CN113559833B - 一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用 - Google Patents

一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用 Download PDF

Info

Publication number
CN113559833B
CN113559833B CN202110766274.1A CN202110766274A CN113559833B CN 113559833 B CN113559833 B CN 113559833B CN 202110766274 A CN202110766274 A CN 202110766274A CN 113559833 B CN113559833 B CN 113559833B
Authority
CN
China
Prior art keywords
tio
nanosheet
hollow
base
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110766274.1A
Other languages
English (en)
Other versions
CN113559833A (zh
Inventor
程刚
李烁
朱雪腾
熊金艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Wuhan Textile University
Original Assignee
Wuhan Institute of Technology
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology, Wuhan Textile University filed Critical Wuhan Institute of Technology
Priority to CN202110766274.1A priority Critical patent/CN113559833B/zh
Publication of CN113559833A publication Critical patent/CN113559833A/zh
Application granted granted Critical
Publication of CN113559833B publication Critical patent/CN113559833B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种Na4TiO4纳米片均匀组装形成的中空Na4TiO4基纳米片组装体及利用其制备的H2Ti2O5·H2O和TiO2纳米片状衍生物。首先将二氧化钛‑乙二醇前驱体在氢氧化钠溶液中进行水热合成中空Na4TiO4基纳米片组装体,再经盐酸溶液离子交换,形成H2Ti2O5·H2O纳米片,H2Ti2O5·H2O经煅烧脱水,形成TiO2纳米片。所得Na4TiO4基纳米片组装体和H2Ti2O5·H2O纳米片具有光催化二氧化碳还原活性,TiO2纳米片具有优异的光催化析氢活性;且涉及的合成方法简单,易操作、工艺简单、成本低、符合实际生产需要,具有很好的应用前景。

Description

一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其 制备方法和应用
技术领域
本发明属于功能材料技术领域,具体涉及一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用。
背景技术
随着社会的发展,能源短缺和化石能源的过度开采以及燃烧使得能源问题成为困扰全世界的大问题。太阳能的利用一直被视为是解决环境危机和能源短缺问题的潜在途径;光催化技术也被广泛的应用于光解水制氢、二氧化碳还原为烃类燃料以及有机污染物降解等方面。其中,二氧化碳光还原一方面可以有效减少二氧化碳排放抑制温室效应的继续恶化,另一方面可以提供碳氢燃料以满足能源需求。而光催化裂解水产生氢气因其成本低、效率高的独特优势而成为一种很有前途的技术。光催化的基本原理是:当大于禁带宽度的光线照射到半导体表面时,将发生电子的跃迁,电子由价带跃迁到导带上,价带上产生空穴;这种电子-空穴对具备较强的氧化还原能力,H+/CO2接受电子,发生还原反应,产生H2/或有机物,其他的牺牲剂或水与空穴结合,发生氧化反应。
目前合成的钛酸钠和钛酸多用于储钠电极、光催化降解和染料吸附等,较少应用于光催化二氧化碳还原。且合成的钛酸钠和钛酸以及二氧化钛大部分为线状结构,存在具有比表面积小,表面活性位点少等缺点,不利于光催化二氧化碳还原和产氢过程的进行。且大部分钛酸钠的合成方法均要经过长时间的水热反应,不利于工业应用。
发明内容
本发明的主要目的是提供一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用,其中Na4TiO4基纳米片组装体为纳米片组装的中空棒状结构,将其进一步进行酸化和煅烧处理,依次得到H2Ti2O5·H2O和TiO2纳米片状衍生物;涉及的制备方法工艺简单、成本低、符合实际生产需要,具有较大的应用潜力;将所得中空结构Na4TiO4基纳米片组装体及其衍生物,在光催化二氧化碳还原和光催化析氢等领域可表现出较好的光催化活性。
为实现上述方案,本发明采用的技术方案为:
一种中空Na4TiO4基纳米片组装体,它为由长50-150nm,宽10-40nm的Na4TiO4基纳米片均匀组装形成的直径300-500nm,长1.5-2.5μm的中空棒状结构。
上述一种中空Na4TiO4基纳米片组装体的制备方法,包括如下步骤:将钛源加入到乙二醇中回流反应后得到TiO2前驱体,离心干燥后将其分散于水中,并加入氢氧化钠溶液混合均匀,进行水热反应,即使得所述中空Na4TiO4基纳米片组装体。
上述方案中,所述钛源为钛酸四丁酯或异丙醇钛。
上述方案中,所述钛源与乙二醇的体积比为2-8:100-200。
上述方案中,所述氢氧化钠在所得水热反应体系中的浓度为0.6-1.2mol/L,干燥后TiO2前驱体与水和氢氧化钠溶液总体积的固液比为0.3-0.7g:40-60mL。
上述方案中,所述回流反应时间为0.5-1.5h,回流温度为100-140℃。
上述方案中,所述水热反应时间为1-3h,水热温度为160-200℃。
一类基于上述中空Na4TiO4基纳米片组装体的纳米片状衍生物,通过将中空Na4TiO4基纳米片组装体依次进行酸化和煅烧处理,依次得到H2Ti2O5·H2O和TiO2纳米片状衍生物。
上述方案中,所述酸化步骤包括:将中空Na4TiO4基纳米片组装体加入盐酸溶液中,搅拌反应,然后离心到中性,干燥,得到H2Ti2O5·H2O纳米片状衍生物。
上述方案中,所述盐酸溶液的浓度为0.5-1.5mol/L。
上述方案中,所述中空Na4TiO4基纳米片组装体与盐酸溶液的固液比为0.8-1.2g:40-80mL 上述方案中,所述搅拌反应时间为6-18h。
上述方案中,所述煅烧处理温度为300-600℃,时间为1.5-4.5h。
将上述方案所制备的中空Na4TiO4基纳米片组装体或H2Ti2O5·H2O纳米片状衍生物应用于模拟太阳条件下光催化二氧化碳还原,所得产物为甲烷。
将上述方案所制备的TiO2纳米片状衍生物应用于模拟太阳条件下光催化析氢,所得产物为氢气,且活性高于P25。
本发明的原理为:将二氧化钛-乙二醇前驱体在氢氧化钠溶液中进行水热,合成出中空 Na4TiO4基纳米片组装体,再经过盐酸溶液离子交换,形成H2Ti2O5·H2O纳米片,H2Ti2O5·H2O 经过煅烧脱水,形成TiO2纳米片。
与现有技术相比,本发明的有益效果为:
1)本发明通过水热法法成功合成了中空Na4TiO4基纳米片组装体,它呈Na4TiO4基纳米片均匀组装形成的中空纳米棒状结构;然后将Na4TiO4进行离子交换合成 H2Ti2O5·H2O纳米片,由于两者均具有可见光响应和合适的能带位置,有利于电子空穴的有效传输与利用,可表现出较好的二氧化碳光还原活性,有效将二氧化碳分子转换成甲烷分子。
2)本发明进一步通过对H2Ti2O5·H2O纳米片煅烧合成TiO2纳米片,由于表面具有多孔结构,比表面积大,具备优异的光催化析氢活性(3wt%Pt做助催化剂的条件下,高于目前市面上的P25),稳定性高,具有极大的应用潜力。
3)本发明涉及的制备方法简单、操作方便,成本低、符合实际生产需要,适合推广应用。
附图说明
图1为实施例1所得Na4TiO4基纳米片组装体的X射线衍射分析(XRD)图谱;
图2为实施例1所得Na4TiO4基纳米片组装体的扫描电子显微镜图(SEM)图片;
图3为实施例1所得Na4TiO4基纳米片组装体的X射线光电子能谱(XPS);
图4为实施例1所得H2Ti2O5·H2O纳米片的X射线衍射分析(XRD)图谱;
图5为实施例1所得H2Ti2O5·H2O纳米片的扫描电子显微镜图(SEM)图片;
图6为实施例1所得H2Ti2O5·H2O纳米片的X射线光电子能谱(XPS);
图7为实施例1所得TiO2纳米片的X射线衍射分析(XRD)图谱;
图8为实施例1所得TiO2纳米片的扫描电子显微镜图(SEM)图片;
图9为实施例1所得Na4TiO4基纳米片组装体和衍生物H2Ti2O5·H2O纳米片的光催化CO2还原活性图;
图10为实施例1所得TiO2纳米片和P25的光催化析氢活性比较图。
具体实施方式
下面结合实施例及附图对本发明做进一步描述,本发明要求保护的范围并不局限于实施例表述的范围:
实施例1
一种中空Na4TiO4基纳米片组装体及利用其制备的衍生物H2Ti2O5·H2O和TiO2纳米片,具体制备包括如下步骤:
1)中空Na4TiO4基纳米片组装体的合成:将5mL的钛酸四丁酯加入到120mL乙二醇中超声溶解得均一溶液;将所得混合溶液进行回流反应(120℃,反应1h),反应结束后经离心洗涤、干燥、冷却,得到二氧化钛前驱体;将0.5g所得二氧化钛前驱体溶解在40mL去离子水中,再加入10mL 5mol/L的氢氧化钠溶液,搅拌1h,转入100mL反应釜180℃进行水热反应2h,反应结束后经离心洗涤、干燥、冷却,即得所述中空Na4TiO4基纳米片组装体;
2)衍生物H2Ti2O5·H2O纳米片的合成:将1g步骤1)合成的中空Na4TiO4基纳米片组装体均匀分散在60mL 1mol/L盐酸中,搅拌反应12h,反应结束后经离心洗涤直至上清液PH为7、干燥、冷却,即得所述H2Ti2O5·H2O纳米片;
3)衍生物TiO2纳米片的合成:将0.3g步骤2)合成的H2Ti2O5·H2O纳米片放入管式炉中,在500℃下煅烧2小时(升温速率为5℃/min),反应结束后即得所述TiO2纳米片。
将本实施例所得中空Na4TiO4基纳米片组装体、衍生物H2Ti2O5·H2O和TiO2纳米片分别进行XRD分析,结果如图1、4、7所示。由图1可得,合成的Na4TiO4基产物的衍射峰在17.6°,28.0°,38.5°,48.1°处分别对应Na4TiO4的211,101,200,100晶面的衍射峰,为Na4TiO4基产物;由图4可得,H2Ti2O5·H2O的衍射峰对应H2Ti2O5·H2O的标准卡JCPDS- 47-124;由图7可得,TiO2纳米片的衍射峰对应TiO2的标准卡JCPDS-4-477,无其它杂峰出现。
图2、5、8分别为本实施例所得产物Na4TiO4基纳米片组装体、衍生物H2Ti2O5·H2O和TiO2的SEM图片。由图2可以看出,本实施例合成的由长50-150nm,宽10-40nm的Na4TiO4基纳米片均匀组装形成的直径300-500nm,长1.5-2.5μm的棒状结构;合成的H2Ti2O5·H2O为长50-150nm,宽10-30nm的纳米片状形貌;合成的TiO2表现为长50-150nm,宽5-20nm的纳米片状。
图3、6分别为本实施例所得产物Na4TiO4基纳米片组装体、衍生物H2Ti2O5·H2O的X射线光电子能谱,可进一步证明本发明所述Na4TiO4基纳米片组装体及其衍生物H2Ti2O5·H2O 的成功合成。
图9为本实施例所得中空Na4TiO4基纳米片组装体和衍生物H2Ti2O5·H2O的二氧化碳光还原活性测试结果;图10为本实施例所得TiO2纳米片光催化析氢活性测试结果。结果表明,所得Na4TiO4基纳米片组装体及H2Ti2O5·H2O均具有二氧化碳光还原活性,而TiO2光催化析氢活性在同等条件下(3%Pt作为助催化剂)高于P25。
实施例2
一种中空Na4TiO4基纳米片组装体及利用其制备的衍生物H2Ti2O5·H2O和TiO2纳米片,具体制备包括如下步骤:
2)中空Na4TiO4基纳米片组装体的合成:将4mL的钛酸四丁酯加入到120mL乙二醇中超声溶解得均一溶液;将所得混合溶液进行回流反应(120℃,反应1h),反应结束后经离心洗涤、干燥、冷却,得到二氧化钛前驱体;将0.5g所得二氧化钛前驱体溶解在40mL去离子水中,再加入10mL 5mol/L的氢氧化钠溶液,搅拌1h,转入100mL反应釜180℃进行水热反应2h,反应结束后经离心洗涤、干燥、冷却,即得所述中空Na4TiO4基纳米片组装体;
2)衍生物H2Ti2O5·H2O纳米片的合成:将1g步骤1)合成的中空Na4TiO4基纳米片组装体均匀分散在60mL 1mol/L盐酸中,搅拌反应12h,反应结束后经离心洗涤直至上清液PH为7、干燥、冷却,即得所述H2Ti2O5·H2O纳米片;
3)衍生物TiO2纳米片的合成:将0.3g步骤2)合成的H2Ti2O5·H2O纳米片放入管式炉中,在500℃下煅烧2.5小时(升温速率为5℃/min),反应结束后即得所述TiO2纳米片。
实施例3
一种中空Na4TiO4基纳米片组装体及利用其制备的衍生物H2Ti2O5·H2O和TiO2纳米片,具体制备包括如下步骤:
3)中空Na4TiO4基纳米片组装体的合成:将5mL的钛酸四丁酯加入到120mL乙二醇中超声溶解得均一溶液;将所得混合溶液进行回流反应(120℃,反应2h),反应结束后经离心洗涤、干燥、冷却,得到二氧化钛前驱体;将0.5g所得二氧化钛前驱体溶解在40mL去离子水中,再加入10mL 5mol/L的氢氧化钠溶液,搅拌1h,转入100mL反应釜180℃进行水热反应3h,反应结束后经离心洗涤、干燥、冷却,即得所述中空Na4TiO4基纳米片组装体;
2)衍生物H2Ti2O5·H2O纳米片的合成:将1g步骤1)合成的中空Na4TiO4基纳米片组装体均匀分散在60mL 1mol/L盐酸中,搅拌反应12h,反应结束后经离心洗涤直至上清液PH为7、干燥、冷却,即得所述H2Ti2O5·H2O纳米片;
3)衍生物TiO2纳米片的合成:将0.3g步骤2)合成的H2Ti2O5·H2O纳米片放入管式炉中,在500℃下煅烧2h(升温速率为5℃/min),反应结束后即得所述TiO2纳米片。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (10)

1.一种中空Na4TiO4基纳米片组装体,其特征在于,它为由长50-150nm,宽10-40nm的Na4TiO4基纳米片均匀组装形成的直径300-500nm,长1.5-2.5μm的中空棒状结构。
2.权利要求1所述中空Na4TiO4基纳米片组装体的制备方法,其特征在于,包括如下步骤:将钛源加入到乙二醇中回流反应后得到TiO2前驱体,离心干燥后,将其分散于水中,并加入氢氧化钠溶液混合均匀,进行水热反应,即得所述中空Na4TiO4基纳米片组装体。
3.根据权利要求2所述的制备方法,其特征在于,所述钛源为钛酸四丁酯或异丙醇钛。
4.根据权利要求2所述的制备方法,其特征在于,所述钛源与乙二醇的体积比为2-8:100-200。
5.根据权利要求2所述的制备方法,其特征在于,所述氢氧化钠在所得水热反应体系中的浓度为0.6-1.2mol/L,干燥后TiO2前驱体与水和氢氧化钠溶液总体积的固液比为0.3-0.7 g:40-60mL。
6.根据权利要求2所述的制备方法,其特征在于,所述回流反应时间为0.5-1.5 h,回流温度为100-140℃;所述水热反应时间为1-3 h,水热温度为160-200℃。
7.基于权利要求1所述中空Na4TiO4基纳米片组装体的纳米片状衍生物,其特征在于,通过将中空Na4TiO4基纳米片组装体依次进行酸化和煅烧处理,依次得到长50-150nm,宽10-30nm的H2Ti2O5·H2O和长50-150nm,宽5-20nm的TiO2纳米片状衍生物。
8.根据权利要求7所述的纳米片状衍生物,其特征在于,所述酸化步骤包括:将中空Na4TiO4基纳米片组装体加入盐酸溶液中,搅拌反应,然后离心到中性,干燥,得到H2Ti2O5·H2O纳米片状衍生物;所述盐酸溶液的浓度为0.5-1.5 mol/L;搅拌反应时间为6-18 h。
9.根据权利要求7所述的纳米片状衍生物,其特征在于,所述煅烧处理温度为300-600℃,时间为1.5-4.5 h。
10.权利要求1所述中空Na4TiO4基纳米片组装体或权利要求2~6所述制备方法制备的中空Na4TiO4基纳米片组装体或权利要求7~9任一项所述的纳米片状衍生物在光催化领域中的应用。
CN202110766274.1A 2021-07-07 2021-07-07 一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用 Active CN113559833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110766274.1A CN113559833B (zh) 2021-07-07 2021-07-07 一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110766274.1A CN113559833B (zh) 2021-07-07 2021-07-07 一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113559833A CN113559833A (zh) 2021-10-29
CN113559833B true CN113559833B (zh) 2022-12-06

Family

ID=78163891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110766274.1A Active CN113559833B (zh) 2021-07-07 2021-07-07 一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113559833B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311227B (zh) * 2017-07-03 2019-01-25 浙江大学 一种混合晶型的二氧化钛纳米片的制备方法及产物
CN108927102A (zh) * 2018-07-24 2018-12-04 山东科技大学 一种二氧化钛纳米管材料的制备方法及应用
CN109759041A (zh) * 2019-03-06 2019-05-17 武汉理工大学 一种中空片状结构二氧化钛纳米管光催化材料及其制备方法

Also Published As

Publication number Publication date
CN113559833A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2022144043A1 (zh) Mof衍生的氧化锌复合二氧化钛异质结的制备方法及光电分解水应用
Yang et al. Engineered tungsten oxide-based photocatalysts for CO 2 reduction: Categories and roles
Zhang et al. Recent progress in self-supported two-dimensional transition metal oxides and (oxy) hydroxides as oxygen evolution reaction catalysts
Sayed et al. Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting
CN107670672B (zh) 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法
CN101311376A (zh) 一种一维结构钛酸锶纳米粉体的制备方法
KR101925487B1 (ko) 나노 템플릿을 이용한 이산화탄소 함유 가스로부터의 다공성 탄소소재의 제조방법
CN113058617A (zh) 一种光催化剂及其制备方法和应用
CN111041508A (zh) 四氧化三钴阵列/钛网分解水制氧电极及其制备方法
KR101262857B1 (ko) 망간산화물 나노구조체 제조방법
Li et al. Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications
Singh et al. Silver Zirconate: A robust material for supercapacitor application, photocatalytic water splitting and photoactivation of persulfate ion for environmental remediation
CN113559833B (zh) 一种中空结构Na4TiO4基纳米片组装体、纳米片状衍生物及其制备方法和应用
CN110627116B (zh) 一种氢掺杂TiO2相变纳米材料及其应用
CN115582148B (zh) 一种钛离子掺杂的铈基金属有机框架光催化剂的制备方法及用途
CN112408317A (zh) 一种碳负载二氧化钛掺杂氢化铝锂储氢材料及其制备方法
CN114836781B (zh) 一种片层状Cu基N掺杂石墨烯催化剂的制备方法及其应用
KR101326659B1 (ko) 이산화티타늄 나노튜브의 제조방법 및 상기 이산화티타늄 나노튜브를 포함하는 고효율 염료감응 태양전지용 광전극
CN115490258B (zh) 一种氧化铜纳米片催化剂及制备方法以及在二氧化碳和一氧化碳电催化还原中的应用
CN112675832B (zh) 一种二氧化碳还原有序介孔催化材料及其制备方法
Bhadra et al. Fabrication of titanium oxide nanotubes by varying the anodization time
Chen et al. New Modified Sol–Gel Method for the Preparation KNb3O8 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting
Salkar et al. Nanostructured WO3− x based advanced supercapacitors for sustainable energy applications
CN111495391A (zh) 一种复合光催化剂及其制备方法与应用
CN111468098A (zh) 一种多孔类球形光催化材料及制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant