CN116435386A - 铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法 - Google Patents

铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法 Download PDF

Info

Publication number
CN116435386A
CN116435386A CN202211691595.0A CN202211691595A CN116435386A CN 116435386 A CN116435386 A CN 116435386A CN 202211691595 A CN202211691595 A CN 202211691595A CN 116435386 A CN116435386 A CN 116435386A
Authority
CN
China
Prior art keywords
avalanche
type
ingaas
region
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211691595.0A
Other languages
English (en)
Inventor
代千
龚赤坤
覃文治
李宛励
陈庆敏
梁丕刚
舒域鑫
谢和平
潘旭
谢骞
王国胜
郝昕
周小燕
刘源
田洪军
宋海智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN202211691595.0A priority Critical patent/CN116435386A/zh
Publication of CN116435386A publication Critical patent/CN116435386A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,基于吸收倍增分离盖革雪崩二极管结构,以铟镓砷作为吸收层材料、铟铝砷作为能带渐变材料、磷化铟作为倍增层材料,采用Zn保护环掺杂区结合凹槽扩散主结的新型PN结制备方法,缓解传统无保护环的两次扩散主结中存在的雪崩电场对雪崩区外吸收的载流子的虹吸效应,解决雪崩区内外电场控制问题,结合厚铝膜对雪崩区外的1.06μm和1.55μm波长入射光子的强吸收,有效遮蔽雪崩区外入射光,解决雪崩区外吸收载流子扩散至雪崩区问题,从光生载流子扩散路径和光子吸收路径两方面,解决雪崩区外的载流子吸收和扩散导致的光生电流发生响应拖尾的问题。

Description

铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法
技术领域
本发明属于半导体光电器件技术领域,涉及一种铟镓砷盖革雪崩探测器,具体为一种铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法。
背景技术
盖革雪崩探测器是一种基于盖革雪崩二极管结构的具有单光子灵敏度的半导体光电子器件,主要用于单光子激光测距和微弱光光子计数,在超远距离深空激光测距、星地量子通信、太阳光谱辐照定标等领域都由广泛应用。盖革雪崩探测器的基本原理是利用周期性工作在击穿态的高电场条件下所获得的超高增益,使得单个光子发生碰撞离化后,能够产生雪崩放大的链式反应,就可以触发较大的雪崩电流,从而实现单光子探测。
基于铟镓砷材料研制的铟镓砷盖革雪崩探测器主要满足1000nm~1700nm的近红外波段的单光子探测,但与硅基盖革雪崩探测器相比,铟镓砷由于是一种三五族化合物材料,主要通过在磷化铟衬底片上进行异质外延生长获得,因此纯度较差、缺陷较多,在高电场条件下更容易发生载流子被材料的陷阱中心等俘获,导致器件在上一个探测周期内收到的光信号,有一定几率延迟转换为电信号,甚至影响到下一探测周期工作,也就是后脉冲效应非常明显,由于电信号相对于光信号的到达时刻有明显滞后,所以最终表现为响应拖尾现象,相对于光信号亚ns的脉宽,光信号甚至会拖尾至100ns以上,降低了信号探测精度。
目前的铟镓砷盖革雪崩探测器存在响应拖尾现象的原因主要有:一是传统无保护环的两次扩散主结的雪崩电场呈现出从外围到边缘到中心分区域逐渐增强的态势,因此雪崩区对于雪崩区外吸收的载流子存在虹吸效应,会把较处载流子收集到雪崩区,由于外围载流子路程较长,导致响应滞后;二是传统InGaAsP过渡层一般采用三层能带渐变层结构,由于存在不连续,还是有一定可能导致载流子堆积,导致响应滞后;三是如果入射光不能全部集中到雪崩区,还有一部分照射到雪崩区外发生雪崩区外吸收,也会导致响应滞后。因此要解决上述因素,才能有效解决雪崩区外的载流子吸收和扩散导致的光生电流发生响应拖尾的问题。
发明内容
(一)发明目的
本发明的目的是:提供一种铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,解决目前铟镓砷盖革雪崩探测器存在的由于雪崩区外吸收的载流子扩散至雪崩区而导致的响应拖尾现象,实现1.06μm和1.55μm波长的低暗计数率和低后脉冲率单光子激光探测。
(二)技术方案
为了解决上述技术问题,本发明基于吸收倍增分离盖革雪崩二极管结构,以铟镓砷作为吸收层材料、铟铝砷作为能带渐变材料、磷化铟作为倍增层材料,采用Zn保护环掺杂区结合凹槽扩散主结的新型PN结制备方法,缓解传统无保护环的两次扩散主结中存在的雪崩电场对雪崩区外吸收的载流子的虹吸效应,解决雪崩区内外电场控制问题,结合厚铝膜对雪崩区外的1.06μm和1.55μm波长入射光子的强吸收,有效遮蔽雪崩区外入射光,解决雪崩区外吸收载流子扩散至雪崩区问题,从光生载流子扩散路径和光子吸收路径两方面,解决雪崩区外的载流子吸收和扩散导致的光生电流发生响应拖尾的问题。
本发明铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法包括以下步骤:
第一步、采用异质外延生长工艺,在n+型InP衬底1上,依次外延n+型InP缓冲层2、i型InGaAs吸收层3、i型InAlAs能带渐变层4、n+型InP电荷层5、i型InP顶层6。InAlAs能带渐变层4是采用组分可调的具有能带渐变特征的InAlAs材料。
第二步、采用光刻、刻蚀工艺,在i型InP顶层6上制备扩散掺杂用凹槽7。
第三步、采用扩散工艺,在i型InP顶层6上制备扩散掺杂用凹槽7以形成p+型Zn主结掺杂区8。
第四步、在p+型Zn主结掺杂区8的周围制备一圈掺杂深度更大的p+型Zn保护环掺杂区9。p+型Zn保护环掺杂区9的深度是大于p+型Zn主结掺杂区8的深度。
第五步、采用介质膜沉积工艺,在i型InP顶层6表面沉积钝化层10。
第六步、采用金属膜沉积工艺,制备钛铂金p电极11,并与p+型Zn主结掺杂区8形成欧姆接触。
第七步、采用金属膜沉积工艺,在n+型InP衬底1上制备金锗镍n电极12以及厚铝膜13,厚铝膜13作为雪崩区外遮蔽层。
第八步、在与p+型Zn主结掺杂区8对应的位置,采用光刻刻蚀工艺制备出进光孔14。
第九步、在进光孔中的n+型InP衬底1表面上沉积增透膜15。
(三)有益效果
上述技术方案所提供的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,采用深Zn保护环掺杂区的凹槽扩散主结,缓解传统无保护环的两次扩散主结中存在的雪崩电场对雪崩区外吸收的载流子的虹吸效应,解决雪崩区内外电场控制问题;采用InAlAs能带渐变层,降低InGaAs吸收层和InP电荷层之间势垒,加快载流子渡越,避免界面处堆积发生迟滞问题;采用厚铝膜,有效遮蔽雪崩区外入射光,解决雪崩区外吸收载流子扩散至雪崩区问题;从光生载流子扩散路径和光子吸收路径两方面,解决了雪崩区外的载流子吸收和扩散导致的光生电流发生响应拖尾的问题。
附图说明
图1至图4分别为本发明方法的过程示意图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
按照本发明所述铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构设计方法,基于2英寸InP晶圆制备了具有吸收倍增分离结构的铟镓砷/铟磷异质外延材料,并据此制备出铟镓砷盖革雪崩探测器,作为本发明的实施例。
第一步,采用MOCVD沉积设备,在厚度为350μm、掺杂浓度为3~8E18cm-3的n+型InP衬底1上,通过材料外延生长工艺,依次外延厚度为0.5μm掺杂浓度为1E18cm-3的n+型InP缓冲层2、厚度为2μm非故意掺杂的i型InGaAs吸收层3、厚度为0.1μm非故意掺杂的i型InAlAs能带渐变层4、厚度为0.4μm掺杂浓度为8E16cm-3的n+型InP电荷层5、厚度为4μm非故意掺杂的i型InP顶层6,见附图1。
第二步,采用光刻、ICP刻蚀设备,在i型InP顶层6上制备深度为0.5μm、直径为20μm的圆形扩散掺杂用凹槽7,见附图2。
第三步,采用高温扩散掺杂设备,制备与扩散掺杂用凹槽7同心的、深度为3μm、直径为25μm的圆形p+型Zn主结掺杂区8,见附图3。
第四步,采用高温扩散掺杂设备,在p+型Zn主结掺杂区8的周围制备同心的、深度为3.5μm、内径为30μm、外径为35μm的圆环p+型Zn保护环掺杂区9,见附图3。
第五步,采用PECVD设备,沉积厚度为0.4μm的氮化硅钝化层10,见附图4。
第六步,采用光刻、电子束蒸发设备,在芯片正面制备厚度为1μm钛铂金p电极11,采用真空合金炉形成欧姆接触,见附图4。
第七步,采用磁控溅射设备,在芯片背面n+型InP衬底1上制备金锗镍n电极12以及厚铝膜13,见附图4。
第八步,采用光刻、ICP刻蚀设备,在与p+型Zn主结掺杂区8对应的位置,制备出直径为18μm进光孔14,见附图4。
第九步,采用PECVD设备,在进光孔中的n+型InP衬底1表面上沉积氮化硅增透膜15,见附图4。
经测试评价,按照本发明所述铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构设计方法,制备的铟镓砷盖革雪崩探测器实现了暗计数率小于5kHz、后脉冲几率小于10%@1μs死时间,性能优于传统器件。
由上述技术方案可以看出,本发明具有以下显著特点:
(1)本发明基于吸收倍增分离盖革雪崩二极管结构,以铟镓砷作为吸收层材料、铟铝砷作为能带渐变材料、磷化铟作为倍增层材料,提出采用Zn保护环掺杂区结合凹槽扩散主结的新型PN结制备方法,结合厚铝膜对雪崩区外的1.06μm和1.55μm波长入射光子的强吸收,从光生载流子扩散路径和光子吸收路径两方面,采取有效措施,解决了雪崩区外的载流子吸收和扩散导致的光生电流发生响应拖尾的问题,提升器件性能,提高器件适用性。
(2)本发明基于MBE或MOCVD异质外延技术,通过采用深Zn保护环掺杂区的凹槽扩散主结,缓解传统无保护环的两次扩散主结中存在的雪崩电场对雪崩区外吸收的载流子的虹吸效应,解决雪崩区内外电场控制问题,采用InAlAs能带渐变层,降低InGaAs吸收层和InP电荷层之间势垒,加快载流子渡越,避免界面处堆积发生迟滞问题,采用厚铝膜,有效遮蔽雪崩区外入射光,解决雪崩区外吸收载流子扩散至雪崩区问题,因此能够实现雪崩区外吸收抑制,有效解决响应拖尾现象。
(3)本发明创新性地提出采用深Zn保护环掺杂区的凹槽扩散主结结合InAlAs能带渐变层,并采用厚铝膜遮蔽雪崩区外入射光,实现雪崩区外吸收抑制。
(4)本发明可在设计和制备铟镓砷盖革雪崩探测器时提供参考,根据本发明制备的铟镓砷盖革雪崩探测器,实现了1.06μm和1.55μm波长的低暗计数、低后脉冲的单光子探测,该方法切实可行。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,包括以下步骤:
第一步、采用异质外延生长工艺,在n+型InP衬底(1)上,依次外延n+型InP缓冲层(2)、i型InGaAs吸收层(3)、i型InAlAs能带渐变层(4)、n+型InP电荷层(5)、i型InP顶层(6);
第二步、采用光刻、刻蚀工艺,在i型InP顶层(6)上制备扩散掺杂用凹槽(7);
第三步、采用扩散工艺,在i型InP顶层(6)上制备扩散掺杂用凹槽(7)以形成p+型Zn主结掺杂区(8);
第四步、在p+型Zn主结掺杂区(8)的周围制备一圈p+型Zn保护环掺杂区(9);
第五步、采用介质膜沉积工艺,在i型InP顶层(6)表面沉积钝化层(10);
第六步、采用金属膜沉积工艺,制备钛铂金p电极(11),并与p+型Zn主结掺杂区(8)形成欧姆接触;
第七步、采用金属膜沉积工艺,在n+型InP衬底(1)上制备金锗镍n电极(12)以及厚铝膜(13),厚铝膜(13)作为雪崩区外遮蔽层;
第八步、在与p+型Zn主结掺杂区(8)对应的位置,采用光刻刻蚀工艺制备出进光孔(14);
第九步、在进光孔中的n+型InP衬底(1)表面上沉积增透膜(15)。
2.如权利要求1所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第一步中,n+型InP衬底(1)厚度为350μm、掺杂浓度为3~8E18cm-3
3.如权利要求2所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第一步中,n+型InP衬底(1)上,依次外延厚度为0.5μm掺杂浓度为1E18cm-3的n+型InP缓冲层(2)、厚度为2μm非故意掺杂的i型InGaAs吸收层(3)、厚度为0.1μm非故意掺杂的i型InAlAs能带渐变层(4)、厚度为0.4μm掺杂浓度为8E16cm-3的n+型InP电荷层(5)、厚度为4μm非故意掺杂的i型InP顶层(6)。
4.如权利要求3所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第二步中,在i型InP顶层(6)上制备深度为0.5μm、直径为20μm的圆形扩散掺杂用凹槽(7)。
5.如权利要求4所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第三步中,p+型Zn主结掺杂区(8)为圆形,与扩散掺杂用凹槽(7)同心、深度为3μm、直径为25μm。
6.如权利要求5所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第四步中,在p+型Zn主结掺杂区(8)的周围制备同心的、深度为3.5μm、内径为30μm、外径为35μm的圆环p+型Zn保护环掺杂区(9)。
7.如权利要求6所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第四步中,p+型Zn保护环掺杂区(9)的深度大于p+型Zn主结掺杂区(8)的深度。
8.如权利要求7所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第五步中,氮化硅钝化层(10)厚度为0.4μm。
9.如权利要求8所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第六步中,钛铂金p电极(11)厚度为1μm。
10.如权利要求9所述的铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法,其特征在于,第八步中,进光孔(14)直径为18μm。
CN202211691595.0A 2022-12-27 2022-12-27 铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法 Pending CN116435386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211691595.0A CN116435386A (zh) 2022-12-27 2022-12-27 铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211691595.0A CN116435386A (zh) 2022-12-27 2022-12-27 铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法

Publications (1)

Publication Number Publication Date
CN116435386A true CN116435386A (zh) 2023-07-14

Family

ID=87087904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211691595.0A Pending CN116435386A (zh) 2022-12-27 2022-12-27 铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法

Country Status (1)

Country Link
CN (1) CN116435386A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117690986A (zh) * 2024-02-01 2024-03-12 云南大学 高温工作单光子探测器、单光子焦平面探测器及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117690986A (zh) * 2024-02-01 2024-03-12 云南大学 高温工作单光子探测器、单光子焦平面探测器及制备方法
CN117690986B (zh) * 2024-02-01 2024-05-03 云南大学 高温工作单光子探测器、单光子焦平面探测器及制备方法

Similar Documents

Publication Publication Date Title
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN108630779B (zh) 碳化硅探测器及其制备方法
CN109494275A (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN113540273B (zh) 一种高速高增益的雪崩光电探测器及制备方法
CN116435386A (zh) 铟镓砷盖革雪崩探测器的雪崩区外吸收抑制结构制备方法
WO2023051242A1 (zh) 单光子探测器及其制作方法、单光子探测器阵列
CA3058490C (en) Multi-junction tandem laser photovoltaic cell and manufacturing method thereof
CN113964238B (zh) 一种雪崩光电探测器的制备方法
CN104505421B (zh) 一种具有自熄灭自恢复功能的雪崩光电二极管
CN102263162A (zh) 一种倒装焊结构雪崩光电二极管及其阵列的制备方法
CN114122191A (zh) 一种雪崩光电探测器的制备方法
US11495707B2 (en) AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
CN216488098U (zh) 一种InAlAs雪崩光电探测器结构
CN104505422A (zh) 一种自熄灭自恢复雪崩光电二极管
CN109148623B (zh) 一种具有低噪声的AlGaN基雪崩光电二极管及制备方法
CN110797421B (zh) 一种日盲紫外单光子雪崩探测器
CN216488097U (zh) 一种雪崩光电探测器
CN115312630B (zh) 一种具有双漂移区的雪崩光电探测器的制备方法
CN113964237A (zh) 一种具有二次外延集电区和电场保护环的雪崩光电探测器的制备方法
CN114093981A (zh) 一种基于二次外延的InAlAs雪崩光电探测器的制备方法
CN115548148A (zh) 半导体紫外探测器及其制备方法
CN116014029A (zh) 铟镓砷盖革雪崩二极管自淬灭环结构制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination