CN113546642B - 纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法 - Google Patents

纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法 Download PDF

Info

Publication number
CN113546642B
CN113546642B CN202010341136.4A CN202010341136A CN113546642B CN 113546642 B CN113546642 B CN 113546642B CN 202010341136 A CN202010341136 A CN 202010341136A CN 113546642 B CN113546642 B CN 113546642B
Authority
CN
China
Prior art keywords
nano
sea urchin
composite material
cobalt carbonate
basic cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010341136.4A
Other languages
English (en)
Other versions
CN113546642A (zh
Inventor
吴兴才
王伟
陶友荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010341136.4A priority Critical patent/CN113546642B/zh
Publication of CN113546642A publication Critical patent/CN113546642A/zh
Application granted granted Critical
Publication of CN113546642B publication Critical patent/CN113546642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

该发明专利的名称为:“纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法”。具体地说,是用纳米Ag为晶种,以硝酸亚钴(等可溶性亚钴盐)、尿素等为原料,水乙醇联合溶剂热合成纳米Ag修饰海胆状多孔碱式碳酸钴纳米复合材料。它为Ag纳米颗粒(20‑25nm)锚固在多孔CCHH纳米棒上(直径大约25‑80nm,长2‑3微米),这些纳米棒构成海胆状的微球(直径约5微米)。这种材料是一种很好的碱性条件下电解水的阳极催化剂,性能超过商用RuO2,价格低廉,稳定性好,具有很好的应用前景。本发明公开了这种材料及其制法。

Description

纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法
技术领域
本发明涉及纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法。具体地说,是用纳米Ag为晶种水热合成纳米Ag修饰海胆状多孔碱式碳酸钴纳米复合材料。
背景技术
为了解决能源与环境问题,人们提出电解水获得氢气和氧气的方案,这是一个非常有前途的方案,但由于阳极吸氧过电位高和缓慢的动力学阻碍其发展。目前公认的最好的析氧电催化剂是RuO2和IrO2,由于它们是低丰度的贵金属使实际应用受到限制,因此,开发高效低值的催化剂势在必行。碱式碳酸钴(Co(CO3)0.5OH·0.11H2O,简写为CCHH)作为前驱体常常在不同的气氛中分解为钴的化合物[参见:(a)L.Zhu,Z.Wen,W.Mei,Y.Li,Z.Ye,J.Phys.Chem.C 2013,117,20465-20473.(b)A Y.Wang,H.Xia,L.Lu,J.Lin,ACS Nano2010,4,1425-1432.(c)X.Yang,K.Fan,Y.Zhu,J.Shen,X.Jiang,P.Zhao,S.Luan,C.Li,ACSAppl.Mater.Interfaces 2013,5,997-1002.]。作为析氧反应(OER)催化剂只有少数几篇研究。例如:CCHH生长在碳布上作为OER催化剂在10mA/cm2的电流密度下,过电位是509mV[参见:Y.Wang,W.Ding,S.G.Chen,Y.Nie,K.Xiong,Z.D.Wei,Chem.Commun.2014,50,15529-15532.];CCHH生长在碳纳米管上作为OER催化剂在10mA/cm2的电流密度下,过电位是466mV[参见:Y.Zhang,B.Cui,O.Derr,Z.Yao,Z.Qin,X.Deng,J.Li,H.Lin,Nanoscale 2014,6,3376-3383.];CCHH多孔纳米纸锚固在多壁碳纳米管上在1M KOH溶液中,在10mA/cm2的电流密度下,过电位是285mV[参见:Y.X.Zhang,Q.Q.Xiao,X.Guo,X.X.Zhang,Y.F.Xue,L.Jing,X.Zhai,Y.M.Yan,K.N.Sun,J.Power Sources 2015,278,464-472.]。到目前为止,并没有纳米Ag修饰海胆状多孔CCHH复合材料的报道。在这里,用纳米Ag为晶种水热合成纳米Ag修饰的多孔海胆状碱式碳酸钴纳米复合材料(Ag和多孔CCHH的摩尔比为0.0261),在1M KOH溶液中,经电催化析氧反应(OER)测试,在10mA/cm2的电流密度下的过电位是273mV,性能优于RuO2;经20次循环伏安激发后,在10mA/cm2的电流密度下的过电位是268mV,并且有很好的稳定性。因此,在电催化分解水方面有很好的应用前景。
发明内容
本发明的目的是纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制备方法。
本发明的技术方案如下:
一种纳米Ag修饰海胆状多孔碱式碳酸钴复合材料,它为Ag(20-25nm)颗粒锚固在多孔CCHH纳米棒(直径大约25-80nm,长2-3微米)上,这些纳米棒构成海胆状的微球(直径约5微米)。
一种制备上述复合材料的方法,它是纳米Ag悬浊液,加入Co(NO3)2·6H2O和尿素、水、乙醇混合溶液,在120℃下水热反应1-3小时,经离心、洗涤、干燥获得产品。
本发明的复合材料经XRD测定,峰的位置与强度与Ag和CCHH相匹配。因表明产品的纯度比较高。通过SEM照片和高分辨电镜观察,为由多孔CCHH纳米棒构成的海胆结构,Ag锚固在多孔CCHH纳米棒上,纳米棒直径约20-80nm、长度约为2-3微米。
从OER性能可以看出,该复合材料具有良好的析氧性能,超越了RuO2,在电解水方面有很好的应用前景。
本发明的制备方法原料简单易得、条件简便易行,所得的为纳米Ag修饰海胆状多孔碱式碳酸钴复合材料。
附图说明
图1为本发明上述复合材料(Ag/CCHH)的SEM图(a)和TEM照片(b);
图2为本发明上述复合材料(Ag/CCHH)的LVS图。在扫速为5mV s-1,旋转速度为1600rpm时的各催化剂的极化曲线(实线:初始的LSVs;虚线为20CV循坏后的LSVs)。
具体实施方式
实施例1.纳米Ag修饰海胆状多孔碱式碳酸钴复合材料的制备
A.Ag胶体的制备。简单地说,45mg的AgNO3完全溶解在100mL的去离子水中,然后将溶液不断搅拌,在三颈圆底瓶中用回流冷凝器煮沸10分钟。随后,将1.0wt%柠檬酸钠溶液的4.5mL迅速注入上述系统,然后将混合物保持回流并强力搅拌15min,最后冷却到室温。
B.纳米Ag修饰海胆状多孔碱式碳酸钴(Ag∶CCHH摩尔比=0.0261)复合材料制备。采用简单的溶剂热法,以预合成的Ag胶体为银源(模板剂),研制Ag修饰的三维多孔海胆状CCHH的纳米复合材料。在一个典型的过程中,将Co(NO3)2·6H2O(0.145g,0.498mmol)和尿素(0.113g)溶解在乙醇(EA,20mL)和去离子水(20mL)的混合溶剂中,然后加入5mL预合成的Ag胶体(仅0.013mmol)。接下来,将所得混合物转移到50mL的聚四氟乙烯内衬不锈钢高压釜中,并在120℃下保持2小时。最后,冷却到室温后,通过离心、洗涤和干燥收集产品。制备的产物呈紫色灰色,标记为Ag/CCHH(0.013mmol)。
本实施例制得的Ag/CCHH(0.013mmol)复合材料,经XRD测定,峰的位置与强度与Ag和CCHH相匹配。因表明为Ag和CCHH复合物。
通过SEM照片(图1a)和TEM观察(图1b),为由CCHH纳米棒构成的海胆结构,Ag纳米颗粒锚固在多孔CCHH纳米棒(直径约20-80nm、长度约为2-3微米)上。
Ag/CCHH(0.013mmol)复合材料LSV图,此时析氧性能超过RuO2,经20次循环伏安活化后,结果更优。结果见图2。
实施例2.纳米Ag修饰海胆状多孔碱式碳酸钴复合材料的制备
实验的步骤和试剂数量同实施例1,仅在溶剂热反应时间变为1h,可以得到类似结构的复合材料。
实施例3.纳米Ag修饰海胆状多孔碱式碳酸钴复合材料的制备
实验的步骤和试剂数量同实施例1,仅在溶剂热反应时间变为3h,可以得到类似结构的复合材料。
实施例4.纳米Ag修饰海胆状多孔碱式碳酸钴复合材料的制备
实验的步骤和试剂数量同实施例1,仅将Co(NO3)2·6H2O用0.498mmol的氯化亚钴(或醋酸亚钴)替代,溶剂热反应温度在120℃,时间为1-3小时,也可以制备获得类似纳米结构的复合材料。

Claims (3)

1.一种纳米Ag修饰海胆状多孔碱式碳酸钴复合材料,它为Ag颗粒锚固在多孔碱式碳酸钴纳米棒上,其中Ag颗粒尺寸20-25nm,纳米棒直径大约为25-80nm,长约2-3微米,这些纳米棒构成海胆状的微球,其直径约5微米。
2.一种制备权利要求1所述的复合材料的方法,其特征是:用事先制备的纳米Ag悬浊液,按一定的量加入到定量的Co(NO3)2·6H2O和尿素、水、乙醇混合溶液中,在120℃下,溶剂热反应1-3小时,经离心、洗涤、干燥获得产品。
3.一种制备权利要求1所述的复合材料的方法,其特征是:用事先制备的纳米Ag悬浊液,按一定的量加入到定量的氯化亚钴或醋酸亚钴和尿素、水、乙醇混合溶液中,在120℃下溶剂热反应1-3小时,经离心、洗涤、干燥获得产品。
CN202010341136.4A 2020-04-24 2020-04-24 纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法 Active CN113546642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010341136.4A CN113546642B (zh) 2020-04-24 2020-04-24 纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010341136.4A CN113546642B (zh) 2020-04-24 2020-04-24 纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法

Publications (2)

Publication Number Publication Date
CN113546642A CN113546642A (zh) 2021-10-26
CN113546642B true CN113546642B (zh) 2022-12-02

Family

ID=78129981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010341136.4A Active CN113546642B (zh) 2020-04-24 2020-04-24 纳米Ag修饰海胆状多孔碱式碳酸钴复合材料及其制法

Country Status (1)

Country Link
CN (1) CN113546642B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386339B (zh) * 2022-09-05 2023-03-31 安徽璜峪电磁技术有限公司 一种空心海胆状钴基硫化物复合吸波材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824224A (zh) * 2017-01-25 2017-06-13 中国科学院上海高等研究院 贵金属负载型四氧化钴纳米催化剂的制备方法及应用
CN106881130A (zh) * 2017-03-30 2017-06-23 常州大学 一种碳酸银负载碳酸钴/氯化银光催化剂的制备方法
CN107051565A (zh) * 2017-05-24 2017-08-18 中国科学院化学研究所 一种高性能碱式碳酸盐类电解水催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN113546642A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
Yang et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting
Xu et al. Template-directed assembly of urchin-like CoS x/Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis
Li et al. Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction
Wang et al. Active Co@ CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction
Zhang et al. FeNi cubic cage@ N-doped carbon coupled with N-doped graphene toward efficient electrochemical water oxidation
Jiang et al. CoS2 quantum dots modified by ZIF-67 and anchored on reduced graphene oxide as an efficient catalyst for hydrogen evolution reaction
Cheng et al. High-efficiency bifunctional electrocatalyst based on 3D freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting
CN108660473B (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
Zhang et al. Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction
Yao et al. Co-CeO x nanoparticles anchored on a nitrogen-doped carbon nanosheet: a synergistic effect for highly efficient hydrolysis of sodium borohydride
CN110433816B (zh) 一种负载型钴掺杂的二氧化铈纳米片的制备方法
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
Wang et al. Vertically aligned MoS 2 nanosheets on N-doped carbon nanotubes with NiFe alloy for overall water splitting
Shi et al. Mesoporous Cu (OH) 2 nanowire arrays for urea electrooxidation in alkaline medium
Yaseen et al. Synergistically coupling of Co/Mo2C/Co6Mo6C2@ C electrocatalyst for overall water splitting: the role of carbon precursors in structural engineering and catalytic activity
Sun et al. Self-supporting metal–organic framework-based hydrogen and oxygen electrocatalysts
Cai et al. Nanomaterials with different dimensions for electrocatalysis
Feng et al. Ultrafine VN nanoparticles confined in Co@ N-doped carbon nanotubes for boosted hydrogen evolution reaction
Kim et al. An overview of one-dimensional metal nanostructures for electrocatalysis
Li et al. CoP-anchored high N-doped carbon@ graphene sheet as bifunctional electrocatalyst for efficient overall water splitting
CN108550471B (zh) 一种碳纤维柔性电极材料及其制备方法
Zhang et al. Facile synthesis of CoxFe1− xP microcubes derived from metal-organic frameworks for efficient oxygen evolution reaction
Zhang et al. A carbon catalyst doped with Co and N derived from the metal-organic framework hybrid (ZIF-8@ ZIF-67) for efficient oxygen reduction reaction
Li et al. Recent progress of hollow structure platform in assisting oxygen evolution reaction
Xiao et al. Co-Mn-S nanosheets decorated with CeO2: a highly active electrocatalyst toward oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant