CN113540823B - Small Vivaldi array antenna with unevenly distributed loaded antenna housing - Google Patents

Small Vivaldi array antenna with unevenly distributed loaded antenna housing Download PDF

Info

Publication number
CN113540823B
CN113540823B CN202110731396.7A CN202110731396A CN113540823B CN 113540823 B CN113540823 B CN 113540823B CN 202110731396 A CN202110731396 A CN 202110731396A CN 113540823 B CN113540823 B CN 113540823B
Authority
CN
China
Prior art keywords
vivaldi
antenna
radome
radiation patch
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110731396.7A
Other languages
Chinese (zh)
Other versions
CN113540823A (en
Inventor
吕艳亭
白旭东
孙朦朦
钱婧怡
孔凡伟
颜卫忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Electronics Co ltd
Original Assignee
Shanghai Aerospace Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Electronics Co ltd filed Critical Shanghai Aerospace Electronics Co ltd
Priority to CN202110731396.7A priority Critical patent/CN113540823B/en
Publication of CN113540823A publication Critical patent/CN113540823A/en
Application granted granted Critical
Publication of CN113540823B publication Critical patent/CN113540823B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

The invention relates to a miniaturized Vivaldi array antenna with an unevenly distributed loading antenna housing, which comprises a pair of extension Vivaldi antenna units and a metal base plate; the opposite-extension Vivaldi antenna units are unevenly distributed on the metal base plate; the opposite-extension Vivaldi antenna unit comprises a front radiation patch and a rear radiation patch, wherein linear gaps which are periodically arranged are formed in the front radiation patch and the rear radiation patch. The miniaturized Vivaldi array antenna with the unevenly distributed loaded radome realizes the miniaturization of the Vivaldi array antenna.

Description

Small Vivaldi array antenna with unevenly distributed loaded antenna housing
Technical Field
The invention relates to the technical field of antennas, in particular to a miniaturized Vivaldi array antenna with a loaded radome in uneven distribution.
Background
With the research and development of the fifth generation mobile communication technology, the millimeter wave band has gained more and more attention as a new spectrum resource. The Vivaldi antenna is a high-gain and broadband end-fire traveling wave antenna, and is widely applied and researched due to the characteristics of low cost and easiness in processing.
Vivaldi antennas play an increasingly important role in the fields of radar, communication and electronic countermeasure due to the advantages of broadband, high gain and low cross polarization. With the development of planar integrated circuits, printed Vivaldi array antennas with low profile, easy integration and low cost become the current research focus, and the application of Vivaldi array antennas in millimeter wave frequency bands has great significance.
Currently, vivaldi antennas have been widely used in military and civilian communications as a phased array antenna unit. The Vivaldi array antenna miniaturization research method has important significance for the limited space of airborne and missile-borne platforms.
Disclosure of Invention
The invention aims to provide a miniaturized Vivaldi array antenna with a loaded radome unevenly distributed, and the miniaturization of the Vivaldi array antenna is realized.
In order to achieve the above object, the present invention provides a miniaturized Vivaldi array antenna with a non-uniform distribution loading radome, comprising a pair of extension Vivaldi antenna units and a metal base plate; the opposite-extension Vivaldi antenna units are unevenly distributed on the metal base plate; the opposite-extension Vivaldi antenna unit comprises a front radiation patch and a rear radiation patch, wherein the front radiation patch and the rear radiation patch are respectively provided with a linear-shaped gap which is periodically arranged.
The miniaturized Vivaldi array antenna with the unevenly distributed loading antenna housing is characterized in that the opposite-extension Vivaldi antenna units are distributed in a random optimal distribution mode; the random optimal distribution mode is used for designing the distance between each pair of extension Vivaldi antenna units, and the isolation of the array ports is optimal through continuous simulation optimization design.
The miniaturized Vivaldi array antenna with the unevenly distributed loaded radome further comprises the radome, and the radome covers the opposite-extension Vivaldi antenna units on the metal base plate; the antenna housing is made of silicon nitride ceramics; the antenna housing is of a tangent oval structure.
The miniaturized Vivaldi array antenna with the unevenly distributed loading antenna housing is characterized in that the pattern formed by the linear gap on the rear radiation patch is completely the same as the pattern formed by the linear gap on the front radiation patch. The linear gap periodically comprises a plurality of linear gaps which are parallel to each other, and the sizes of the linear gaps are different.
The small Vivaldi array antenna with the loaded antenna housing unevenly distributed comprises three I-shaped slots with the sizes of 0.8mm multiplied by 9mm, 0.6mm multiplied by 9.86mm and 0.6mm multiplied by 2.86mm which are arranged in sequence; the diameter of the metal bottom plate is 155mm; eight butt-extension Vivaldi antenna units are provided, and the size of the dielectric substrate is 72mm multiplied by 48mm multiplied by 0.508mm.
The miniaturized Vivaldi array antenna with the unevenly distributed loading radome further comprises a dielectric substrate and an SMA radio frequency connector, wherein the front radiation patch and the rear radiation patch are respectively arranged on two outer surfaces of the dielectric substrate, and the SMA radio frequency connector is arranged below the dielectric substrate and is connected with the front radiation patch and the rear radiation patch.
The miniaturized Vivaldi array antenna with the loaded antenna housing unevenly distributed is characterized in that the dielectric substrate is made of Rogers RO4003; the front radiation patch and the rear radiation patch are made of metal copper; the metal bottom plate is made of a 6061 aluminum plate.
Compared with the prior art, the invention has the beneficial technical effects that:
according to the Vivaldi array antenna, the extension Vivaldi antenna units are distributed unevenly, and the extension Vivaldi antenna units are provided with the radiation patches with the linear gaps, so that the miniaturization of the array antenna is realized, and the problem of limited space of an airborne and missile-borne platform is solved;
according to the Vivaldi array antenna, the isolation of the array antenna is improved by reasonably selecting the spacing of the Vivaldi antenna units;
the Vivaldi antenna unit of the Vivaldi array antenna is simple in structure, easy to process and manufacture in batches and low in cost;
according to the Vivaldi array antenna, due to the introduction of the silicon nitride ceramic antenna housing, the gain of the Vivaldi array antenna is increased, and the isolation problem of the array antenna is improved.
Drawings
The miniaturized Vivaldi array antenna with the unevenly distributed loaded radome of the present invention is given by the following examples and the attached drawings.
Fig. 1 is a schematic diagram of a miniaturized Vivaldi array antenna with a non-uniform loaded radome according to a preferred embodiment of the present invention.
FIG. 2 is an exploded view of a schematic Vivaldi antenna element according to the preferred embodiment of the present invention; fig. 3 is a schematic diagram of a conventional diagonal Vivaldi antenna element.
Fig. 4 is a simulation diagram of standing waves of a miniaturized Vivaldi array antenna with a non-uniform loading radome distribution according to a preferred embodiment of the present invention.
Fig. 5 is a simulation diagram of isolation of an unevenly distributed miniaturized Vivaldi array antenna under an unloaded radome.
Fig. 6 is a simulation diagram of isolation under a loaded radome of a non-uniformly distributed miniaturized Vivaldi array antenna.
Fig. 7 is a simulation diagram of gain under an unloaded radome of the unevenly distributed miniaturized Vivaldi array antenna.
Fig. 8 is a simulation diagram of gain under a non-uniformly distributed miniaturized Vivaldi array antenna loaded radome.
Detailed Description
The miniaturized Vivaldi array antenna with unevenly distributed loading radome of the present invention will be described in further detail with reference to fig. 1 to 8.
The small Vivaldi array antenna with the unevenly distributed loaded radome comprises a butt-extension Vivaldi antenna unit and a metal base plate; the opposite-extension Vivaldi antenna units are unevenly distributed on the metal base plate; the opposite-extension Vivaldi antenna unit comprises a front radiation patch and a rear radiation patch, wherein the front radiation patch and the rear radiation patch are respectively provided with a linear-shaped gap which is periodically arranged.
The extended Vivaldi antenna units are non-uniformly arranged, so that coupling among the antenna units can be effectively reduced, and miniaturization of the Vivaldi array antenna is facilitated; the radiation patch with the I-shaped slot is adopted, so that the size of the opposite extension Vivaldi antenna unit can be reduced.
Fig. 1 is a schematic diagram of a miniaturized Vivaldi array antenna with a non-uniform loaded radome according to a preferred embodiment of the present invention.
Referring to fig. 1, the miniaturized Vivaldi array antenna with the unevenly distributed loaded radome of the present embodiment includes a pair-topology Vivaldi antenna unit 1, a tangent oval radome 2, and a metal base plate 3; the opposite-extension Vivaldi antenna units 1 are unevenly distributed on the metal base plate 3; the tangent oval radome 2 covers the opposite-type Vivaldi antenna element 1 on the metal base plate 3.
Specifically, the number of the opposite-topology Vivaldi antenna units 1 is multiple, the multiple opposite-topology Vivaldi antenna units 1 are all erected on the metal base plate 3, and the multiple opposite-topology Vivaldi antenna units 1 are unevenly distributed on the metal base plate 3 in a random optimal distribution manner. The random optimal distribution mode is to design the spacing between each pair of extension Vivaldi antenna units 1, and the array port isolation is optimized through continuous simulation design, that is, each pair of extension Vivaldi antenna units 1 is arranged according to the spacing between each pair of extension Vivaldi antenna units 1 designed when the array port isolation is optimized.
In the prior art, the opposite-type Vivaldi antenna units are uniformly arranged on the metal base plate, that is, the opposite-type Vivaldi antenna units are arranged along the radius direction of a circle (the metal base plate), specifically, the width direction of the opposite-type Vivaldi antenna units is in the radius direction of the circle, and a plurality of opposite-type Vivaldi antenna units are uniformly arranged along the circumference. In the invention, a plurality of opposite-topology Vivaldi antenna units are randomly arranged (i.e. non-uniformly arranged) on the metal bottom plate (circle). When the number of the extension Vivaldi antenna units is certain, and the isolation degree of the array ports achieves the same effect, the size of the metal base plate is smaller than that of the metal base plate in the prior art, and therefore compared with uniform arrangement, the Vivaldi array antenna is beneficial to miniaturization.
FIG. 2 is an exploded view of a schematic Vivaldi antenna element according to the preferred embodiment of the present invention; fig. 3 is a schematic diagram of a conventional Vivaldi antenna element.
Referring to fig. 2, the opposite-topology Vivaldi antenna unit 1 includes a dielectric substrate 6, a front radiation patch 4, a rear radiation patch 5, and an SMA radio frequency connector 6, where the front radiation patch 4 and the rear radiation patch 5 are respectively disposed on two outer surfaces of the dielectric substrate 6, and the SMA radio frequency connector 6 is disposed below the dielectric substrate 6 and connected to both the front radiation patch 4 and the rear radiation patch 5.
Comparing with fig. 3, the present invention improves the extended Vivaldi antenna unit, and referring to fig. 2, the front radiation patch 4 and the rear radiation patch 5 of the extended Vivaldi antenna unit 1 of this embodiment are both provided with "linear" shaped slots that are periodically arranged. The radiation patch provided with the linear slot is adopted, so that the effective path of current is increased, the impedance bandwidth of the antenna can be widened under the condition that the size of the unit is not increased, the size of the extension type Vivaldi antenna unit can be greatly reduced on the premise of achieving the same technical effect, and the miniaturization of the Vivaldi array antenna is further facilitated.
Referring to fig. 2, in the present embodiment, preferably, one period includes three slots in a shape of a straight line, the three slots in a shape of a straight line are parallel to each other, and are respectively a first slot 8 in a shape of a straight line, a second slot 9 in a shape of a straight line, and a third slot 10 in a shape of a straight line, and sizes of the three slots in a shape of a straight line are different from each other; five periods are arranged on the same radiation patch, and the pattern formed by the straight-line-shaped gaps on the rear radiation patch 5 is completely the same as the pattern formed by the straight-line-shaped gaps on the front radiation patch 4. However, the invention does not limit the pattern formed by the linear gaps on the radiation patch, and can be designed according to requirements, namely the invention does not limit the number of linear gaps contained in one period, and the size and the period number of each linear gap.
Referring to fig. 1, in this embodiment, a tangent oval radome 2 is loaded on the Vivaldi array antenna, and the material of the tangent oval radome 2 is silicon nitride ceramic, so that the gain and the isolation of the array antenna can be improved.
Referring to fig. 1, in the present embodiment, the metal base plate 3 is circular, has a diameter of 155mm, and is made of a 6061 aluminum plate; the metal bottom plate 3 mainly functions to improve the gain and directivity of the array antenna, and block and shield electromagnetic waves from the opposite direction;
eight opposite-type Vivaldi antenna units 1 are arranged on the metal base plate 3, each opposite-type Vivaldi antenna unit 1 is identical, and the eight opposite-type Vivaldi antenna units 1 are unevenly distributed on the metal base plate 3 in a random optimal distribution mode; the distribution of eight antenna units is realized in the aperture constraint range of 155mm, and the isolation degree of the array port completely meets the technical requirements through simulation verification;
referring to fig. 2, in the embodiment, for the extension Vivaldi antenna unit 1, the dielectric substrate 6 is made of Rogers RO4003, and the front radiation patch 4 and the rear radiation patch 5 are made of copper; the size of the first linear gap 8 is 0.8mm multiplied by 9mm, the size of the second linear gap 9 is 0.6mm multiplied by 9.86mm, and the size of the third linear gap 10 is 0.6mm multiplied by 2.86mm; the main effect of adding the linear slot pattern is to reduce the size of the cell and realize the miniaturization of the cell, the size of the dielectric substrate 6 of the extended Vivaldi antenna cell 1 of the embodiment is 72mm (length) × 48mm (width) × 0.508mm (thickness), and on the premise of achieving the same technical effect, the size of the dielectric substrate of the existing extended Vivaldi antenna cell is 70mm (length) × 70mm (width);
referring to fig. 1, in the present embodiment, the length of the tangential oval radome 2 is 220mm, the diameter of the bottom surface is 170mm, and the thickness is 5mm. The tangent oval antenna housing 2 is made of silicon nitride ceramics with high temperature resistance and high wave-transmitting rate, and the directional diagram and the isolation of the Vivaldi array antenna can be effectively improved.
Fig. 4 is a simulation diagram of standing waves of a miniaturized Vivaldi array antenna with an unevenly distributed loaded radome according to a preferred embodiment of the present invention. As shown in FIG. 4, through simulation, the standing wave is less than 3 in the frequency band range of 3GHz-18GHz, which meets the requirements of engineering on the standing wave of the antenna.
FIG. 5 is a simulation diagram of isolation under an unloaded radome of a non-uniformly distributed miniaturized Vivaldi array antenna; fig. 6 is a simulation diagram of isolation under a loaded radome of a non-uniformly distributed miniaturized Vivaldi array antenna. As shown in fig. 5 and 6, through simulation, after the array antenna is loaded with the radome in the frequency band range of 2-18GHz, the isolation of the antenna is improved in a high-frequency part.
Fig. 7 is a simulation diagram of gain under an unloaded radome of a non-uniformly distributed miniaturized Vivaldi array antenna; fig. 8 is a graph showing a simulation of gain under a loaded radome of a non-uniformly distributed miniaturized Vivaldi array antenna. As shown in fig. 7 and 8, through simulation, after the array antenna is loaded with the radome in the frequency band range of 2-18GHz, the gain of the antenna is improved by 0.5dB at the central frequency of 10 GHz.
The foregoing shows and describes the general principles, principal features, and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are given by way of illustration of the principles of the present invention, but that various changes and modifications may be made without departing from the spirit and scope of the invention, and such changes and modifications are within the scope of the invention as claimed.

Claims (9)

1. The small Vivaldi array antenna is characterized by comprising a butt-expanded Vivaldi antenna unit and a metal base plate; the opposite-extension Vivaldi antenna units are unevenly distributed on the metal base plate; the opposite-extension Vivaldi antenna unit comprises a front radiation patch and a rear radiation patch, wherein the front radiation patch and the rear radiation patch are respectively provided with a linear gap which is periodically arranged;
the opposite extension Vivaldi antenna units are distributed in a random optimal distribution mode; the random optimal distribution mode is used for designing the distance between each pair of extension Vivaldi antenna units, and the isolation of the array ports is optimal through continuous simulation optimization design.
2. The non-uniformly radome-loaded miniaturized Vivaldi array antenna of claim 1, further comprising a radome housing the opposite-topology Vivaldi antenna elements on the metal chassis; the antenna housing is made of silicon nitride ceramics.
3. The non-uniformly loaded radome miniaturized Vivaldi array antenna of claim 2 wherein the radome is a tangential oval structure.
4. The non-uniformly distributed, miniaturized Vivaldi array antenna loaded radome of claim 1 wherein the pattern formed by the "in-line" shaped slots on the rear radiating patch is identical to the pattern formed by the "in-line" shaped slots on the front radiating patch.
5. The non-uniformly distributed miniaturized Vivaldi array antenna with loaded radome of claim 4, wherein a periodicity comprises a plurality of mutually parallel slots of a shape like a straight line, the slots of the shape like a straight line having different sizes.
6. The miniaturized Vivaldi array antenna with an unevenly distributed loaded radome of claim 5, wherein one periodicity comprises three slots in a shape of a straight line, the slots having a size of 0.8mm x 9mm, 0.6mm x 9.86mm and 0.6mm x 2.86mm, which are arranged in sequence.
7. The miniaturized Vivaldi array antenna with unevenly distributed loading radome of claim 6, wherein the butt-topology Vivaldi antenna unit further comprises a dielectric substrate and SMA radio frequency connectors, wherein the front radiation patch and the rear radiation patch are respectively disposed on two outer surfaces of the dielectric substrate, and the SMA radio frequency connectors are disposed below the dielectric substrate and connected with both the front radiation patch and the rear radiation patch.
8. The non-uniformly radome distributed miniaturized Vivaldi array antenna of claim 7 wherein the metal chassis has a diameter of 155mm; eight butt-extension Vivaldi antenna units are provided, and the size of the dielectric substrate is 72mm multiplied by 48mm multiplied by 0.508mm.
9. The non-uniformly distributed miniaturized Vivaldi array antenna with loaded radome of claim 8, wherein the dielectric substrate is made of Rogers RO4003; the front radiation patch and the rear radiation patch are made of metal copper; the metal bottom plate is made of a 6061 aluminum plate.
CN202110731396.7A 2021-06-30 2021-06-30 Small Vivaldi array antenna with unevenly distributed loaded antenna housing Active CN113540823B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110731396.7A CN113540823B (en) 2021-06-30 2021-06-30 Small Vivaldi array antenna with unevenly distributed loaded antenna housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110731396.7A CN113540823B (en) 2021-06-30 2021-06-30 Small Vivaldi array antenna with unevenly distributed loaded antenna housing

Publications (2)

Publication Number Publication Date
CN113540823A CN113540823A (en) 2021-10-22
CN113540823B true CN113540823B (en) 2022-11-18

Family

ID=78097259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110731396.7A Active CN113540823B (en) 2021-06-30 2021-06-30 Small Vivaldi array antenna with unevenly distributed loaded antenna housing

Country Status (1)

Country Link
CN (1) CN113540823B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284713B (en) * 2021-12-28 2023-10-20 哈尔滨工业大学(威海) Carrier conformal antenna and beam forming method thereof
CN116598757B (en) * 2023-07-13 2023-09-29 电子科技大学 Vivaldi antenna loaded by parasitic structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244231A (en) * 1999-02-24 2000-09-08 Yokowo Co Ltd Micro-strip antenna and method for adjusting its resonance frequency
JP2006174366A (en) * 2004-12-20 2006-06-29 Alps Electric Co Ltd Antenna system
CN106450674A (en) * 2016-08-24 2017-02-22 重庆大学 Antenna array, communication device and terminal equipment
CN110707439A (en) * 2019-09-03 2020-01-17 江苏亨鑫科技有限公司 Microstrip array antenna
CN111129758A (en) * 2020-01-14 2020-05-08 上海霍莱沃电子系统技术股份有限公司 Broadband dual-polarization tapered slot probe antenna
CN112332094A (en) * 2020-09-24 2021-02-05 网络通信与安全紫金山实验室 Slot array antenna for wireless positioning system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065509A1 (en) * 2013-11-01 2015-05-07 Laird Technologies, Inc. Dual polarized low profile high gain panel antennas
CN107369887A (en) * 2017-06-28 2017-11-21 山东航天电子技术研究所 A kind of high octave dual polarization Vivaldi antennas
CN108173002A (en) * 2017-12-19 2018-06-15 哈尔滨工业大学(威海) A kind of compound polarization sensitive array device based on conformal Vivaldi antennas
CN110098477B (en) * 2019-05-16 2022-08-26 京信通信技术(广州)有限公司 Radiation structure and array antenna
CN112259961A (en) * 2020-10-28 2021-01-22 湖南大学 Multi-octave ultra-wideband antenna and conformal array antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244231A (en) * 1999-02-24 2000-09-08 Yokowo Co Ltd Micro-strip antenna and method for adjusting its resonance frequency
JP2006174366A (en) * 2004-12-20 2006-06-29 Alps Electric Co Ltd Antenna system
CN106450674A (en) * 2016-08-24 2017-02-22 重庆大学 Antenna array, communication device and terminal equipment
CN110707439A (en) * 2019-09-03 2020-01-17 江苏亨鑫科技有限公司 Microstrip array antenna
CN111129758A (en) * 2020-01-14 2020-05-08 上海霍莱沃电子系统技术股份有限公司 Broadband dual-polarization tapered slot probe antenna
CN112332094A (en) * 2020-09-24 2021-02-05 网络通信与安全紫金山实验室 Slot array antenna for wireless positioning system

Also Published As

Publication number Publication date
CN113540823A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
Wong et al. Four-port wideband annular-ring patch antenna generating four decoupled waves for 5G multi-input–multi-output access points
CN113540823B (en) Small Vivaldi array antenna with unevenly distributed loaded antenna housing
CN110011043B (en) Four-frequency dual polarized antenna and wireless communication device
CN110854525A (en) Ka-band dual-polarized antenna unit structure based on resonant cavity radiation
Karthikeya et al. Low cost high gain triple band mmWave Sierpinski antenna loaded with uniplanar EBG for 5G applications
CN109193136B (en) High-gain patch antenna with broadband and filtering characteristics
US20230017375A1 (en) Radiating element, antenna assembly and base station antenna
CN113097716A (en) Broadband circularly polarized end-fire antenna adopting substrate integrated waveguide technology
CN210692750U (en) Ka-band dual-polarized antenna unit structure based on resonant cavity radiation
Kumar et al. A compact four-port high isolation hook shaped ACS fed Mimo antenna for dual frequency band applications
CN209641833U (en) Four frequency dual polarized antennas and wireless telecom equipment
CN113506976B (en) High-gain circularly polarized antenna and wireless communication device
CN112886234B (en) Microwave millimeter wave coplanar common-caliber antenna based on embedded structure
CN110190393B (en) High-gain gradient slot line antenna loaded by metal column lens
CN110444876B (en) High-gain broadband circularly polarized antenna and wireless communication equipment
CN113839187B (en) Parasitic unit loaded high-gain double-frequency microstrip antenna
CN112003007A (en) Windmill type printed Alford loop antenna based on loading short-circuit nails
CN110931968A (en) Low cross polarization millimeter wave microstrip flat plate array antenna
Joseph et al. A novel millimeter-wave series-fed microstrip line antenna array
KR20020019711A (en) Microstrip EMC cross dipole array wide-band antenna with circular polar ization
CN107196050B (en) Miniaturized dual-band circularly polarized antenna loaded with electromagnetic metamaterial
CN115173068A (en) Broadband circularly polarized substrate integrated waveguide horn antenna array and wireless communication equipment
CN210430099U (en) High-gain broadband circularly polarized antenna and wireless communication equipment
Chen et al. Mutual coupling reduction of slot array antenna for 5G millimeter-wave handset
Lu et al. A split-ring resonator full/sparse planar array based on Chebyshev polynomial

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant