CN113540273B - 一种高速高增益的雪崩光电探测器及制备方法 - Google Patents

一种高速高增益的雪崩光电探测器及制备方法 Download PDF

Info

Publication number
CN113540273B
CN113540273B CN202110810709.8A CN202110810709A CN113540273B CN 113540273 B CN113540273 B CN 113540273B CN 202110810709 A CN202110810709 A CN 202110810709A CN 113540273 B CN113540273 B CN 113540273B
Authority
CN
China
Prior art keywords
layer
adopting
electrode
photoetching
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110810709.8A
Other languages
English (en)
Other versions
CN113540273A (zh
Inventor
杨晓红
王睿
王晖
何婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202110810709.8A priority Critical patent/CN113540273B/zh
Publication of CN113540273A publication Critical patent/CN113540273A/zh
Application granted granted Critical
Publication of CN113540273B publication Critical patent/CN113540273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本公开提供了一种高速高增益的雪崩光电探测器及其制备方法,其芯片包括由上至下设置的三级台阶;其中:第一级台阶,包括由上至下依次设置的P电极、第一欧姆接触层、第一吸收层和第二吸收层上部;第二级台阶,包括由上至下依次设置的第二吸收层下部、过渡层、第一电荷层、倍增层、第二电荷层、渡越层和第二欧姆接触层上部;第三级台阶,包括由上至下依次设置的第二欧姆接触层下部和绝缘衬底;所述三级台阶的水平投影面积依次增大。所述芯片倍增层采用超薄InAlAs材料。所述三级台阶芯片倒扣键合在基片上。

Description

一种高速高增益的雪崩光电探测器及制备方法
技术领域
本公开涉及探测器技术领域,具体涉及一种高速高增益的雪崩光电探测器。
背景技术
随着人们对信息传递日益增长的需要,对光通讯的传输速度和传输距离有了更高的要求。半导体光电探测器作为光通讯中重要的接收器件,起着举足轻重的作用。与PIN型探测器相比,雪崩光电探测器因其内部对光电流的增益,提高了对光信号探测的响应度。因此,高速高增益的APD被越来越多地应用于光通讯中。评价APD性能的主要指标有3dB带宽、暗电流、响应度和增益带宽积等。
常用的高速APD采用分离吸收电荷倍增的SAGCM结构。要想提高APD响应速度,需减小耗尽区长度来减小载流子渡越时间。单位增益下响应度与带宽相互制约,要想提高APD单位增益下的响应度,通常应增加本征吸收层的厚度,但本征吸收区完全耗尽后,使载流子渡越时间延长,限制APD带宽。光生载流子在倍增区的碰撞电离时间随着增益的提高而增加,在高增益下碰撞电离时间逐渐成为限制器件3dB带宽的主要因素。
此外,高增益下限制APD带宽的主要因素是倍增区的雪崩增益时间,倍增区越薄,APD的增益带宽积越大。但薄倍增区需要更高的电场强度引发雪崩倍增,会使器件的隧穿电流增大,严重时发生隧道击穿。因此,要想获得高速、高增益的雪崩光电探测器,应解决增益带宽积与暗电流、带宽与响应度之间的矛盾。
发明内容
针对现有技术存在的上述缺陷,提供了一种高速高增益的雪崩光电探测器,克服现有技术存在的缺点和不足,提高APD的带宽和响应度。
一种高速高增益的雪崩光电探测器,其芯片包括由上至下设置的三级台阶;其中:
第一级台阶,包括由上至下依次设置的P电极、第一欧姆接触层、第一吸收层和第二吸收层上部;
第二级台阶,包括由上至下依次设置的第二吸收层下部、过渡层、第一电荷层、倍增层、第二电荷层、渡越层和第二欧姆接触层上部;
第三级台阶,包括由上至下依次设置的第二欧姆接触层下部和绝缘衬底;
所述第二欧姆接触层下部连接有N电极;
所述第三级台阶的水平投影面积大于第二级台阶的水平投影面积;所述第二级台阶的水平投影面积大于第一级台阶的水平投影面积。
可选地,所述倍增层的组成材料为本征InAlAs。
可选地,所述第二吸收层的组成材料为本征InGaAs,过渡层的组成材料为本征InAlGaAs,第一电荷层的组成材料为P型掺杂的InAlAs,第二电荷层的组成材料为N型掺杂的InAlAs,渡越层的组成材料为本征InAlAs。
可选地,所述第一吸收层的组成材料为P型掺杂的InGaAs。
可选地,所述第一欧姆接触层的组成材料为P型InGaAs;所述第二欧姆接触层的组成材料为N型InGaAlAs;所述绝缘衬底的组成材料为本征InP。
可选地,其特征在于,所述P电极的组成材料为金属Ti和Au,所述N电极的组成材料为金属Au、Ge、Ni和Au。
可选地,所述绝缘衬底下方设置有增透膜,增透膜所用材质为SiNx。
可选地,所述芯片下方设置有基片,所述芯片倒扣键合于基片上。
可选地,所述基片的组成材料为Al2O3陶瓷。
可选地,一种高速高增益的雪崩光电探测器的制备方法,包括以下几个步骤:
S1采用外延生长工艺,在绝缘衬底上生长第二欧姆接触层、渡越层、第二电荷层、倍增层、第一电荷层、过渡层、第二吸收层、第一吸收层和第一欧姆接触层;
S2采用光刻工艺,在外延正面光刻出P电极图形,带胶溅射P电极,采用剥离工艺制备P电极;
S3采用光刻工艺,在外延正面光刻第一台阶图形;采用湿法腐蚀工艺,对第一台阶以外的外延材料进行腐蚀,腐蚀至第二吸收层中心时停止,形成第一台阶;
S4采用光刻工艺,在外延正面光刻出第二台阶图形,此图形半径稍大于第一台阶;采用湿法腐蚀工艺,腐蚀至第二欧姆接触层2停止,形成第二台阶;
S5采用光刻工艺,在外延正面光刻出第三台阶图形,采用湿法腐蚀工艺,腐蚀进绝缘衬底停止,形成第三台阶;
S6采用复合钝化层钝化的工艺,在外延正面生长复合钝化层作保护,以减小器件的表面漏电流;
S7采用光刻工艺,在外延正面光刻N电极窗口和P电极窗口的图形;采用湿法腐蚀工艺,腐蚀掉N电极窗口和P电极窗口处的复合钝化层,形成N电极和P电极窗口;
S8采用光刻工艺,重新光刻出N电极窗口,带胶溅射,溅射材料为Au、Ge、Ni和Au,之后剥离出N电极;
S9采用光刻工艺,在外延正面光刻出电极引线窗口,带胶溅射,溅射材料为Ti和Au,之后剥离出电极引线;
S10采用快速退火合金工艺,使半导体器件和金属间形成良好的欧姆接触;
S11对绝缘衬底背面进行减薄抛光,采用等离子体化学气相沉积工艺,在减薄抛光后的表面生长SiNx,作增透膜;
S12采用光刻工艺,在增透膜上光刻出对准标记窗口,对准标记为圆环结构,尺寸大于探测器正面第二台阶,且中心位置与第二台阶中心对齐,在后续使用过程中起到定位入射光位置的作用,采用等离子体刻蚀工艺,刻蚀掉对准标记处的SiNx;
S13采用溅射工艺,在陶瓷基片正面溅射金属Ti和Au;
S14采用光刻工艺,在金属Ti和Au表面光刻出微带线窗口;采用湿法腐蚀工艺,将微带线以外的Ti和Au腐净;
S15采用光刻工艺,在陶瓷衬底正面光刻出键合点窗口;采用溅射工艺,带胶溅射金属In,剥离形成金属In键合点;
S16采用热熔焊接工艺,将陶瓷衬底上金属In键合点分别与探测器芯片正面键合点对准焊接,完成芯片的倒扣键合。
从上述技术方案可以看出,本发明中所公开的一种高速高增益的雪崩光电探测器,APD芯片采用三级台阶结构,减小了倍增区边缘电场的强度,从而在减小由杂质和缺陷引起的暗电流的同时,有效地抑制了边缘击穿,使得碰撞电离过程集中于倍增层中心,提高了APD的可靠性。
本发明中所公开的一种高速高增益的雪崩光电探测器,其采用分离吸收、过渡、P型电荷、倍增、N型电荷、渡越的SAGCMCT结构,较常规SAGCM结构,新引入的N型电荷层和渡越层处于耗尽状态,可以减小APD的结电容,提高APD带宽,同时,由于倍增电子的漂移速度比倍增空穴的漂移速度快,可以保证倍增电子的漂移时间小于倍增空穴的漂移时间,使APD总的渡越时间不变,器件带宽不受渡越时间影响。
本发明中所公开的一种高速高增益的雪崩光电探测器,其倍增层选用小于0.12μm的超薄本征InAlAs作为组成材料,InAlAs与吸收层的InGaAs材料晶格匹配,减小了由晶格失配带来的暗电流和载流子堆积,且由于InAlAs比InP有更低的离化率,同等厚度下可以获得更高的增益带宽积和更低的过剩噪声,解决了增益带宽积与暗电流间的矛盾。
本发明中所公开的一种高速高增益的雪崩光电探测器,其采用背入射结构制备的APD,从探测器芯片背面入射的光被吸收区第一次吸收后,经P电极反射,被吸收区二次吸收,从而提高APD的响应度;由于高速APD采用台面结构,背入射结构可以避免台面上开入射窗口,有利于有源区面积的减小,从而提高APD带宽;P电极可完全覆盖P欧姆接触层,减小了欧姆接触电阻,从而提高APD带宽。
附图说明
图1示意性示出了根据本公开实施例的雪崩光电探测器的剖面示意图;
图2示意性示出了根据本公开实施例的雪崩光电探测器的俯视图;
图3示意性示出了根据本公开实施例的雪崩光电探测器制备完N电极引线后和相应的键合辅助支撑台连接的结构示意图;
图4示意性示出了根据本公开实施例的微带线和金属In键合点的结构示意图;
图5示意性示出了根据本公开实施例的雪崩光电探测器的制备流程图;
图中,绝缘衬底-1、第二欧姆接触层-2、渡越层-3、第二电荷层-4、倍增层-5、第一电荷层-6、过渡层-7、第二吸收层-8、第一吸收层-9、第一欧姆接触层-10、P电极-11、N电极-12、增透膜-13、第一台阶-14、第二台阶-15、第三台阶-16、N电极窗口-17、N电极引线-18、N电极台-19、键合辅助支撑台-20、第三金属In键合点-21、第一金属In键合点-22、第二金属In键合点-23、微带线-24。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
本公开的实施例提供一种高速高增益的雪崩光电探测器。
图1~图2示意性给出了根据本公开实施例的雪崩光电探测器的结构图,其芯片包括由上至下设置的三级台阶;其中:
第一级台阶14,包括由上至下依次设置的P电极11、第一欧姆接触层10、第一吸收层9和第二吸收层8上部;
第二级台阶,包括由上至下依次设置的第二吸收层8下部、过渡层7、第一电荷层6、倍增层5、第二电荷层4、渡越层3至第二欧姆接触层2上部;
第三级台阶,包括由上至下依次设置的第二欧姆接触层2下部和绝缘衬底1;
所述第二欧姆接触层2下部连接有N电极12;
所述第三级台阶的水平投影面积大于第二级台阶的水平投影面积;所述第二级台阶的水平投影面积大于第一级台阶的水平投影面积。
如图1所示,APD芯片采用三级台阶结构。第一台阶起到限制器件有源区的作用。且由于第一台阶14尺寸小于第二台阶15,倍增区电场被集中于其中心区域,减小了其边缘电场的强度,从而在减小由杂质和缺陷引起的暗电流的同时,有效地抑制了边缘击穿,使得碰撞电离过程集中于倍增层5中心区域,提高了APD的可靠性。第三台阶起到电学隔离的作用。
如图1所示,采用分离吸收、过渡、P型电荷、倍增、N型电荷、渡越的SAGCMCT结构,较常规SAGCM结构,新引入的N型电荷层和渡越层处于耗尽状态,可以减小APD的结电容,提高APD带宽,同时,由于倍增电子的漂移速度比倍增空穴的漂移速度快,可以保证倍增电子的漂移时间小于倍增空穴的漂移时间,使APD总的渡越时间不变,器件带宽不受渡越时间影响。制备的SAGCMCT结构的APD,单位增益下的3dB带宽约24GHz,5倍增益下的3dB带宽约20GHz。
所述倍增层5的组成材料为超薄的本征InAlAs材料。
由于InAlAs比InP有更低的离化率,同等厚度下可以获得更高的增益带宽积和更低的过剩噪声,解决了增益带宽积与暗电流间的矛盾。
所述第二吸收层8的组成材料为本征InGaAs,过渡层7的组成材料为本征InAlGaAs,第一电荷层6的组成材料为P型掺杂的InAlAs,第二电荷层4的组成材料为N型掺杂的InAlAs,渡越层3的组成材料为本征InAlAs。
通过设计第一电荷层6和第二电荷层4的掺杂浓度,可以实现对倍增层5的电场强度和厚度的控制,使碰撞电离过程集中发生在倍增层5内,在减小隧穿电流的同时,提高增益带宽积,解决了增益带宽积与隧穿电流之间的矛盾。本实施例中所述第一电荷层6的掺杂浓度为5.7×1017cm-3;第二电荷层4的掺杂浓度为5.0×1017cm-3
此外由于倍增层5的材料InAlAs与第二吸收层8的InGaAs材料晶格匹配,可以减小由晶格失配带来的暗电流和载流子堆积。
如图1所示,所述第二吸收层8与第一欧姆接触层10之间设置有第一吸收层9,所述第一吸收层9的组成材料为梯度掺杂的P型InGaAs。
如图1所示,吸收区采用部分掺杂结构,可以在总吸收层厚度不变,即对应的量子效率不变的情况下,减小了光生电子进入倍增区的渡越时间,以及碰撞电离产生的倍增空穴的渡越时间,从而提高APD的带宽。
如图1所示,所述P电极11的组成材料为Ti和Au。
如图1所示,所述P电极11所用材料为Ti和Au,以第一欧姆接触层10向外分别设置厚度合适的Ti和Au;由于Ti和Au均为金属,具有较高的反射率,因此P电极11同时具有反射镜的效果。本实施例中Ti的厚度为30nm,Au的厚度为200nm。
如图1所示,采用背入射结构制备的APD,从探测器芯片背面入射的光被吸收区第一次吸收后,经P电极11反射,被吸收区二次吸收,从而提高APD的响应度;由于高速APD采用台面结构,背入射结构可以避免在台面上开入射窗口,有利于有源区面积的减小,从而提高APD带宽;P电极11可完全覆盖P欧姆接触层,减小了欧姆接触电阻,从而提高APD带宽。本实施例中通过上述技术方案制备的背入射三级台阶结构的SAGCMCT-APD,单位增益下的响应度约0.55A/W;5倍增益下的3dB带宽约20GHz,最大增益带宽积达到210GHz,可以应用于高速、高灵敏度的光信号探测。
如图1所示,所述绝缘衬底1下方设置有增透膜13,增透膜13所用材质为SiNx;所述增透膜13上设置有光入射标记,所述标记为圆环结构,其圆心与芯片正面的有源区圆心对准,直径略大于有源区。本实施例中所述增透膜13的折射率为1.85,厚度为210nm。
本实施例中所述第一电荷层6和第二电荷层4的厚度均为70nm;所述过渡层7的厚度为30nm;所述渡越层3、第一吸收层9和第二吸收层8的厚度均为0.3μm;所述倍增层5的厚度为0.12μm,在0.9倍击穿电压下暗电流仅为6.7nA的同时,增益带宽积可达210GHz。
所述第一欧姆接触层10的组成材料为P型InAlAs;所述第二欧姆接触层2的组成材料为N型InA1As;所述绝缘衬底1的组成材料为本征InP。
所述芯片下方设置有基片,所述芯片倒扣键合于基片上,通过光被二次吸收提高器件的响应度。
所述基片的组成材料为Al2O3陶瓷。
所述基片包括图3所示的部分结构和图4所示的结构。
图3示意性给出了根据本公开实施例的雪崩光电探测器制备N电极引线后和键合辅助支撑台连接的结构图。
图4示意性给出了以及微带线和金属In键合点的结构图。
如图2、图3和图4所示,所述雪崩光电探测器芯片第二欧姆接触层2的台阶平台上开设有N电极窗口17,N电极窗口17内设置有N电极引线18,所述N电极12通过N电极引线18连接至N电极台19,所述绝缘衬底1上连接有键合辅助支撑台20;所述键合辅助支撑台20上方连接倒扣键合基片;所述倒扣键合基片的组成材料为Al2O3陶瓷;倒扣键合基片上设置有微带线24;所述微带线24的组成材料为Ti和Au。
如图2、图3和图4所示,所述微带线24包括第一微带线24和第二微带线24;所述第一微带线24一端连接P电极11,另一端连接倒扣键合基片,所述第二微带线24一端连接N电极台19,另一端连接倒扣键合基片。
进一步地,如图2、图3和图4所示,所述第一微带线24与P电极11之间设置有4μm厚的铟,对铟进行热熔焊接工艺,使其连接第一微带线24和P电极11,从而将探测器芯片倒扣键合到基片上,此焊接点为第一金属In键合点22。
如图2、图3和图4所示,所述第二微带线24与N电极台19之间设置有4μm厚的铟,对铟进行热熔焊接工艺,使其连接第二微带线24和N电极台19,从而将探测器芯片倒扣键合到基片上,此焊接点为第二金属In键合点23。
如图2、图3和图4所示,所述键合辅助支撑台20与基片之间设置有4μm厚的铟,对铟进行热熔焊接工艺,使其连接基片和键合辅助支撑台20,从而将探测器芯片倒扣键合到底座上,此焊接点为第三金属In键合点21。
如图2、图3和图4所示,所述P电极11、N电极台19和键合辅助支撑台20共同作用,提高键合成功率和稳定性,背入射APD芯片与陶瓷绝缘基片1相连接,提供了一种有效的芯片散热方式,且有利于后续的封装处理。
本发明实施例还提供一种高速高增益的雪崩光电探测器的制备方法,如图5所示,方法包括以下几个步骤:
S1采用外延生长工艺,在绝缘衬底1上生长第二欧姆接触层2、渡越层3、第二电荷层4、倍增层5、第一电荷层6、过渡层7、第二吸收层8、第一吸收层9和第一欧姆接触层10;
S2采用光刻工艺,在外延正面光刻出P电极11图形,带胶溅射P电极11,采用剥离工艺制备P电极11;
S3采用光刻工艺,在外延正面光刻第一台阶14图形;采用湿法腐蚀工艺,对第一台阶14以外的外延材料进行腐蚀,直至第二吸收层8中心时停止,形成第一台阶14;
S4采用光刻工艺,在外延正面光刻出第二台阶15图形,此图形半径稍大于第一台阶14;采用湿法腐蚀工艺,腐蚀至第二欧姆接触层22停止,形成第二台阶15;
S5采用光刻工艺,在外延正面光刻出第三台阶16图形,采用湿法腐蚀工艺,腐蚀进绝缘衬底1停止,形成第三台阶16;
S6采用复合钝化层钝化的工艺,在外延正面生长共一定厚度的复合钝化层作保护,以减小器件的表面漏电流;
S7采用光刻工艺,在外延正面光刻N电极窗口17和P电极11窗口的图形;采用湿法腐蚀工艺,腐蚀掉N电极窗口17和P电极11窗口处的复合钝化层,形成N电极12和P电极11窗口;
S8采用光刻工艺,重新光刻出N电极窗口17,带胶溅射,溅射材料为Au、Ge、Ni和Au,之后剥离出N电极12;
S9采用光刻工艺,在外延正面光刻出电极引线窗口,带胶溅射,溅射材料为Ti和Au,之后剥离出电极引线;
S10采用快速退火合金工艺,使半导体器件和金属间形成良好的欧姆接触;
S11对绝缘衬底11背面进行减薄抛光,采用等离子体化学气相沉积工艺,在减薄抛光后的表面生长SiNx,作增透膜13;
S12采用光刻工艺,在增透膜13上光刻出对准标记窗口,对准标记为圆环结构,尺寸大于探测器正面第二台阶15,且中心位置与第二台阶15中心对齐,在后续使用过程中起到定位入射光位置的作用,采用等离子体刻蚀工艺,刻蚀掉对准标记处的SiNx;
S13采用溅射工艺,在陶瓷基片正面溅射金属Ti和Au;
S14采用光刻工艺,在金属Ti和Au表面光刻出微带线窗口24;采用湿法腐蚀工艺,将微带线以外的Ti和Au腐净;
S15采用光刻工艺,在陶瓷衬底正面分别光刻出第一金属In键合点22、第二金属In键合点23和第三金属In键合点21的窗口;采用溅射工艺,带胶溅射金属In,剥离形成金属In键合点;
S16采用热熔焊接工艺,将陶瓷衬底上的第一金属In键合点22、第二金属In键合点23和第三金属In键合点21的分别与探测器芯片正面的P电极11、N电极台19和键合辅助支撑台20对准焊接,完成芯片的倒扣键合。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高速高增益的雪崩光电探测器,其特征在于,其芯片包括由上至下设置的三级台阶;其中:
第一级台阶,包括由上至下依次设置的P电极、第一欧姆接触层、第一吸收层和第二吸收层上部,其中,所述第一吸收层的组成材料为P型掺杂的InGaAs;
第二级台阶,包括由上至下依次设置的第二吸收层下部、过渡层、第一电荷层、倍增层、第二电荷层、渡越层和第二欧姆接触层上部,其中,所述第二吸收层的组成材料为本征InGaAs,所述过渡层的组成材料为本征InAlGaAs,所述第二欧姆接触层的组成材料为N型InGaAlAs;
第三级台阶,包括由上至下依次设置的第二欧姆接触层下部和绝缘衬底;
所述第二欧姆接触层下部连接有N电极;
所述第三级台阶的水平投影面积大于第二级台阶的水平投影面积;所述第二级台阶的水平投影面积大于第一级台阶的水平投影面积。
2.根据权利要求1所述的雪崩光电探测器,其特征在于,所述倍增层的组成材料为本征InAlAs。
3.根据权利要求1所述的雪崩光电探测器,其特征在于,第一电荷层的组成材料为P型掺杂的InAlAs,第二电荷层的组成材料为N型掺杂的InAlAs,渡越层的组成材料为本征InAlAs。
4.根据权利要求1所述的雪崩光电探测器,其特征在于,所述第一欧姆接触层的组成材料为P型InGaAs;所述绝缘衬底的组成材料为本征InP。
5.根据权利要求1所述的雪崩光电探测器,其特征在于,所述P电极的组成材料为金属Ti和Au,所述N电极的组成材料为金属Au、Ge、Ni和Au。
6.根据权利要求1所述的雪崩光电探测器,其特征在于,所述绝缘衬底下方设置有增透膜,增透膜所用材质为SiNx。
7.根据权利要求1所述的雪崩光电探测器,其特征在于,所述芯片下方设置有基片,所述芯片倒扣键合于基片上。
8.根据权利要求7所述的雪崩光电探测器,其特征在于,所述基片的组成材料为Al2O3陶瓷。
9.一种高速高增益的雪崩光电探测器的制备方法,其特征在于,包括以下几个步骤:
S1采用外延生长工艺,在绝缘衬底上生长第二欧姆接触层、渡越层、第二电荷层、倍增层、第一电荷层、过渡层、第二吸收层、第一吸收层和第一欧姆接触层,其中,所述第一吸收层的组成材料为P型掺杂的InGaAs,第二吸收层的组成材料为本征InGaAs,所述过渡层的组成材料为本征InAlGaAs,第二欧姆接触层的组成材料为N型InGaAlAs;
S2采用光刻工艺,在外延正面光刻出P电极图形,带胶溅射P电极,采用剥离工艺制备P电极;
S3采用光刻工艺,在外延正面光刻第一台阶图形;采用湿法腐蚀工艺,对第一台阶以外的外延材料进行腐蚀,腐蚀至第二吸收层中心时停止,形成第一台阶;
S4采用光刻工艺,在外延正面光刻出第二台阶图形,此图形半径稍大于第一台阶;采用湿法腐蚀工艺,腐蚀至第二欧姆接触层2停止,形成第二台阶;
S5采用光刻工艺,在外延正面光刻出第三台阶图形,采用湿法腐蚀工艺,腐蚀进绝缘衬底停止,形成第三台阶;
S6采用复合钝化层钝化的工艺,在外延正面生长复合钝化层作保护,以减小器件的表面漏电流;
S7采用光刻工艺,在外延正面光刻N电极窗口和P电极窗口的图形;采用湿法腐蚀工艺,腐蚀掉N电极窗口和P电极窗口处的复合钝化层,形成N电极和P电极窗口;
S8采用光刻工艺,重新光刻出N电极窗口,带胶溅射,溅射材料为Au、Ge、Ni和Au,之后剥离出N电极;
S9采用光刻工艺,在外延正面光刻出电极引线窗口,带胶溅射,溅射材料为Ti和Au,之后剥离出电极引线;
S10采用快速退火合金工艺,使半导体器件和金属间形成良好的欧姆接触;
S11对绝缘衬底背面进行减薄抛光,采用等离子体化学气相沉积工艺,在减薄抛光后的表面生长SiNx,作增透膜;
S12采用光刻工艺,在增透膜上光刻出对准标记窗口,对准标记为圆环结构,尺寸大于探测器正面第二台阶,且中心位置与第二台阶中心对齐,在后续使用过程中起到定位入射光位置的作用,采用等离子体刻蚀工艺,刻蚀掉对准标记处的SiNx;
S13采用溅射工艺,在陶瓷基片正面溅射金属Ti和Au;
S14采用光刻工艺,在金属Ti和Au表面光刻出微带线窗口;采用湿法腐蚀工艺,将微带线以外的Ti和Au腐净;
S15采用光刻工艺,在陶瓷衬底正面光刻出键合点窗口;采用溅射工艺,带胶溅射金属In,剥离形成金属In键合点;
S16采用热熔焊接工艺,将陶瓷衬底上金属In键合点分别与探测器芯片正面键合点对准焊接,完成芯片的倒扣键合。
CN202110810709.8A 2021-07-16 2021-07-16 一种高速高增益的雪崩光电探测器及制备方法 Active CN113540273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110810709.8A CN113540273B (zh) 2021-07-16 2021-07-16 一种高速高增益的雪崩光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110810709.8A CN113540273B (zh) 2021-07-16 2021-07-16 一种高速高增益的雪崩光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN113540273A CN113540273A (zh) 2021-10-22
CN113540273B true CN113540273B (zh) 2022-05-03

Family

ID=78099983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110810709.8A Active CN113540273B (zh) 2021-07-16 2021-07-16 一种高速高增益的雪崩光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN113540273B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203853B (zh) * 2021-11-10 2022-11-08 武汉敏芯半导体股份有限公司 一种高速光电探测器芯片的制备方法
CN114361285A (zh) * 2021-12-31 2022-04-15 上海科技大学 1.55微米波段雪崩光电探测器及其制备方法
CN115312630B (zh) * 2022-10-09 2022-12-09 天津英孚瑞半导体科技有限公司 一种具有双漂移区的雪崩光电探测器的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077996A (zh) * 2013-02-08 2013-05-01 中国科学院半导体研究所 一种雪崩光电探测器和提高雪崩光电探测器高频特性的方法
CN103268898A (zh) * 2013-04-18 2013-08-28 中国科学院半导体研究所 一种雪崩光电探测器及其高频特性提高方法
CN106711253A (zh) * 2016-12-14 2017-05-24 江苏华功第三代半导体产业技术研究院有限公司 一种iii族氮化物半导体雪崩光电探测器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220688B2 (ja) * 2001-02-26 2009-02-04 日本オプネクスト株式会社 アバランシェホトダイオード

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077996A (zh) * 2013-02-08 2013-05-01 中国科学院半导体研究所 一种雪崩光电探测器和提高雪崩光电探测器高频特性的方法
CN103268898A (zh) * 2013-04-18 2013-08-28 中国科学院半导体研究所 一种雪崩光电探测器及其高频特性提高方法
CN106711253A (zh) * 2016-12-14 2017-05-24 江苏华功第三代半导体产业技术研究院有限公司 一种iii族氮化物半导体雪崩光电探测器

Also Published As

Publication number Publication date
CN113540273A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN113540273B (zh) 一种高速高增益的雪崩光电探测器及制备方法
JP3141847B2 (ja) アバランシェフォトダイオード
CN106098836B (zh) 通讯用雪崩光电二极管及其制备方法
JP4220688B2 (ja) アバランシェホトダイオード
US20070096240A1 (en) Doped Absorption For Enhanced Responsivity For High Speed Photodiodes
JP2706029B2 (ja) p−i−nダイオード
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
US5880482A (en) Low dark current photodetector
JP2009124145A (ja) 前面照射型アバランシェ・フォトダイオード
CN105742397A (zh) 一种可见光到红外光探测的宽波段光电二极管
JP2708409B2 (ja) 半導体受光素子およびその製造方法
KR20040018913A (ko) 피이형 지이에이에이에스 기판 제트앤에스이계 핀포토다이오드 및 피이형 지이에이에이에스 기판제트앤에스이계 애벌란시포토다이오드
JP2005032843A (ja) アバランシェホトダイオード
US8143648B1 (en) Unipolar tunneling photodetector
CN104538481A (zh) InGaAs/QWIP双色红外探测器及其制备方法
CN204067379U (zh) 新型零伏响应雪崩光电探测器芯片
RU2469438C1 (ru) Полупроводниковый фотодиод для инфракрасного излучения
JP2002231992A (ja) 半導体受光素子
Bandyopadhyay et al. Photodetectors for optical fiber communications
MacDonald et al. MSM photodetector fabricated on polycrystalline silicon
CN116435386A (zh) 铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法
CN114023831A (zh) 一种高速高响应光电探测器及其制作方法
US20030111675A1 (en) Doped absorption for enhanced responsivity for high speed photodiodes
JPS61229371A (ja) フオトダイオ−ド
Berger et al. In0. 53Ga0. 47As p‐i‐n photodiodes with transparent cadmium tin oxide contacts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant