CN113546647B - 一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用 - Google Patents

一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用 Download PDF

Info

Publication number
CN113546647B
CN113546647B CN202110832612.7A CN202110832612A CN113546647B CN 113546647 B CN113546647 B CN 113546647B CN 202110832612 A CN202110832612 A CN 202110832612A CN 113546647 B CN113546647 B CN 113546647B
Authority
CN
China
Prior art keywords
nano
assembled
defect type
preparation
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110832612.7A
Other languages
English (en)
Other versions
CN113546647A (zh
Inventor
宋玉洁
魏帅
王宏涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202110832612.7A priority Critical patent/CN113546647B/zh
Publication of CN113546647A publication Critical patent/CN113546647A/zh
Application granted granted Critical
Publication of CN113546647B publication Critical patent/CN113546647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J35/39
    • B01J35/40
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

本发明公开了一种缺陷型超薄纳米片自组装纳米微球的制备方法与应用,属于光催化材料的制备和技术领域;本发明中缺陷型超薄纳米片自组装纳米微球是以Bi(NO3)3·5H2O和KBr为原料,以乙二醇为溶剂,以甘露醇为表面活性剂通过溶剂热的方法制备而成;纳米微球由单层的BiOBr纳米片组成,纳米微球的直径为0.9‑1.3um,组成该微球的超薄BiOBr纳米片平均厚度为3.0nm;本发明制得的缺陷型超薄纳米片自组装纳米微球在空气氛围可见光下催化氧化苄胺偶联为亚胺的反应中表现出较高的活性;本发明制备工艺简单,环保绿色,无毒无害,反应活性高,稳定性好,可重复使用,符合实际生产需要,具有较大的应用潜力。

Description

一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用
技术领域
本发明涉及一种缺陷型超薄纳米片自组装纳米微球作为可见光催化剂的制备方法及应用,属于催化剂制备技术领域。
背景技术
亚胺是合成药物、生物活性化合物和精细化学品的多功能中间体。作为工业合成中的重要建筑块,亚胺的高效合成能为可持续化学提供可替代的合成路径,且不需要太多的下游加工。传统上,亚胺是由胺和羰基化合物脱水锁合而成,传统合成亚胺的工艺涉及到不稳定的醛、脱水剂和路易斯酸催化剂的使用,从实用和环保的角度限制了其工业应用。因此,探究一种绿色化能源化的高效催化剂在亚胺的合成领域具有非常重大的意义。
光催化技术具有绿色、可持续的特点,符合现在经济发展与生态文明建设的理念。光催化有机合成是目前光催化材料应用中重要的一部分,也是将来工业生产的发展趋势,因此,开发性能优良的光催化剂,在温和绿色的条件下进行反应具有极大的价值。基于纳米催化材料的人工合成技术是以自然界丰富的太阳能为驱动力,通过在催化材料上的化学反应过程将有机分子或者单体转化为复杂的化学品,通过光能的引入打破有机化学氧化还原反应的活化能壁垒,具有绿色、温和、进给和可持续的特点。
溴氧化铋(BiOBr)作为重要的主族多组分V-VI-VII半导体之一,由于其独特的层状结构和化学稳定性,作为一种新型光催化剂的潜在应用受到了广泛关注。众所周知,BiOBr是一种四方层状结构,由交替累积的[Bi2O2]2+层和双[Br]-层组成,层间的静电场使光生电子-空穴对有效分离,使其具有较高的光催化性能。前期研究表明尽管溴氧化铋能直接被可见光激发,但其对可见光的利用率要明显低于TiO2/UV体系。
传统的体相材料具有光生载流子容易复合、表面活性位点不足等缺点,不利于光催化反应的进行。超薄二维(2D)纳米材料,其厚度仅为几个分子层甚至原子层的大小,其二维平面结构具有更高的比表面积和独特的表面特性,例如不饱和金属/非金属原子位点,丰富的表面酸碱位点和缺陷等,这些表面态在光催化体系中通常作为活性位点发挥着重要的作用。当材料厚度降低到分子尺寸是容易在材料表面产生缺陷,如氧空位,氧空位可以增强对分子(如O2、N2、 CO2等)的吸附和活化,能调控电子结构进而影响光吸收范围和强度,以及增加载流子的浓度并促进载流子的分离。公开号为CN101811733A公开了一种可见光响应的溴氧化铋纳米结构微球材料及制备方法,采用三价铋的盐和溴化物为原材料,将其溶于非水溶剂中得到前驱体溶液,在反应釜中进行水热反应得到产物,产物经过滤和洗涤后在空气氛围中一定温度干燥即得到具有纳米片微观结构的溴氧化铋微球光催化材料;公开号为CN108993548A公开了一种可见光响应光催化剂及其用途、制备方法和使用方法,催化剂为氢化铋沉积溴氧化铋,分子式为H-Bi@BiOBr,呈具有铋单质和氧空位的花球状微球结构;但是上述专利制备关于BiOBr纳米结构的微球材料工艺复杂,稳定性不高。
发明内容
为了解决现有技术所存在的上述问题,本发明提供一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用,通过溶剂热法一步合成单层纳米片自组装的BiOBr纳米微球,并调控纳米微球的缺陷浓度制备出光催化性能优良的催化剂。
本发明的技术方案如下:
本发明公开一种缺陷型超薄纳米片自组装纳米微球的制备方法,以 Bi(NO3)3·5H2O和KBr为原料,以甘露醇为模板调节剂,以乙二醇为溶剂,混合后搅拌均匀,通过溶剂热法一步合成缺陷型超薄纳米片自组装纳米微球。
进一步,所述缺陷型超薄纳米片自组装纳米微球的制备方法,包括如下步骤:
S1、将甘露醇加入到乙二醇溶剂中,搅拌至完全溶解;加入Bi(NO3)3·5H2O 和KBr,继续搅拌混合后转移至聚乙烯四氟内衬的反应釜中充分反应;
S2、反应结束后,待反应釜自然冷却至室温,将反应物离心后得到的固体分别用乙醇和去离子水洗涤至离子浓度低于10ppm,制得缺陷型超薄纳米片自组装纳米微球。
进一步的,所述步骤S1甘露醇加入到乙二醇溶剂中,在混合溶液中甘露醇浓度为125mg/L。
进一步的,所述步骤S1中加入的Bi(NO3)3·5H2O和KBr的摩尔比为1:1。
进一步的,所述步骤S1中混合溶液在反应釜中反应温度为160℃,反应时间为12~16h。
本发明还公开一种由上述制备方法制得的缺陷型超薄纳米片自组装纳米微球,所述纳米微球的直径为0.9-1.3μm,组成纳米微球的纳米片厚度为3-4nm。
本发明还公开一种缺陷型超薄纳米片自组装纳米微球作为催化剂在光催化中的应用。
相较于现有技术,本发明的有益效果如下:
1、本发明提供缺陷型超薄纳米片自组装纳米微球的制备方法,制成的纳米微球为缺陷型超薄结构,自组装形成纳米微球的纳米片厚度在3nm左右,由于纳米片厚度极薄,在纳米片表面存在丰富的金属活性位点;同时由于纳米片的超薄结构,形成纳米微球具有缺陷,即为氧空位,氧空位能够增强对分子的吸附和活化,能调控电子结构进而影响光吸收范围和强度,以及增加载流子的浓度并促进载流子的分离,进而提高纳米微球的催化性能。
2、本发明在缺陷型超薄纳米片自组装纳米微球的制备过程中利用甘露醇作为模板调节剂,利用乙二醇为溶剂;甘露醇具有长链和多羟基,在形成方形 BiOBr纳米片的过程中可以起到导向剂的作用,乙二醇作为溶剂能够延缓晶核生长过程速度,最后由于片的表面能较大最终聚集形成球状结构,甘露醇正好能够和乙二醇能够起到协同作用,选择性地吸附在BiOBr核的特定平面上,限制其本征各向异性生长,最终形成纳米片的超薄结构。
3本发明将制备得到的缺陷型超薄纳米片自组装纳米微球应用于光催化有机反应,例如苄胺的氧化偶联反应中,苄胺的氧化偶联反应传统合成需要较高的温度(通常大于100℃),而且需要使用贵金属,本发明制得的纳米微球材料能够在空气氛围室温,可见光辐照下由胺合成亚胺,且具有较高的转化率和选择性,同时,本发明制得的纳米微球还可以作为光催化剂用于光催化清洁能源制备、光催化环境污染物治理等领域。
4、本发明制得的纳米微球是一种性能优良的光催化剂,在温和绿色的条件下进行反应,无毒无害,环保绿色,原料易得,反应活性高,稳定性好,可重复使用,符合实际生产需要,具有较大的应用潜力。
附图说明
图1为本发明制得的缺陷型超薄纳米片自组装纳米微球与BiOBr纳米片的X射线衍射(XRD)图;
图2本发明制得的缺陷型超薄纳米片自组装纳米微球的扫描电子显微镜(SEM)图;
图3为本发明制得的缺陷型超薄纳米片自组装纳米微球的原子力显微镜(AFM)图;
图4为本发明制得的缺陷型超薄纳米片自组装纳米微球的紫外-可见漫反射图;
图5为本发明制得的缺陷型超薄纳米片自组装纳米微球作为可见光催化剂在常温常压、空气氛围可见光照下苄胺催化氧化偶联为亚胺的转化率和选择性图。
具体实施方式
下面结合较佳实施例和附图对本发明做进一步的说明。
实施例1
一种缺陷型超薄纳米片自组装纳米微球的制备方法,以Bi(NO3)3·5H2O 和KBr为原料,以甘露醇为模板调节剂,以乙二醇为溶剂,混合后搅拌均匀,通过溶剂热法一步合成缺陷型超薄纳米片自组装纳米微球,包括如下步骤:
S1、将0.20g甘露醇加入到16mL乙二醇溶剂中,搅拌至完全溶解;加入 0.73g Bi(NO3)3·5H2O和0.18g KBr,继续搅拌混合后转移至聚乙烯四氟内衬的反应釜中充分反应,反应温度为160℃,反应时间为12~16h;
其中,本实施例中仅是给出了一种具体的甘露醇、乙二醇、Bi(NO3)3·5H2O 和KBr的加入量,但并不限于加入上述甘露醇、乙二醇、Bi(NO3)3·5H2O和 0.18g KBr,仅需要保证加入将甘露醇加入到乙二醇溶剂中后,在混合溶液中甘露醇浓度为125mg/L;加入的Bi(NO3)3·5H2O和KBr摩尔比为1:1;
S2、反应结束后,待反应釜自然冷却至室温,将反应物离心后得到的固体分别用乙醇和去离子水洗涤至离子浓度低于10ppm,制得缺陷型超薄纳米片自组装纳米微球。
根据上述制备方法制得的缺陷型超薄纳米片自组装纳米微球,参见图2为根据上述制备方法制得的缺陷型超薄纳米片自组装纳米微球的扫描电子显微镜 (SEM)图,从图中可以看出本发明所制备的样品为单层纳米片组装的球状结构,纳米球直径为0.9-1.3μm;参见图3为根据上述制备方法制得的缺陷型超薄纳米片自组装纳米微球的原子力显微镜(AFM)和对应的高度剖面图,从图中可以看出组成该BiOBr微球的纳米片平均厚度为3.0-4.0nm;
对比实施例
将0.73g Bi(NO3)3·5H2O和0.18g KBr加入到16mL去离子水中,搅拌0.5 h后,转移至25mL聚四氟乙烯内衬的反应釜,在烘箱中160℃保温12h;反应结束,待反应釜冷却至室温,将反应物离心后的固体用乙醇和去离子水洗涤至溶液离子浓度低于10ppm;将离心洗涤后的固体在真空干燥箱中60℃干燥12h,研磨为固体粉末,得到最终产品。
参见图1,根据实施例1制得的缺陷型超薄纳米片自组装纳米微球作为可见光催化剂和根据对比实施例制得的BiOBr纳米片的X射线衍射(XRD)图,从图中可以发现制备的缺陷型超薄纳米片自组装纳米微球为纯相,并且他们的晶相保持一致,缺陷型超薄纳米片自组装纳米微球的(001)晶面峰强较弱,表明其具有更小更薄的尺寸结构;
参见图4,根据实施例1制得的缺陷型超薄纳米片自组装纳米微球作为可见光催化剂与根据对比实施例制得的BiOBr纳米片的紫外-可见漫反射图,从图中可以看出缺陷型超薄纳米片自组装纳米微球比BiOBr纳米片有更好的光吸收性能。
实施例2
将根据实施例1的制备方法制得的缺陷型超薄纳米片自组装纳米微球作为可见光催化剂在空气氛围、可见光条件下催化氧化苄胺偶联为相应的亚胺。
首先,称取15mg缺陷型超薄纳米片自组装纳米微球的可见光催化剂到反应管中,用移液枪量取54.60μL苄胺,将1.5mL乙腈加入到该反应管中;其次,开启光源后进行光催化反应,光源为300W氙灯,并加400nm的滤光片保证辐照光波长范围在400nm以上;最后,光催化反应结束后,体系中的原料和产物使用气相色谱进行检测;
苄胺的转化率以及相应亚胺的选择性的情况如图5所示,从图5中可以看出,在使用缺陷型超薄纳米片自组装纳米微球的可见光催化剂时,苄胺在光照8 h后转化率达到了98%,生成相应亚胺的选择性达到97%;当以BiOBr纳米片为催化剂时,苄胺的转化率仅为48%,且生成的亚胺的选择性仅为91%;因此,在可见光条件下,缺陷型超薄纳米片自组装纳米微球的可见光催化剂表现出更高的活性。
根据本发明的制备方法制得的缺陷型超薄纳米片自组装纳米微球不仅可以应用在催化氧化苄胺偶联为相应的亚胺的光催化反应中,还可以应用在其他有机光催化反应、光催化清洁能源制备、光催化环境污染物治理等领域。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.一种缺陷型超薄纳米片自组装纳米微球的制备方法,其特征在于:以Bi(NO3)3·5H2O和KBr为原料,以甘露醇为模板调节剂,以乙二醇为溶剂,混合后搅拌均匀,通过溶剂热法一步合成缺陷型超薄纳米片自组装纳米微球;包括如下步骤:
S1、将甘露醇加入到乙二醇溶剂中,搅拌至完全溶解,甘露醇加入到乙二醇溶剂中,在混合溶液中甘露醇浓度为125mg/L;加入Bi(NO3)3·5H2O和KBr,继续搅拌混合后转移至聚乙烯四氟内衬的反应釜中充分反应;
S2、反应结束后,待反应釜自然冷却至室温,将反应物离心后得到的固体分别用乙醇和去离子水洗涤至离子浓度低于10ppm,制得缺陷型超薄纳米片自组装纳米微球。
2.如权利要求1所述的一种缺陷型超薄纳米片自组装纳米微球的制备方法,其特征在于:所述步骤S1中加入的Bi(NO3)3·5H2O和KBr的摩尔比为1:1。
3.如权利要求1所述的一种缺陷型超薄纳米片自组装纳米微球的制备方法,其特征在于:所述步骤S1中混合溶液在反应釜中反应温度为160℃,反应时间为12~16h。
4.一种如权利要求1至3任一所述的制备方法制得的缺陷型超薄纳米片自组装纳米微球,其特征在于:所述纳米微球的直径为0.9-1.3μm,组成纳米微球的纳米片厚度为3-4nm。
5.如权利要求4所述的一种缺陷型超薄纳米片自组装纳米微球作为催化剂在光催化有机反应中的应用。
CN202110832612.7A 2021-07-22 2021-07-22 一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用 Active CN113546647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110832612.7A CN113546647B (zh) 2021-07-22 2021-07-22 一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110832612.7A CN113546647B (zh) 2021-07-22 2021-07-22 一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113546647A CN113546647A (zh) 2021-10-26
CN113546647B true CN113546647B (zh) 2023-03-31

Family

ID=78104129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110832612.7A Active CN113546647B (zh) 2021-07-22 2021-07-22 一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113546647B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425371B (zh) * 2021-12-21 2023-06-20 北京建筑大学 一种生物表面活性剂诱导铋基光催化材料自组装的方法及应用
CN115430441B (zh) * 2022-09-29 2024-01-19 西安交通大学 一种铜掺杂溴氧化铋-二氧化钛复合光催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908973A (zh) * 2014-03-21 2014-07-09 合肥工业大学 Bi/BiOCl复合光催化剂、原位还原制备方法及其应用
CN103920509A (zh) * 2014-04-21 2014-07-16 合肥工业大学 介孔BiOX光催化剂、制备方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1116011A1 (ru) * 1983-02-04 1984-09-30 Белорусский ордена Трудового Красного Знамени государственный университет им. В.И.Ленина Способ получени оксибромида висмута
US5091545A (en) * 1990-03-02 1992-02-25 The Goodyear Tire & Rubber Company Catalytic oxidation of hydroxy containing aromatic compounds
CN110152693A (zh) * 2019-06-21 2019-08-23 国家纳米科学中心 一种光催化还原co2的催化剂及其制备方法和用途
CN110240197B (zh) * 2019-07-04 2020-11-10 福州大学 超薄纳米片自组装的多层次BiOCl微球及其在光催化偶联苄胺到亚胺的应用
CN110665520A (zh) * 2019-10-08 2020-01-10 河海大学 一种室温下制备厚度可调的BiOCl方法
CN110833836A (zh) * 2019-10-31 2020-02-25 江苏大学 水热法制备二维超薄富铋氯氧铋纳米片及其应用
CN112028789B (zh) * 2019-12-06 2022-07-22 郑州大学 一种室温下伯胺氧化自偶联制备亚胺的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908973A (zh) * 2014-03-21 2014-07-09 合肥工业大学 Bi/BiOCl复合光催化剂、原位还原制备方法及其应用
CN103920509A (zh) * 2014-04-21 2014-07-16 合肥工业大学 介孔BiOX光催化剂、制备方法及应用

Also Published As

Publication number Publication date
CN113546647A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
Li et al. Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light
Najafian et al. Enhanced photocatalytic activity of a novel NiO/Bi2O3/Bi3ClO4 nanocomposite for the degradation of azo dye pollutants under visible light irradiation
Lv et al. Self-assembly photocatalytic reduction synthesis of graphene-encapusulated LaNiO3 nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen
Yang et al. Synthesis and comparison of photocatalytic properties for Bi2WO6 nanofibers and hierarchical microspheres
Chen et al. Ultrathin HNb 3 O 8 nanosheets with oxygen vacancies for enhanced photocatalytic oxidation of amines under visible light irradiation
Zhang et al. Photo degradation of methyl orange by attapulgite–SnO2–TiO2 nanocomposites
Shang et al. Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity
Yang et al. New reaction pathway induced by the synergistic effects of Bi plasmon and La3+ doping for efficient visible light photocatalytic reaction on BiOCl
CN113546647B (zh) 一种缺陷型超薄纳米片自组装纳米微球的制备方法及应用
Ha et al. Morphology-controlled synthesis of SrTiO 3/TiO 2 heterostructures and their photocatalytic performance for water splitting
Wang et al. BiVO 4 nano–leaves: Mild synthesis and improved photocatalytic activity for O 2 production under visible light irradiation
Naghizadeh-Alamdari et al. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts
CN104785280B (zh) 一种片状二氧化钛/溴氧化铋复合光催化剂及其制备方法
CN113713823B (zh) 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用
Zhang et al. Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
Xiong et al. Extremely rapid engineering of zinc oxide nanoaggregates with structure-dependent catalytic capability towards removal of ciprofloxacin antibiotic
CN111939949A (zh) 一种溴氧铋/二氧化钛纳米管复合材料光催化剂及其制备方法
Norouzi et al. Photocatalytic degradation of phenol under visible light using electrospun Ag/TiO2 as a 2D nano-powder: Optimizing calcination temperature and promoter content
Luévano-Hipólito et al. Flexible BiOI thin films photocatalysts toward renewable solar fuels production
Zhang et al. Double quantum dots decorated layer structure CeCO3OH for improved N2 photo-fixation
Kang et al. Functionalized MIL-53 and its derivatives modified Bi2WO6 as effective piezocatalysts and membranes for adsorption and decomposition of organic pollutants
CN108262051B (zh) 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法
Chen et al. One-pot in situ fabrication of Cu-coupled rugby-shaped BiVO4 sosoloid for enhancing photocatalytic activity with SPR effect via ultrasonic hydrothermal strategy
CN110240197B (zh) 超薄纳米片自组装的多层次BiOCl微球及其在光催化偶联苄胺到亚胺的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant