CN113567919A - 一种通信信号的时频差参数联合估计gpu实现方法 - Google Patents

一种通信信号的时频差参数联合估计gpu实现方法 Download PDF

Info

Publication number
CN113567919A
CN113567919A CN202110580352.9A CN202110580352A CN113567919A CN 113567919 A CN113567919 A CN 113567919A CN 202110580352 A CN202110580352 A CN 202110580352A CN 113567919 A CN113567919 A CN 113567919A
Authority
CN
China
Prior art keywords
time
gpu
frequency difference
difference parameter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110580352.9A
Other languages
English (en)
Inventor
侯素霞
夏畅雄
董剑峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Kedian Aerospace Technology Co ltd
Original Assignee
Beijing Kedian Aerospace Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Kedian Aerospace Technology Co ltd filed Critical Beijing Kedian Aerospace Technology Co ltd
Priority to CN202110580352.9A priority Critical patent/CN113567919A/zh
Publication of CN113567919A publication Critical patent/CN113567919A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/425Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between signals derived from different satellite radio beacon positioning systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种通信信号的时频差参数联合估计GPU实现方法,该方法包括设定联合估计的分段次数,并将通信信号数据从CPU拷贝至GPU内存;利用CUDA核函数根据设定的分段次数对通信信号数据进行分段式时频差参数联合估计;将时频差参数联合估计结果传回CPU内存,并释放显存资源。本发明通过充分利用GPU的并行计算能力,极大的提高了时频差参数估计运算效率,能够在精度不变的情况下,其时效性远远超过原先的CPU系统,极大满足了当前实时定位系统的要求。

Description

一种通信信号的时频差参数联合估计GPU实现方法
技术领域
本发明涉及通信定位技术领域,具体涉及一种通信信号的时频差参数联合 估计GPU实现方法。
背景技术
TDOA/FDOA指标可用于联合定位系统,TDOA和FDOA的估计精度直接 影响到定位的精度,处理速度直接影响定位系统的实时性。传统的定位系统采 用CPU实现,该方法的处理耗时会随着数据量增加,线性增加。当使用场景无 时频差值先验条件,则需进行超过2G数据量的时频差参数估计计算,CPU模式 的定位系统则几乎无法实时使用。随着高性能计算(HPC)领域取得可极大的 发展,尤其是GPU-CPU异构架构的出现,直接将线性控制和大数据并发计算协 同成为可能。
传统的参数估计流程采用串行模式的CPU计算架构,当数据量大时候,串 行计算将非常耗时,且会随着计算量的变化,计算耗时线性增加,所以耗时问 题急需要解决。
发明内容
针对现有技术中的上述不足,本发明提供了一种通信信号的时频差参数联 合估计GPU实现方法。
为了达到上述发明目的,本发明采用的技术方案为:
一种通信信号的时频差参数联合估计GPU实现方法,包括以下步骤:
S1、设定联合估计的分段次数,并将通信信号数据从CPU拷贝至GPU内 存;
S2、利用CUDA核函数根据步骤S1设定的分段次数对通信信号数据进行 分段式时频差参数联合估计;
S3、将步骤S2得到的时频差参数联合估计结果传回CPU内存,并释放显 存资源。
进一步地,所述步骤S1具体包括以下分步骤:
S11、预估当前时频差参数联合估计所需分配的内存大小;
S12、获取GPU性能数据;
S13、根据步骤S11预估的内存大小和步骤S12获取的GPU性能数据确定 联合估计的分段次数;
S14、分配GPU内存;
S15、将通信信号数据从CPU拷贝至步骤S14分配的GPU内存。
进一步地,所述分段次数的计算公式为:
Figure BDA0003085922190000021
其中,m为分段次数,N为数据长度,fs为时间搜索范围,tr为数据采样率, Y为GPU的内存空间。
进一步地,所述步骤S2具体包括以下分步骤:
S21、采用GPU并行模式按照设定的分段次数分别对主星信号和邻星信号 进行移位共轭点乘;
S22、对步骤S21得到的移位共轭点乘结果进行基于CUDA的快速傅里叶 变换;
S23、对步骤S22得到的快速傅里叶变换结果计算频域搜索范围内的功率谱 值;
S24、采用并行规约算法和共享内存策略对步骤S23得到的功率谱值计算最 大值和均值,得到时频差参数估计值和参考SNR值。
进一步地,所述步骤S21具体包括以下分步骤:
S211、将邻星信号y按照时差搜索范围进行R-M+1次移位;其中M为时 差搜索起始点索引,R为时差搜索终点索引;
S212、对移位后的邻星信号按顺序进行共轭计算,得到邻星信号的移位共 轭矩阵,表示为
Figure BDA0003085922190000031
其中,B为邻星信号的移位共轭矩阵,
Figure BDA0003085922190000032
为对应邻星信号进行一次时间移 位后的信号数据,N为数据长度;
S213、将步骤S212得到的邻星信号的移位共轭矩阵与主星信号进行点乘计 算,得到主星信号和邻星信号的移位共轭点乘矩阵,表示为
Figure BDA0003085922190000033
其中,C为主星信号和邻星信号的移位共轭点乘矩阵,A为主星信号, A=[x1 x2 x3… xN]。
进一步地,所述步骤S21还包括将GPU的每个线程与主星信号和邻星信号 的移位共轭点乘矩阵中的每个矩阵元素数据对应,采用二维网格和二维块表征 主星信号和邻星信号的移位共轭点乘矩阵,建立主星信号和邻星信号的移位共 轭点乘矩阵行索引和列索引与其存储索引位置的对应关系。
进一步地,所述步骤S22具体包括以下分步骤:
S221、利用CUDA核函数调用cuFFTPlanMany函数生成FFTPlan;
S222、利用CUDA核函数调用cufftExecZ2Z计算快速傅里叶变换结果,表 示为:
Figure BDA0003085922190000041
其中,D为快速傅里叶变换矩阵,FFT为快速傅里叶变换操作。
进一步地,所述步骤S23具体包括以下分步骤:
S231、将步骤S22得到的快速傅里叶变换结果进行FFTShift移位,将零频 分量移到频谱中心,表示为
Figure BDA0003085922190000042
其中,Shift_D为FFTShift移位矩阵;
S232、根据步骤S231得到的FFTShift移位矩阵计算广义功率谱幅度值,表 示为
Figure BDA0003085922190000051
其中,E为广义功率谱幅度值,P为频域搜索起始位置索引,Q为频域搜索 结束位置索引。
进一步地,所述步骤S24具体包括以下分步骤:
S241、将全局内存拷贝到共享内存中,在第一次加载内存时,对步骤S23 得到的功率谱值计算最大值或累加和;
S242、根据数据长度和GPU支持的最大线程数,设定块个数,在每个线程 块中采用单指令多数据流模式执行并行规约计算,并将最终规约得到的值存储 在结果数组的块索引位置,每次计算归并最大线程数倍的数据长度,通过不断 迭代,直到归并成一个数值,得到该最大值对应的索引;
S243、根据步骤S242得到的最大值对应的索引计算时频差参数估计值,并 根据得到的最大值和广义功率谱幅度值均值计算参考SNR值,表示为
dto=i·1/fs+t0=i·1/fs+M·1/fs=(M+i)/fs
dfo=j·fs/N+f0=j·fs/N+(-fs/2+P·fs/N)=(j+P)·fs/N-fs/2
Figure BDA0003085922190000052
其中,dto为时差参数估计值,dfo为频差参数估计值,(i,j)为最大值对应 的索引,fs为采样率,f0为频域搜索范围的起始频率,t0为时差搜索起始时间, M为时差搜索起始点索引,P为频差搜索起始点索引,emax为广义功率谱幅度值 最大值,Emean为广义功率谱幅度值均值。
本发明具有以下有益效果:
本发明通过充分利用GPU的并行计算能力,极大的提高了时频差参数估计 运算效率,能够在精度不变的情况下,其时效性远远超过原先的CPU系统,极 大满足了当前实时定位系统的要求。
附图说明
图1为本发明方法的流程示意图;
图2为本发明实施例中互模糊函数示意图;
图3为本发明实施例中GPU分段式参数估计流程示意图;
图4为本发明实施例中规约流程示意图;
图5为本发明实施例中并行处理加速比曲线示意图。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理 解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的 普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精 神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保 护之列。
参照图1,本发明实施例提供了一种通信信号的时频差参数联合估计GPU 实现方法,包括以下步骤S1至S3:
S1、设定联合估计的分段次数,并将通信信号数据从CPU拷贝至GPU内 存;
在本实施例中,步骤S1具体包括以下分步骤:
S11、预估当前时频差参数联合估计所需分配的内存大小;
S12、获取GPU性能数据;
S13、根据步骤S11预估的内存大小和步骤S12获取的GPU性能数据确定 联合估计的分段次数,计算公式为:
Figure BDA0003085922190000071
其中,m为分段次数,N为数据长度,fs为时间搜索范围,tr为数据采样率, Y为GPU的内存空间;
S14、分配GPU内存;
S15、将通信信号数据从CPU拷贝至步骤S14分配的GPU内存。
S2、利用CUDA核函数根据步骤S1设定的分段次数对通信信号数据进行 分段式时频差参数联合估计;
在本实施例中,在对通信信号进行参数估计时,假设目标发射出的信号被 两个接收站截获,分别为x(t)和y(t),接收站接收到除信号s1(t)和s2(t)外,还存在 与信号不相关的彼此统计独立的噪声n1(t)和n2(t),表示为
x(t)=s1(t)+n1(t)
Figure BDA0003085922190000072
其中A为不同路径产生的幅度变化因子,由于目标辐射源相对于两个接收 站运动,两个接收信号就存在一个时间偏移τ0和频率偏移fd0
两路信号的互模糊函数定义为:
Figure BDA0003085922190000073
其中X和Y分别为x(t)和y(t)两路信号对应的傅里叶变换,τ为两路信号的时 差和频率偏移fd
根据定义,则可以得到接收站两路信号的互模糊函数,表示为
Figure BDA0003085922190000081
由模糊函数的定义式可以看出,模糊函数是基于广义互相关的一种时频表 示,其每一维度可以看成一个相关运算,因此信号的相关性直接决定了互模糊 函数的结果。一般情况下,信号与噪声、噪声与噪声之间都是相互独立的,因 此同源信号的互模糊函数积累结果
Figure BDA0003085922190000082
远大于其他结果。因此当 τ-D0=0,fd-fd0=0时互模糊函数取得最大值,则τ=D0,fd=fd0即为两路信号的时差 和频差值,即可实现时频差参数估计。
典型的互模糊函数如图2所示,。由于两路卫星上行信号具有相关性,而该 信号与噪声和其它信号之间的相关性很弱,因此只要T足够长,该信号的互模 糊函数峰值将比杂波和噪声的峰值大得多.
本发明中采用的互模糊函数计算流程为首先根据时域的搜索范围tr和采样 率fs计算得到时间搜索范围次数n=tr*fs,然后将循环执行后续的3个步骤即可 得到互模糊函数结果。如图3所示,包括:1)将参考信号进行时间移位,然后 对其进行共轭计算,最后将目标信号和参考信号进行对应点乘,即为移位共轭 点乘;2)计算上一步骤的FFT结果;3)根据FFT结果,计算其幅度值,即为 功率谱计算流程。4)查找互模糊函数的峰值,根据峰值对应的索引位置估计出 两路信号的时差和频差;4)并计算互模糊函数矩阵的均值,根据峰值和均值结 果计算SNR信噪比。
步骤S2具体包括以下分步骤:
S21、采用GPU并行模式按照设定的分段次数分别对主星信号和邻星信号 进行移位共轭点乘;
具体而言,步骤S21具体包括以下分步骤:
S211、假设主星信号为A=[x1 x2 x3 … xN],邻星信号为 Y=[y1 y2 y3 … yN],信号长度为N,时差搜索搜索范围对应索引为[M~R], M、R为整数,且|M|≤N,|R|≤N,M为时差搜索起始点索引,R为时差搜索终点 索引,将邻星信号按照时差搜索范围进行R-M+1次移位;
S212、对移位后的邻星信号按顺序进行共轭计算,得到邻星信号的移位共 轭矩阵B,表示为
Figure BDA0003085922190000091
其中,B为邻星信号的移位共轭矩阵,bi,j为对应邻星信号进行一次时间移 位后的信号数据,N为数据长度;其中bi,j的结果和原信号关系如下式表示,y[n]表示取1~N的索引范围内对应的原始参考信号采样值,转化关系为
bi,j=y[j-(M+i-1)]
Figure BDA0003085922190000092
其中,y[n]表示移位后对应位置的信号采样值,n表示移位索引,例如 n=1-M-R,当n计算结果小于1,那么就将索引增加N,那么移位后对应原信号值 的索引为y1-M-R+N;yn+N表示邻星信号Y的第n+N个值,yn-N表示邻星信号Y第n-N 个值。
S213、将步骤S212得到的邻星信号的移位共轭矩阵与主星信号中的每一行 矩阵元素进行点乘计算,得到主星信号和邻星信号的移位共轭点乘矩阵C,表示 为
Figure BDA0003085922190000101
其中,C为主星信号和邻星信号的移位共轭点乘矩阵。
得到主星信号和邻星信号的移位共轭点乘矩阵C后,本发明将GPU的每个 线程与主星信号和邻星信号的移位共轭点乘矩阵中的每个矩阵元素数据对应, 采用二维网格和二维块表征主星信号和邻星信号的移位共轭点乘矩阵,建立主 星信号和邻星信号的移位共轭点乘矩阵行索引和列索引与其存储索引位置的对 应关系,表示为
tidx=iy*N+ix
其中,tidx为移位共轭点乘矩阵C的索引位置,ix为移位共轭点乘矩阵C 的行索引,iy为移位共轭点乘矩阵C的列索引。
其中每个线程计算一组数据的共轭点乘运算,表示为
Figure BDA0003085922190000102
其中,cm,n表示移位共轭点乘矩阵C的第(m.n)个值,Re()表示取复数的实部, Im()表示取复数的虚部,xm表示主星信号第m个值,
Figure BDA0003085922190000103
表示邻星信号的第 [1-M-m-n]个值,位置索引换算关系参考S212步骤中的描述。
S22、对步骤S21得到的移位共轭点乘结果进行基于CUDA的快速傅里叶 变换;
具体而言,本发明采用基于CUDA的快速傅里叶变换(FFT)计算移位共 轭点乘矩阵C的每一行的FFT结果。
步骤S22具体包括以下分步骤:
S221、利用CUDA核函数调用cuFFTPlanMany函数生成FFTPlan;
S222、利用CUDA核函数调用cufftExecZ2Z计算快速傅里叶变换结果,表 示为:
Figure BDA0003085922190000111
其中,D为快速傅里叶变换矩阵,FFT为快速傅里叶变换操作。
S23、对步骤S22得到的快速傅里叶变换结果计算频域搜索范围内的功率谱 值;
具体而言,步骤S23具体包括以下分步骤:
S231、将步骤S22得到的快速傅里叶变换结果进行FFTShift移位,将零频 分量移到频谱中心,表示为
Figure BDA0003085922190000112
其中,Shift_D为FFTShift移位矩阵;
S232、设定频域搜索范围为(P,Q),根据步骤S231得到的FFTShift移位矩 阵计算其P~Q列的绝对值的平方,得到广义功率谱幅度值,表示为
Figure BDA0003085922190000121
其中,E为广义功率谱幅度值,P为频差搜索起始点索引,Q为频差搜索终 点索引。
S24、采用并行规约算法和共享内存策略对步骤S23得到的功率谱值计算最 大值,得到时频差参数估计值和参考SNR值。
具体而言,步骤S24具体包括以下分步骤:
S241、将全局内存拷贝到共享内存中,在第一次加载内存时,对步骤S23 得到的功率谱值计算最大值;
S242、在每个线程块中采用单指令多数据流模式执行并行规约计算,如图4 所示,通过不断迭代,并将最终规约得到的值存储在索引为0的位置,得到该 值及其对应的索引(i,j);
S243、根据步骤S242得到的最大值对应的索引(i,j)计算时频差参数估计值, 根据得到的最大值emax和均值Emean=Esum/(Q-P+1)·(R-M+1)可计算得到参考 SNR值,表示为
dto=i·1/fs+t0=i·1/fs+M·1/fs=(M+i)/fs
dfo=j·fs/N+f0=j·fs/N+(-fs/2+P·fs/N)=(j+P)·fs/N-fs/2
Figure BDA0003085922190000122
那么最终的时频差参数估计SNR结果为
Figure RE-GDA0003268587380000132
emax为互模糊 矩阵E的最大值,Emean为互模糊矩阵的均值,
Figure RE-GDA0003268587380000133
SNR为评估相关结果性能的指标,SNR越大,说明相关性越好,时频差的 可信度越高,反之,SNR越小说明相关性越差。SNR计算方法为公 式:
Figure BDA0003085922190000131
那么最终的时频差参数估计SNR结果为
Figure BDA0003085922190000132
emax为互模糊 矩阵E的最大值,Emean为互模糊矩阵的均值,
Figure BDA0003085922190000133
S3、将步骤S2得到的时频差参数联合估计结果传回CPU内存,并释放显 存资源。
下面结合具体实例对本发明的时频差参数联合估计GPU实现方法的有益效 果进行分析说明。
实验条件:数据采样率fs=1048576,数据长度N=1048576,频差搜索范围为 fr=10kHz,时差范围tr=2us~10ms,分别使用串行算法和并行算法进行处理,得 到时频差参数,其耗时如表1所示。
表1串行和并行处理耗时
Figure BDA0003085922190000134
其中,数据量=数据长度*(时间范围/(1/采样率))=N·tr·fs,且 1M=1024*1024,1G=1024*1024*1024。本实验GPU使用NVIDIA Tesla P100-PCIE-16GB,其性能如表2所示。
表2 Tesla P100主要性能参数
Figure BDA0003085922190000141
如图5所示,为并行处理加速比曲线,可以看出,随着数据量的增大,加 速比呈线性上升趋势。并行的时频差参数估计与串行算法相比,处理速度得到 了极大的提升。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的 流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框 图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。 可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他 可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程 数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程 和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备 以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的 指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流 程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使 得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处 理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个 流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上 实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领 域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有 改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施 例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱 离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保 护范围内。

Claims (9)

1.一种通信信号的时频差参数联合估计GPU实现方法,其特征在于,包括以下步骤:
S1、设定联合估计的分段次数,并将通信信号数据从CPU拷贝至GPU内存;
S2、利用CUDA核函数根据步骤S1设定的分段次数对通信信号数据进行分段式时频差参数联合估计;
S3、将步骤S2得到的时频差参数联合估计结果传回CPU内存,并释放显存资源。
2.根据权利要求1所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述步骤S1具体包括以下分步骤:
S11、预估当前时频差参数联合估计所需分配的内存大小;
S12、获取GPU性能数据;
S13、根据步骤S11预估的内存大小和步骤S12获取的GPU性能数据确定联合估计的分段次数;
S14、分配GPU内存;
S15、将通信信号数据从CPU拷贝至步骤S14分配的GPU内存。
3.根据权利要求2所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述分段次数的计算公式为:
Figure FDA0003085922180000011
其中,m为分段次数,N为数据长度,fs为时间搜索范围,tr为数据采样率,Y为GPU的内存空间。
4.根据权利要求1所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述步骤S2具体包括以下分步骤:
S21、采用GPU并行模式按照设定的分段次数分别对主星信号和邻星信号进行移位共轭点乘;
S22、对步骤S21得到的移位共轭点乘结果进行基于CUDA的快速傅里叶变换;
S23、对步骤S22得到的快速傅里叶变换结果计算频域搜索范围内的功率谱值;
S24、采用并行规约算法和共享内存策略对步骤S23得到的功率谱值计算最大值和均值,得到时频差参数估计值和参考SNR值。
5.根据权利要求4所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述步骤S21具体包括以下分步骤:
S211、将邻星信号y按照时差搜索范围进行R-M+1次移位;其中M为时差搜索起始点索引,R为时差搜索终点索引;
S212、对移位后的邻星信号按顺序进行共轭计算,得到邻星信号的移位共轭矩阵,表示为
Figure FDA0003085922180000021
其中,B为邻星信号的移位共轭矩阵,
Figure FDA0003085922180000022
为对应邻星信号进行一次时间移位后的信号数据,N为数据长度;
S213、将步骤S212得到的邻星信号的移位共轭矩阵与主星信号进行点乘计算,得到主星信号和邻星信号的移位共轭点乘矩阵,表示为
Figure FDA0003085922180000031
其中,C为主星信号和邻星信号的移位共轭点乘矩阵,A为主星信号,A=[x1 x2 x3…xN]。
6.根据权利要求5所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述步骤S21还包括将GPU的每个线程与主星信号和邻星信号的移位共轭点乘矩阵中的每个矩阵元素数据对应,采用二维网格和二维块表征主星信号和邻星信号的移位共轭点乘矩阵,建立主星信号和邻星信号的移位共轭点乘矩阵行索引和列索引与其存储索引位置的对应关系。
7.根据权利要求4所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述步骤S22具体包括以下分步骤:
S221、利用CUDA核函数调用cuFFTPlanMany函数生成FFTPlan;
S222、利用CUDA核函数调用cufftExecZ2Z计算快速傅里叶变换结果,表示为:
Figure FDA0003085922180000032
其中,D为快速傅里叶变换矩阵,FFT为快速傅里叶变换操作。
8.根据权利要求4所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述步骤S23具体包括以下分步骤:
S231、将步骤S22得到的快速傅里叶变换结果进行FFTShift移位,将零频分量移到频谱中心,表示为
Figure FDA0003085922180000041
其中,Shift_D为FFTShift移位矩阵;
S232、根据步骤S231得到的FFTShift移位矩阵计算广义功率谱幅度值,表示为
Figure FDA0003085922180000042
其中,E为广义功率谱幅度值,P为频域搜索起始位置索引,Q为频域搜索结束位置索引。
9.根据权利要求4所述的通信信号的时频差参数联合估计GPU实现方法,其特征在于,所述步骤S24具体包括以下分步骤:
S241、将全局内存拷贝到共享内存中,在第一次加载内存时,对步骤S23得到的功率谱值计算最大值或累加和;
S242、根据数据长度和GPU支持的最大线程数,设定块个数,在每个线程块中采用单指令多数据流模式执行并行规约计算,并将最终规约得到的值存储在结果数组的块索引位置,每次计算归并最大线程数倍的数据长度,通过不断迭代,直到归并成一个数值,得到该最大值对应的索引;
S243、根据步骤S242得到的最大值对应的索引计算时频差参数估计值,并根据得到的最大值和广义功率谱幅度值均值计算参考SNR值,表示为
dto=i·1/fs+t0=i·1/fs+M·1/fs=(M+i)/fs
dfo=j·fs/N+f0=j·fs/N+(-fs/2+P·fs/N)=(j+P)·fs/N-fs/2
Figure FDA0003085922180000051
其中,dto为时差参数估计值,dfo为频差参数估计值,(i,j)为最大值对应的索引,fs为采样率,f0为频域搜索范围的起始频率,t0为时差搜索起始时间,M为时差搜索起始点索引,P为频差搜索起始点索引,emax为广义功率谱幅度值最大值,Emean为广义功率谱幅度值均值。
CN202110580352.9A 2021-05-26 2021-05-26 一种通信信号的时频差参数联合估计gpu实现方法 Pending CN113567919A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110580352.9A CN113567919A (zh) 2021-05-26 2021-05-26 一种通信信号的时频差参数联合估计gpu实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110580352.9A CN113567919A (zh) 2021-05-26 2021-05-26 一种通信信号的时频差参数联合估计gpu实现方法

Publications (1)

Publication Number Publication Date
CN113567919A true CN113567919A (zh) 2021-10-29

Family

ID=78161609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110580352.9A Pending CN113567919A (zh) 2021-05-26 2021-05-26 一种通信信号的时频差参数联合估计gpu实现方法

Country Status (1)

Country Link
CN (1) CN113567919A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355284A (zh) * 2022-01-04 2022-04-15 电子科技大学 一种利用频谱主分量的时差估计方法
CN115882972A (zh) * 2022-11-25 2023-03-31 中国电子科技集团公司第二十九研究所 通信信号时频差提取方法、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331581A (zh) * 2011-05-27 2012-01-25 哈尔滨工业大学 双星tdoa/fdoa星地一体化定位系统快速定位方法
CN102608583A (zh) * 2012-02-28 2012-07-25 清华大学 时频域混叠信号的时差和频差估计方法
US8576962B1 (en) * 2010-04-01 2013-11-05 Glowlink Communications Technology, Inc. Determining cross-polarization isolation using a modulated carrier
CN109507704A (zh) * 2018-11-29 2019-03-22 南京邮电大学 一种基于互模糊函数的双星定位频差估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576962B1 (en) * 2010-04-01 2013-11-05 Glowlink Communications Technology, Inc. Determining cross-polarization isolation using a modulated carrier
CN102331581A (zh) * 2011-05-27 2012-01-25 哈尔滨工业大学 双星tdoa/fdoa星地一体化定位系统快速定位方法
CN102608583A (zh) * 2012-02-28 2012-07-25 清华大学 时频域混叠信号的时差和频差估计方法
CN109507704A (zh) * 2018-11-29 2019-03-22 南京邮电大学 一种基于互模糊函数的双星定位频差估计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
姚山峰 等: "一种低轨双星雷达信号无模糊频差估计算法", 《宇航学报》, vol. 39, no. 11, 30 November 2018 (2018-11-30), pages 1275 - 1283 *
欧阳鑫信 等: "基于GPU/CUDA的互模糊函数实现方法", 《电信技术研究》, no. 5, pages 14 - 17 *
王奉帅 等: "基于互模糊函数的快速时差频差联合估计", 《中国电子科学研究院学报》, vol. 6, no. 6, 31 December 2011 (2011-12-31), pages 603 - 607 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355284A (zh) * 2022-01-04 2022-04-15 电子科技大学 一种利用频谱主分量的时差估计方法
CN114355284B (zh) * 2022-01-04 2023-05-05 电子科技大学 一种利用频谱主分量的时差估计方法
CN115882972A (zh) * 2022-11-25 2023-03-31 中国电子科技集团公司第二十九研究所 通信信号时频差提取方法、设备及介质

Similar Documents

Publication Publication Date Title
CN106855628B (zh) 一种高动态卫星导航信号的快速捕获和跟踪系统和方法
CN113567919A (zh) 一种通信信号的时频差参数联合估计gpu实现方法
CN103018730A (zh) 分布式子阵波达方向估计方法
CN110501729A (zh) 一种基于fpga分步码相位细化的gnss信号的捕获方法
WO2019119223A1 (zh) 基于雷达的测距处理方法、装置及无人飞行器
CN112346059A (zh) 毫米波雷达目标速度解模糊方法
KR102000963B1 (ko) 향상된 caf 기법을 이용한 tdoa 및 fdoa의 추정 방법
KR101958337B1 (ko) 신호의 도래각을 추정하는 방법 및 장치
CN109239680B (zh) 一种低截获概率雷达lfm信号的参数估计方法
CN106603450A (zh) 一种适于深空通信的高动态宽范围快速信号捕捉方法
CN111539323B (zh) 一种循环前缀线性调频信号的频率估计方法与装置
CN104215962B (zh) 基于单片FPGA的Chirp Scaling成像方法
CN107977986B (zh) 一种运动轨迹的预测方法及装置
CN106019334B (zh) 一种基于gpu的导航软件接收机的相关器实现方法
CN115877350B (zh) 一种和差波束体制雷达时变目标角度估计方法和装置
CN114690217A (zh) 一种gps l1快速精确捕获方法、装置及计算机存储介质
CN113671547B (zh) 一种改进的高动态捕获方法、装置、设备及存储介质
CN113970762B (zh) 一种多级干扰源定位方法及系统
CN110061760B (zh) 一种高动态大频偏直扩信号的频率搜索方法
Ni et al. Fast direct-position-determination based on PSO
RU2542347C1 (ru) Способ адаптивной настройки каналов ускорения в многоканальном обнаружителе маневрирующей цели
CN116347329B (zh) 定位信号捕获方法及装置、计算设备及计算机存储介质
CN116256716B (zh) 基于加权线性拟合的毫米波雷达超分辨方法和系统
CN115882972A (zh) 通信信号时频差提取方法、设备及介质
CN114935737B (zh) 基于多脉冲关联的分布式阵列相参参数估计方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Hou Suxia

Inventor after: Dong Jianfeng

Inventor before: Hou Suxia

Inventor before: Xia Changxiong

Inventor before: Dong Jianfeng

CB03 Change of inventor or designer information