列传感器离散点的坐标数据,并将数据进行DTU外部传输,具体为:
将一个所述监测点作为三维坐标的原点,通过点平移的齐次变换和旋转齐次变换方式确定其余每个所述监测点的坐标,获得所有监测点阵列传感器离散点的坐标数据;
所述阵列传感器通常设置在野外河道滑坡区域,采用DTU外部传输和所述CAN内部传输结合,保证传输稳定性;
DTU通过SOCKET方式进行数据之间的传输,需要客户端和服务端,将DTU作为客户端,数据中心作为服务端,DTU之间的传输需要GPRS网络,将云端作为数据中心建立关系以完成DTU之间的无线透传;
选择GPRSDTU的TCP Client协议模式,可四路连接,在此协议下支持长连接和短连接,长连接在完成数据传输后不断开,若没有数据传输则使用心跳包维持连接,短连接在数据传输时先建立一个连接,数据传输完成便断开。
4.如权利要求1所述的一种河道滑坡形变识别实现灾害预警的方法,其特征在于,将所述阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型,具体为:
输入所述阵列传感器离散点的坐标数据,根据一定的次序连成曲线,采用三次样条插值法进行曲面拟合;
根据样条函数对定区间[a,b]分段,使用光滑曲线实现分段多项式,
Δ:a=x0<x1<...<xn-1<xn=b上的值yi=f(xi)(i=0,1,...,n)求插值函数S(x),满足(1)S(xi)=yi(i=0,...n),(2)在每一个区间[xi,xi+1](i=0,...n)上S(x)是三次多项式,记Si=(x),(3)S(x)在[a,b]上二阶可微,函数S(x)称为f(x)的三次样条插值函数;
由条件(2),可记S(x)={Si(x),x∈[xi,xi+1],i=0,1,...,n-1},
Si(x)=aix3+bix2+cix+di,其中:ai,bi,ci,di为待定系数,共4n个;
由条件(3),可记,
Figure FDA0003164457910000031
采用上述三次样条插值的方式可将所述阵列传感器离散点的坐标曲面拟合,结合所述角度数据修正,完成滑坡监测区域三维模型的建立。
5.如权利要求1所述的一种河道滑坡形变识别实现灾害预警的方法,其特征在于,所述输入所述阵列传感器离散点的坐标数据和所述位移数据,利用支持向量机原理将所述滑坡监测区域三维模型划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置,具体为:
输入所述阵列传感器离散点的坐标数据和所述位移数据,判断较大位移的监测点,将位移超过危险阈值的监测点设为原点,物体移动速度的衡量尺度在不同地质滑坡临滑变形速率不相同,一般粘土边坡的临界变形速率为0.1mm/d,岩质边坡一般为10mm/d、14.4mm/d或24mm/d;
采用支持向量机原理,D={(x1,y1),(x2,y2),...,(xm,ym)},D为监测区域,(xi,yi)是监测点传感器离散点的坐标数据;
通过在数据空间中找到对应的划分超平面,可由线性方程公式ωTx+b=0表示,其中ω=(ω1;ω2;...;ωd)是法向量,决定超平面的方向,b是偏移,决定超平面与原点的间距,记为(ω,b),空间中一点x到超平面(ω,b)的距离为:
Figure FDA0003164457910000041
假设超平面(ω,b)能正确分类,对于任意一个监测点(xi,yi)∈D,如果yi=+1,有ωTx+b>0,如果yi=-1,有ωTx+b<0,令:
Figure FDA0003164457910000042
距离超平面最近的几个点使得上式成立,称为“支持向量”,两个异类支持向量到超平面的距离之和为:
Figure FDA0003164457910000043
该式称为“间隔”,计算获得最大的间隔来划分超平面,进而划分出滑坡区域和非滑坡区域,结合所述滑坡监测区域三维模型整体判断滑坡位置。
6.如权利要求1所述的一种河道滑坡形变识别实现灾害预警的方法,其特征在于,所述输入所述阵列传感器离散点的坐标数据和所述位移数据,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警,具体为:
输入所述阵列传感器离散点的坐标数据和所述位移数据,获得需要预测的监测点的阵列传感器的一段时间的位移量数据序列;
Verhulst非线性微分动态位移预报模型公式如下,
Figure FDA0003164457910000051
t0为初始时刻取零,a,b为待定系数,X(0)(t):X(0)(t)={X(0)(1),X(0)(2),...,X(0)(n)}为输入的监测点位移量数据序列;
做一次AGO变换后可得X(1)(t),X(1)(t)={X(1)(1),X(1)(2),...,X(1)(n)},将a/2b代替
Figure FDA0003164457910000052
可得滑坡破坏时刻t:
Figure FDA0003164457910000053
根据上述输出数据t、
Figure FDA0003164457910000054
可以描绘出监测点下一时刻的预测位移-时间图;
监测点灰色Verhulst模型的精度判定公式:
Figure FDA0003164457910000055
其中s1是输入的监测点位移量数据离差,s2是残差的离差,
Figure FDA0003164457910000056
其中C为后验比,P为最小误差,当P≥0.95,C≤0.35时,模型可靠,精度判定合格,此时可根据模型进行预测;
输出的监测点下一时刻的预测位移,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
7.一种河道滑坡形变识别实现灾害预警系统,其特征在于,所述系统包括:
硬件设置单元,在监测点设置阵列传感器,阵列传感器内部由姿态监测模块、阻抗监测模块、通讯模块和供电模块组成,将采集的坐标数据进行变换处理,并将数据进行DTU外部传输;
模型构建单元,将阵列传感器离散点的坐标数据进行插值曲面拟合,结合所述角度数据,建立滑坡监测区域的三维模型,并划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置;
监测预警单元,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合所述滑坡监测区域三维模型,实现对整体滑坡监测和预警。
8.如权利要求7所述的一种河道滑坡形变识别实现灾害预警系统,其特征在于,所述硬件设置单元,监测点设置在靠近滑坡监测剖面,应控制在5m范围内,在滑坡体外稳定的岩层或土层上选取基准点,为监测点提供基准信息,每个监测点的阵列传感器内部由模块组成,姿态监测模块采集位移数据、坐标数据和角度数据,角度数据对监测点的位姿信息进行确定,帮助建立整个监测区域的三维模型,并监测所在区域的坡度信息,阻抗监测模块采集电缆阻抗数据,当监测线缆发生断裂或形变时,应力作用导致其阻抗信息发生变化,此时姿态监测模块开始记录对应数据,通讯模块内部数据传输采用CAN通讯方式,供电模块采用太阳能供电方式,所述阵列传感器通常设置在野外河道滑坡区域,采用DTU外部传输和所述CAN内部传输结合,保证传输稳定性。
9.如权利要求7所述的一种河道滑坡形变识别实现灾害预警系统,其特征在于,所述模型构建单元,将阵列传感器离散点的坐标数据进行插值曲面拟合,采用三次样条插值法,结合所述角度数据,建立滑坡监测区域的三维模型,利用支持向量机原理将滑坡监测区域三维模型划分为滑坡区域和非滑坡区域,结合该三维模型整体判断滑坡位置。
10.如权利要求7所述的一种河道滑坡形变识别实现灾害预警系统,其特征在于,所述监测预警单元,输入所述阵列传感器离散点的坐标数据和所述位移数据,获得需要预测的监测点的阵列传感器的一段时间的位移量数据序列,采用灰色Verhulst模型预测滑坡区域监测点位移,输出下一时刻滑坡位移量,结合滑坡监测区域三维模型整体实现滑坡监测和预警。
11.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至6中任一项所述的方法的步骤。
12.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至6中任一项所述的方法的步骤。
CN202110800400.0A 2021-07-15 2021-07-15 一种河道滑坡形变识别实现灾害预警的方法与系统 Pending CN113570826A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110800400.0A CN113570826A (zh) 2021-07-15 2021-07-15 一种河道滑坡形变识别实现灾害预警的方法与系统
PCT/CN2022/086864 WO2023284344A1 (zh) 2021-07-15 2022-04-14 一种河道滑坡形变识别实现灾害预警的方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110800400.0A CN113570826A (zh) 2021-07-15 2021-07-15 一种河道滑坡形变识别实现灾害预警的方法与系统

Publications (1)

Publication Number Publication Date
CN113570826A true CN113570826A (zh) 2021-10-29

Family

ID=78164935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110800400.0A Pending CN113570826A (zh) 2021-07-15 2021-07-15 一种河道滑坡形变识别实现灾害预警的方法与系统

Country Status (2)

Country Link
CN (1) CN113570826A (zh)
WO (1) WO2023284344A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289006A (zh) * 2020-10-30 2021-01-29 中国地质环境监测院 山体滑坡风险监测预警方法和系统
CN114973602A (zh) * 2022-05-13 2022-08-30 西南科技大学 一种山体滑坡监测预报警方法及系统
WO2023284344A1 (zh) * 2021-07-15 2023-01-19 长视科技股份有限公司 一种河道滑坡形变识别实现灾害预警的方法与系统
CN116561563A (zh) * 2023-07-11 2023-08-08 电子科技大学 一种基于残差预测模型的边坡位移预测方法及相关装置
CN116625437A (zh) * 2023-07-21 2023-08-22 沈阳仪表科学研究院有限公司 一种多参数金属波纹管在线监测装置及方法
CN116980202A (zh) * 2023-07-27 2023-10-31 广州尚全信息技术有限公司 一种网络安全运维监控方法及系统
CN117367342A (zh) * 2023-12-07 2024-01-09 中国地质调查局水文地质环境地质调查中心 一种滑坡位移监测系统
CN117493833A (zh) * 2023-12-29 2024-02-02 江西飞尚科技有限公司 一种滑坡变形阶段识别方法、系统、存储介质及计算机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115994845B (zh) * 2023-03-24 2023-06-30 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种基于互联网的山水治理监管方法和系统
CN116108758B (zh) * 2023-04-10 2023-06-27 中南大学 滑坡易发性评价方法
CN116295189B (zh) * 2023-05-17 2023-08-11 山东遂真信息技术有限公司 一种大坝位移监测方法
CN116612614B (zh) * 2023-06-12 2023-12-26 北京瑞风协同科技股份有限公司 一种基于三维模型的物理量实时比对分析报警装置及系统
CN116792155A (zh) * 2023-06-26 2023-09-22 华南理工大学 一种基于分布式光纤传感的隧道健康状态监测预警方法
CN117236044A (zh) * 2023-09-27 2023-12-15 东北农业大学 一种冻融过程中边坡土体水-热-力分布状态可视化方法
CN117132007B (zh) * 2023-10-29 2024-03-08 四川轻化工大学 一种基于动态串联pso-bilstm的滑坡变形速率预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005104A (zh) * 2009-09-02 2011-04-06 吴立新 滑坡体位移和姿态远距离快速监测报警装置及方法
CN103077585A (zh) * 2013-01-09 2013-05-01 中铁二十一局集团有限公司 高边坡综合稳定性远程三维数字安全预警方法与系统
CN108332649A (zh) * 2018-02-07 2018-07-27 桂林电子科技大学 一种滑坡形变综合预警方法及系统
CN109686053A (zh) * 2018-12-27 2019-04-26 航天信息股份有限公司 一种实时监测山体滑坡的方法和系统
CN111504268A (zh) * 2020-04-22 2020-08-07 深圳市地质局 一种土质边坡险情智能预警预报方法
CN112629714A (zh) * 2020-11-01 2021-04-09 西南交通大学 用于岩土体内部空间应力状态无线智能监测系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953430B2 (ja) * 2006-09-19 2012-06-13 国際航業株式会社 ダムの外部変形評価方法、評価装置および評価プログラム
JP7059466B2 (ja) * 2017-11-02 2022-04-26 国際航業株式会社 予測座標変動算出システム
CN113570826A (zh) * 2021-07-15 2021-10-29 长视科技股份有限公司 一种河道滑坡形变识别实现灾害预警的方法与系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005104A (zh) * 2009-09-02 2011-04-06 吴立新 滑坡体位移和姿态远距离快速监测报警装置及方法
CN103077585A (zh) * 2013-01-09 2013-05-01 中铁二十一局集团有限公司 高边坡综合稳定性远程三维数字安全预警方法与系统
CN108332649A (zh) * 2018-02-07 2018-07-27 桂林电子科技大学 一种滑坡形变综合预警方法及系统
CN109686053A (zh) * 2018-12-27 2019-04-26 航天信息股份有限公司 一种实时监测山体滑坡的方法和系统
CN111504268A (zh) * 2020-04-22 2020-08-07 深圳市地质局 一种土质边坡险情智能预警预报方法
CN112629714A (zh) * 2020-11-01 2021-04-09 西南交通大学 用于岩土体内部空间应力状态无线智能监测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李皓飞: "滑坡预测中阵列传感器的研究", 《硕士学位论文》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289006A (zh) * 2020-10-30 2021-01-29 中国地质环境监测院 山体滑坡风险监测预警方法和系统
WO2023284344A1 (zh) * 2021-07-15 2023-01-19 长视科技股份有限公司 一种河道滑坡形变识别实现灾害预警的方法与系统
CN114973602A (zh) * 2022-05-13 2022-08-30 西南科技大学 一种山体滑坡监测预报警方法及系统
CN116561563B (zh) * 2023-07-11 2023-09-29 电子科技大学 一种基于残差预测模型的边坡位移预测方法及相关装置
CN116561563A (zh) * 2023-07-11 2023-08-08 电子科技大学 一种基于残差预测模型的边坡位移预测方法及相关装置
CN116625437B (zh) * 2023-07-21 2023-10-03 沈阳仪表科学研究院有限公司 一种多参数金属波纹管在线监测装置及方法
CN116625437A (zh) * 2023-07-21 2023-08-22 沈阳仪表科学研究院有限公司 一种多参数金属波纹管在线监测装置及方法
CN116980202A (zh) * 2023-07-27 2023-10-31 广州尚全信息技术有限公司 一种网络安全运维监控方法及系统
CN116980202B (zh) * 2023-07-27 2023-12-26 广州尚全信息技术有限公司 一种网络安全运维监控方法及系统
CN117367342A (zh) * 2023-12-07 2024-01-09 中国地质调查局水文地质环境地质调查中心 一种滑坡位移监测系统
CN117367342B (zh) * 2023-12-07 2024-03-12 中国地质调查局水文地质环境地质调查中心 一种滑坡位移监测系统
CN117493833A (zh) * 2023-12-29 2024-02-02 江西飞尚科技有限公司 一种滑坡变形阶段识别方法、系统、存储介质及计算机
CN117493833B (zh) * 2023-12-29 2024-04-09 江西飞尚科技有限公司 一种滑坡变形阶段识别方法、系统、存储介质及计算机

Also Published As

Publication number Publication date
WO2023284344A1 (zh) 2023-01-19

Similar Documents

Publication Publication Date Title
CN113570826A (zh) 一种河道滑坡形变识别实现灾害预警的方法与系统
CN110794855A (zh) 一种水下机器人综合控制系统及其方法
CN111062326B (zh) 一种基于几何驱动的自监督人体3d姿态估计网络训练方法
WO2013078885A1 (zh) 杆塔位移监测系统及其监测方法
CN102299948A (zh) 振动环境下建筑结构层间位移的无线检测系统及方法
CN112414393B (zh) 基于多元传感器的界桩状态监测方法与装置
CN110929402A (zh) 一种基于不确定分析的概率地形估计方法
CN113075686A (zh) 一种基于多传感器融合的电缆沟智能巡检机器人建图方法
CN112556632A (zh) 一种利用协同精密定位监测地质体形变的方法及结构
CN111551168A (zh) 一种水下机器人位姿数据采集系统及其数据融合方法
Lei et al. Multisource information fusion-based environment perception and dynamic model of underwater vehicle in irregular ocean environment
CN205138544U (zh) 基于互联网的智能测量与管理一体化系统
CN112762935B (zh) 一种基于船体姿态监测的定位方法及系统
Wang et al. Robust filter method for SINS/DVL/USBL tight integrated navigation system
CN116499426A (zh) 一种基于姿态解算的风电塔筒倾斜、变形监测方法
CN116242771A (zh) 一种基于数字孪生的油气管线杂散电流腐蚀监测系统
KR20120017837A (ko) 선박의 위치 또는 모션 측정 시스템
CN111650587B (zh) 一种顾及移动规律的矿区地表三维动态形变估计方法、装置及存储介质
Xu et al. Probabilistic membrane computing-based SLAM for patrol UAVs in coal mines
TWM506964U (zh) 感測裝置與陣列型感測器量測系統
CN114279416A (zh) 一种用于海底地形参数及化学参数原位测量的系统
CN114266824A (zh) 一种基于深度学习的非合作目标相对位姿测量方法、系统
Chen et al. Path planning of underwater terrain-aided navigation based on improved artificial potential field method
KR101193624B1 (ko) 선박의 위치 또는 모션 측정방법
CN111551234A (zh) 水位测量方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211029

RJ01 Rejection of invention patent application after publication