CN113552192A - 一种自校准电流比率型pH传感器及其制备方法和应用 - Google Patents

一种自校准电流比率型pH传感器及其制备方法和应用 Download PDF

Info

Publication number
CN113552192A
CN113552192A CN202110784591.6A CN202110784591A CN113552192A CN 113552192 A CN113552192 A CN 113552192A CN 202110784591 A CN202110784591 A CN 202110784591A CN 113552192 A CN113552192 A CN 113552192A
Authority
CN
China
Prior art keywords
self
sensor
electrode
carbon
ratio type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110784591.6A
Other languages
English (en)
Inventor
董辉
周艳丽
赵乐
刘澜涛
张银堂
徐茂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangqiu Normal University
Original Assignee
Shangqiu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangqiu Normal University filed Critical Shangqiu Normal University
Priority to CN202110784591.6A priority Critical patent/CN113552192A/zh
Publication of CN113552192A publication Critical patent/CN113552192A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • G01N27/4165Systems checking the operation of, or calibrating, the measuring apparatus for pH meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种自校准比率型pH电流型传感器及其制备方法和应用,属于导电聚合物材料在生物传感中应用技术领域。本发明首先将碳纳米管通过π‑π堆积作用自组装于碳电极表面,进一步通过原位电化学技术将邻苯二胺聚合于碳纳米管修饰的碳电极表面,得到pH传感器。该传感器不仅自身表现良好的氧化还原信号,而且对pH测定具有自校准功能,测定结果准确可靠,检测范围宽,灵敏度高。更重要的是,传感器表现出良好的选择性、重复性、重现性、稳定性和可逆性,对实际样品原位pH测定具有很好的应用前景。

Description

一种自校准电流比率型pH传感器及其制备方法和应用
技术领域
本发明属于导电聚合物材料在生物传感中应用技术领域,涉及一种自校准电流比率型pH传感器及其制备方法和应用。
背景技术
体液、细胞和器官中的酸碱平衡与细胞增殖与凋亡、内吞作用、耐药性、离子转运和肌肉收缩等密切相关。对于哺乳动物细胞而言,由于细胞器功能不同,pH值也各不相同,从溶酶体的4.5到线粒体的8.5。细胞外pH通常为中性,约为7.2,细胞内外相互调节。然而异常的pH值可导致各种疾病的发生,特别是人们熟知的癌症,细胞外的酸化和细胞内的碱性,是一种典型的癌症特征,此外异常的pH波动也会引起其他疾病的发生,如细胞功能障碍、脑缺血中风、癫痫和神经退行性疾病等。因此,发展pH准确的测定方法具有重要意义。
pH传统的测定方法主要依赖于使用pH试纸或pH酸度计,然而pH试纸测定不准确,且对于有颜色样品容易受到干扰,pH酸度计虽然测定结果准确,但对于原位微量样品测定受限。到目前为止,发展了不同的仪器分析方法,包括核磁共振波谱法、比色法、荧光法、表面增强拉曼散射技术、电化学方法等。电化学法由于具有仪器操作简单、灵敏度高、成本低廉等优点一直是pH传感研究的热点,目前作为pH玻璃电极的替代品,大多数pH传感器采用新型材料或pH识别有机染料发展微型传感器,但其测定原理依然是电位法。循环伏安技术作为一种常用的电化学技术,由于其氧化还原信号均可在一张图谱获得,因此可以获取更多的信息,包括电流和电位,氧化和还原。目前主要两种类型:无校准型;自校准内参比型。无校准型主要依赖电极表面官能化或者引入pH灵敏性有机分子之间检测电极的氧化或还原电位与pH关系,经典的是利用醌的电化学信号。然而,该类方法经常会出现电位不稳定和/或漂移,与其他电活性物质信号重叠等影响。为了解决电位漂移引起误差,研究者将pH识别分子与pH不敏感分子一起共修饰,通过计算两者电位差与pH的关系实现pH的准确测定,但这种方法电极制备过程复杂,重现性不好。因此,后续发展合成单分子双氧化还原信号分子实现检测,但合成过程也较为复杂。而聚邻苯二胺(PoPD)是一种通过氨基取代苯胺邻位氢而合成的聚苯胺衍生物,由于具有制备简单、选择性渗透等特性,已经在分子印迹生物传感器制备中得到广泛应用。然而,基于PoPD修饰电极自身的氧化还原特性研究很少。
发明内容
针对目前微量样品及活体实时原位电化学pH准确测定面临的挑战,本发明的目的在于提供一种可自校准的电流型pH传感器。另一目的在于提供其简单快速的制备方法。
为实现本发明目的,所述传感器首先将单壁碳纳米管(SWCNT)通过π-π堆积作用自组装于碳纤维(CFME)表面,提高电化学传感的灵敏性。进一步通过原位电化学技术将邻苯二胺聚合于碳纳米管修饰的碳纤维电极表面,得到pH检测微电极。本发明所述自校准电流比率型pH传感器具体通过如下方法制备而成:
(1)以碳电极作为基底;
(2)将碳纳米材料自组装于碳电极表面;
(3)通过原位电化学循环伏安法电聚合将邻苯二胺修饰于(2)表面,制得所述的pH传感器;
所述碳电极为玻碳电极、碳糊电极或丝网印刷电极或碳纤维电极;优选碳纤维电极,碳纤维的直径7μm,尖端露出长度为0.1~1mm,优选0.5mm。
所述碳纳米材料为单壁碳纳米管、多壁碳纳米管、羧基化碳纳米管,氨基化碳纳米管、氧化石墨烯或石墨烯。优选单壁碳纳米管,浓度为0.5mg mL-1
所述碳纳米材料通过π-π堆积吸附于碳纤维表面,吸附时间1min~1h,优选5min。
所述碳纳米材料通过滴涂法于玻碳电极或丝网印刷电极表面时,滴涂量2~10μL,优选5μL。
所述电聚合循环电位扫描范围,低电位-0.5~-1V,高电位为1.5~2V,优选电聚合位范围-1.0~1.0V。
所述电聚合聚合圈数为1~30圈,优选25圈。
所述电聚合支持电解质为0.1~2.0M H2SO4或HCl或HNO3,或pH 5.0~7.0的0.1MHAc-NaAc缓冲溶液,或pH 5.0~9.0的0.1M PBS缓冲溶液,优选pH=1.0的0.1M HCl。
所述邻苯二胺浓度0.01~0.1M,优选0.02M。
本发明原理:所述的自校准电流比率型pH传感器通过修饰碳纳米材料增加电化学传感的灵敏度,以聚邻苯二胺(PoPD)作为pH识别的特异性单元,其自身具有良好的电化学氧化还原信号,随着pH的改变,氧化还原峰伴随质子参与,该过程PoPD构型及结构发生转变,氧化或还原峰电位发生移动,与此同时,氧化或还原峰电流变化均与pH具有良好的比率型电化学响应。这是本发明实现pH高准确定量检测的基础。
本发明制备的自校准电流比率型pH传感器是一种简单的通过导电聚合物氧化还原峰电流为信号指示的一种pH传感器,将其用于人体全血pH的测定。通过循环伏安法(CV)测得PoPD在不同pH下的电化学氧化还原信号变化,依据不同峰电位处峰电流的比值与pH建立关系,得到检测范围和灵敏度。通过CV直接测定传感器在人体全血pH的电化学响应,通过电流信号比值计算pH。
本发明的有益效果在于:(1)以CFME作为基底材料,原材料便宜易得,可以批量制备本发明所述自校准电流型pH传感器;(2)以碳纳米材料作为修饰材料,明显提高电化学传感的灵敏度;(3)通过原位电化学制备PoPD修饰电极,绿色、安全、简单、快捷、稳定可控;(4)PoPD自身作为导电聚合物,其本身具有良好的电化学氧化还原信号,具有良好的选择性,通过CV可以实现多信号监控,另一方面,其电流响应为比率型,氧化或还原峰电流信号均与pH具有良好的比率型电化学响应,具有自校准功能,实现对pH的高准确与高灵敏检测;(5)在最佳实验条件下,该传感器对pH在4.5~8.2具有良好的比率型电流响应;(6)PoPD自身氧化还原信号在负电位窗口,几乎不受体内电活性分子的干扰,具有良好的选择性;(7)基于电极的稳定性和比率型传感制备,该传感器具有良好的重复性(3支电极RSD=3.5%)、重现性(3次重复测定RSD=3.8%)、可逆性(连续重复pH交换测定,电流比值基本不变)与稳定性(暴露于空气2个月,电流比值下降不超过1.2%)。为复杂样品环境pH测定打下基础。最后基于以上pH传感器良好的分析性能,该传感器进一步用于人体全血pH的原位测定,展现出较好的结果。
附图说明
图1为本发明自校准电流比率型pH传感器电极电聚合制备CV图。
图2为本发明自校准电流比率型pH传感器的扫描电镜图。
图3为本发明自校准电流比率型pH传感器对不同pH的PBS溶液中的CV响应(a-b)及关系图(c-d)。
图4为本发明自校准电流比率型pH传感器的抗干扰测试。
图5为本发明自校准电流比率型pH传感器的抗污染测试。
图6为本发明自校准电流比率型pH传感器的连续电位扫描稳定性测试。
图7为本发明自校准电流比率型pH传感器的空气放置稳定性测试。
图8为本发明自校准电流比率型pH传感器可逆性测试。
图9为本发明自校准电流比率型pH传感器对人体全血pH检测。
具体实施方式
结合以下具体实例和附图,对本发明作进一步的详细说明,除以下特此提及的内容之外,均为本领域的普通知识和公知常识,本发明没有特别限制内容。
实施例1:本发明自校准电流比率型pH传感器制备
首先采用激光拉制硼酸盐毛细管,然后将连接碳纤维的Cu丝工作电极蜡封于毛细管中。连续地,将上述电极浸泡于含0.5mg L-1的单壁碳纳米管乙醇溶液中5min,取出,乙醇清洗1min后,自然晾干,所得电极命名为CFME/SWCNT。进一步,将晾干后的CFME/SWCNT电极放置于含有0.02M邻苯二胺的0.10M的HCl溶液中,在电化学工作站上,采用循环伏安法以100mV s-1的扫速在-1.0V~1.0V的电位范围内扫描25圈(图1),便能在表面形成一层PoPD膜(图2),所得电极在蒸馏水中清洗,后自然晾干,备用,所得电极即为本发明自校准电流比率型pH传感器,命名为CFME/SWCNT/PoPD。
实施例2:本发明自校准电流比率型pH传感器对pH测定
利用CHI660D电化学工作站测定本发明自校准电流比率型pH传感器在不同的pH的0.1M PBS中进行CV响应,扫速:0.1V s-1。如图3a-b所示,在最佳实验条件下,随着pH的增加,在–0.12V(jpa1)处PoPD的氧化峰值电流降低,在–0.33V(jpa2)处增加,pH 6.5时峰电流达到最大值随后下降。与此同时,在–0.60V(jpc1)处的还原峰电流随着pH的增加而降低,在–0.86V(jpc2)处峰电流随着pH的增加而增大。因此,本发明选择jpa2/jpa1或jpc2/jpc1均可作为pH测定的检测信号(图3b-d)。这种比率信号可以避免复杂血液环境引起的测定误差,同时提高检测的灵敏度。
实施例3:本发明自校准电流比率型pH传感器的选择性、抗污染能力
利用CHI660D电化学工作站对本发明自校准电流比率型pH传感器进行干扰测定,在pH=7.4的0.1M PBS溶液中加入其它生物活性物质(金属离子、氨基酸和其他电活性物质)。结果发现,该传感器在加入其他干扰物质后,电化学信号几乎没有变化,特别是对于电活性物质(如抗坏血酸、多巴胺、尿酸、葡萄糖等)均没有明显的电化学响应(图4a-d),表明该传感器对于pH检测具有较高选择性和抗干扰能力。此外,研究了该传感器的抗污染能力(图5),结果表明,即使在质量百分含量0.5%的牛血清白蛋白溶液中,jpa2/jpa1或jpc2/jpc1值均不会发生变化,说明该传感器具有良好的抗污染能力。
实施例4:本发明自校准电流比率型pH传感器的稳定性
利用CHI660D电化学工作站对本发明自校准电流比率型pH传感器在pH=6.5或pH=4.5的0.1M PBS溶液连续进行CV扫描500圈,结果发现jpa2/jpa1或jpc2/jpc1值下降不超过5%(图6),表明该一体化微电极具有良好的电位扫描稳定性。此外,将该传感器在空气中暴露3个月,结果在pH=6.5或pH=4.5的0.1M PBS溶液中扫描,jpa2/jpa1或jpc2/jpc1值几乎不变(图7),表明该传感器具有极好的空气稳定性。
实施例5:本发明自校准电流比率型pH传感器的重现性、重复性和可逆性
按照实施例1的制备方法制备3支不同电极,利用CHI660D电化学工作站分别测定3支电极在0.1mol/L PBS溶液中两种不同的pH(4.5和6.5)的CV响应。结果发现3支电极jpc2/jpc1比值的相对标准偏差(RSD)小于3.5%(n=3),表明本发明制备的传感器具有良好的重现性。类似的,同一支电极采用实施例1的制备方法修饰并测定,发现3次测量的RSD低于3.8%,表明该电极具有较好的重复性。此外,任意取本发明自校准电流比率型pH传感器,利用CHI660D电化学工作站连续交替分别测定在0.1mol/L PBS溶液中两种不同的pH(4.5和6.5)的CV响应。结果发现,在经受十次连续的测定循环后,jpc2/jpc1电流比值仍基本不变(图8),表明该传感器对pH测定在具有良好的可逆性。
实施例6:本发明自校准电流比率型pH传感器对人体全血pH测定
取人体全血样品1mL,无需处理,直接将本发明自校准电流比率型pH传感器植入血液,连接导线,利用CHI660D电化学工作站采用CV法在-1.0~0.6V电位窗口下直接测定,可以清楚地观察到–0.60V和–0.86V处的两个阴极峰(图9)。根据还原峰电流比值计算所得全血pH值为7.35±0.05(n=3),这一结果与通过商品化的pH玻璃电极所测结果一致。

Claims (6)

1.一种自校准电流比率型pH传感器,其特征在于,通过如下方法制备而成:
(1)以碳电极作为基底;
(2)将碳纳米材料自组装于碳电极表面;
(3)通过原位电化学将邻苯二胺聚合于步骤(2)所得修饰电极表面,制得pH传感器;
所述碳电极为玻碳电极、碳纤维电极、碳糊电极或丝网印刷电极;
所述碳纳米材料为碳纳米管、羧基化碳纳米管、氨基化碳纳米管、氧化石墨烯或石墨烯。
2.如权利要求1所述的自校准电流比率型pH传感器,其特征在于,步骤(2)碳纳米材料吸附于碳纤维电极表面或将碳纳米材料通过滴涂法涂于玻碳电极或丝网印刷电极表面。
3.如权利要求1所述的自校准电流比率型pH传感器,其特征在于,步骤(3)所述电聚合电解质为0.1~2.0 M H2SO4或HCl或HNO3,或pH 5.0~7.0的0.1 M HAc-NaAc缓冲溶液,或pH5.0~9.0 的0.1 M PBS缓冲溶液。
4.如权利要求1所述的自校准电流比率型pH传感器,其特征在于,步骤(3)所述电聚合循环电位扫描范围,低电位-0.5~-1 V,高电位为1.5~2 V。
5.如权利要求1所述的自校准电流比率型pH传感器,其特征在于,所述电聚合聚合圈数为1~30圈。
6.如权利要求1所述的自校准电流比率型pH传感器,其特征在于,所述邻苯二胺浓度0.01~0.1 M。
CN202110784591.6A 2021-07-12 2021-07-12 一种自校准电流比率型pH传感器及其制备方法和应用 Pending CN113552192A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110784591.6A CN113552192A (zh) 2021-07-12 2021-07-12 一种自校准电流比率型pH传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110784591.6A CN113552192A (zh) 2021-07-12 2021-07-12 一种自校准电流比率型pH传感器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113552192A true CN113552192A (zh) 2021-10-26

Family

ID=78131545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110784591.6A Pending CN113552192A (zh) 2021-07-12 2021-07-12 一种自校准电流比率型pH传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113552192A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076787A (zh) * 2021-11-24 2022-02-22 山东省科学院生物研究所 一种聚合物伏安式pH电极及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914150A (zh) * 2015-06-15 2015-09-16 上海交通大学 一种基于石墨烯/聚苯胺复合膜的pH检测电极
KR101680482B1 (ko) * 2015-08-18 2016-11-29 영남대학교 산학협력단 산화그래핀 및 폴리(o-페닐렌디아민) 복합체로 개질된 화학물질 센서용 유리탄소전극과 이의 제조방법
WO2017193423A1 (zh) * 2016-05-09 2017-11-16 江苏大学 一种微纳织构化石墨烯基仿生pH传感器及其制备方法
CN109752429A (zh) * 2019-02-20 2019-05-14 浙江大学宁波理工学院 基于苯胺低聚物/石墨烯复合材料的pH电化学传感器及其制备方法
CN109900766A (zh) * 2019-02-22 2019-06-18 安徽师范大学 双信号分子印迹电化学传感器及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914150A (zh) * 2015-06-15 2015-09-16 上海交通大学 一种基于石墨烯/聚苯胺复合膜的pH检测电极
KR101680482B1 (ko) * 2015-08-18 2016-11-29 영남대학교 산학협력단 산화그래핀 및 폴리(o-페닐렌디아민) 복합체로 개질된 화학물질 센서용 유리탄소전극과 이의 제조방법
WO2017193423A1 (zh) * 2016-05-09 2017-11-16 江苏大学 一种微纳织构化石墨烯基仿生pH传感器及其制备方法
CN109752429A (zh) * 2019-02-20 2019-05-14 浙江大学宁波理工学院 基于苯胺低聚物/石墨烯复合材料的pH电化学传感器及其制备方法
CN109900766A (zh) * 2019-02-22 2019-06-18 安徽师范大学 双信号分子印迹电化学传感器及其制备方法和应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
PANDI GAJENDRAN等: "Enhanced Electrochemical Growth and Redox Characteristics of Poly(o-phenylenediamine) on a Carbon Nanotube Modified Glassy Carbon Electrode and Its Application in the Electrocatalytic Reduction of Oxygen", 《J. PHYS. CHEM. C》 *
PANDI GAJENDRAN等: "Enhanced Electrochemical Growth and Redox Characteristics of Poly(o-phenylenediamine) on a Carbon Nanotube Modified Glassy Carbon Electrode and Its Application in the Electrocatalytic Reduction of Oxygen", 《J. PHYS. CHEM. C》, vol. 111, 10 July 2007 (2007-07-10), pages 2 - 3 *
张旭等: "碳纳米管分散的研究进展", 《山东化工》, vol. 45, no. 11, pages 49 - 50 *
王雪琳等: "电聚合邻苯二胺薄膜的研究", 《山东建材学院学报》 *
王雪琳等: "电聚合邻苯二胺薄膜的研究", 《山东建材学院学报》, no. 04, 31 December 1996 (1996-12-31), pages 1 - 2 *
邵方等: "聚邻苯二胺ph修饰电极的研制", 《第三军医大学学报》 *
邵方等: "聚邻苯二胺ph修饰电极的研制", 《第三军医大学学报》, vol. 17, no. 1, 28 February 1995 (1995-02-28), pages 63 - 64 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076787A (zh) * 2021-11-24 2022-02-22 山东省科学院生物研究所 一种聚合物伏安式pH电极及其制备方法和应用
CN114076787B (zh) * 2021-11-24 2023-11-07 山东省科学院生物研究所 一种聚合物伏安式pH电极及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wang et al. Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode
Sajid et al. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review
Shahrokhian et al. Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid
Zhang et al. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly (acid chrome blue K) modified glassy carbon electrode
Mazloum-Ardakani et al. High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin
Zhou et al. Two orders-of-magnitude enhancement in the electrochemiluminescence of Ru (bpy) 32+ by vertically ordered silica mesochannels
Wang Simultaneous determination of uric acid, xanthine and hypoxanthine at poly (pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode
US20200158678A1 (en) Nanostructured graphene-modified graphite pencil electrode system for simultaneous detection of analytes
Wang et al. A ratiometric electrochemical sensor for dopamine detection based on hierarchical manganese dioxide nanoflower/multiwalled carbon nanotube nanocomposite modified glassy carbon electrode
Zuaznabar-Gardona et al. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes
Ensafi et al. N-hexyl-3-methylimidazolium hexafluoro phosphate/multiwall carbon nanotubes paste electrode as a biosensor for voltammetric detection of morphine
Soltani et al. A carbon paste electrode modified with Al 2 O 3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen
CN102735734A (zh) 一种非介入式葡萄糖传感器
Babaei et al. A sensor for simultaneous determination of dopamine and morphine in biological samples using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode
Wang et al. Glassy carbon electrode modified with poly (dibromofluorescein) for the selective determination of dopamine and uric acid in the presence of ascorbic acid
Hua et al. Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes
KR20160107464A (ko) 효소 기반의 전위차법 글루코스 검출용 센서 및 이의 제조방법
Nie et al. Simultaneous determination of folic acid and uric acid under coexistence of L-ascorbic acid using a modified electrode based on poly (3, 4-ethylenedioxythiophene) and functionalized single-walled carbon nanotubes composite
Li et al. Electrochemical behavior and voltammetric determination of theophylline at a glassy carbon electrode modified with graphene/nafion
Wang et al. Simultaneous voltammetric determination of dopamine and uric acid based on Langmuir–Blodgett film of calixarene modified glassy carbon electrode
Wang et al. An amperometric sensor for nitric oxide based on a glassy carbon electrode modified with graphene, Nafion, and electrodeposited gold nanoparticles
Raoof et al. Fabrication of layer-by-layer deposited films containing carbon nanotubes and poly (malachite green) as a sensor for simultaneous determination of ascorbic acid, epinephrine, and uric acid
Shams et al. Voltammetric determination of dopamine at a zirconium phosphated silica gel modified carbon paste electrode
CN109211989A (zh) 一种用于检测阿特拉津的电化学适配体传感器及其制备和检测方法
Baig et al. A cost-effective disposable graphene-based sensor for sensitive and selective detection of uric acid in human urine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211026

RJ01 Rejection of invention patent application after publication