CN113540267A - 一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺 - Google Patents

一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺 Download PDF

Info

Publication number
CN113540267A
CN113540267A CN202110713651.5A CN202110713651A CN113540267A CN 113540267 A CN113540267 A CN 113540267A CN 202110713651 A CN202110713651 A CN 202110713651A CN 113540267 A CN113540267 A CN 113540267A
Authority
CN
China
Prior art keywords
graphene
silicon
electrode
grating
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110713651.5A
Other languages
English (en)
Inventor
杨树明
王亮亮
张泽
吉培瑞
王筱岷
邓惠文
袁野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110713651.5A priority Critical patent/CN113540267A/zh
Publication of CN113540267A publication Critical patent/CN113540267A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺。该探测器包括栅电极、硅基底、栅极介电层、单层石墨烯、源极、漏极。该探测器通过硅光栅对入射太赫兹波的衍射作用激发石墨烯表面等离激元,利用石墨烯等离子体增强效应在源极和漏极之间产生电压差,从而完成光电探测。并且可以通过改变栅极电压,调节石墨烯载流子浓度实现调控耦合太赫兹波的强度和共振频率。该探测器相应的制备工艺简单、操作容易、室温下工作、响应速度快、灵敏度高,可以解决太赫兹探测的重大需求。

Description

一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备 工艺
技术领域
本发明属于材料科学,光电子器件,半导体器件及微纳加工制造领域,具体涉及一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺。
背景技术
太赫兹波是周期在0.1THz-10THz的电磁波,被人们称为太赫兹间隙。由于其特殊的光学和电学性质,太赫兹在军事侦察、医疗检测、人体安检安防、大气测量、无损检测、火灾检测等领域具有广阔的应用前景。传统的太赫兹探测器如高莱探测器、测辐射热探测器和热释电探测器虽然可以进行宽光谱的探测,但是其灵敏度不高。基于传统铟镓砷(InGaAs)、碲化铅(PbTe)等传统材料的太赫兹探测器结构尺寸大,制备复杂,探测成本高并且需要冷却,极大的限制了其应用范围。
因此,为了满足室温下高性能太赫兹探测的需求,研究并制备一种室温下灵敏度高、响应速度快、探测率高的太赫兹探测器十分迫切。
发明内容
本发明的目的在于针对当前太赫兹探测的重大需求,提供了一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺,以满足当前对太赫兹探测器的重大需求。
为达到上述目的,本发明采用如下技术方案予以实现:
一种硅光栅增强的石墨烯场效应管太赫兹探测器,包括栅电极(1)、硅基底(2)、栅极介电层(3)、单层石墨烯(4)、源极(5)和漏极(6);其中,
栅电极(1)设置在硅基底(2)下;硅基底(2)采用P型重掺杂硅片;栅极介电层(3)设置在硅基底(2)上,氧化铝和硅光栅基底界面具有良好的稳定性;单层石墨烯(4)位于栅极介电层(3)的表面,为导电沟道;源极(5)和漏极(6)位于单层石墨烯(4)的两侧,与石墨烯形成欧姆接触。
本发明进一步的改进在于,栅电极(1)采用10nm-20nm金属Cr作为过渡层和50nm-100nm金属Au作为电极,硅基底(2)为P型掺杂硅,栅极介电层(3)采用氧化铝,源极(5)和漏极(6)材料采用10nm-20nm金属Ni为过渡层和50nm-100nm金属Au作为电极。
本发明进一步的改进在于,通过刻蚀硅基底(2)形成硅光栅基底对入射太赫兹波进行耦合并激发石墨烯等离激元,产生石墨烯等离子体共振效应,在源极(5)和漏极(6)之间产生一个周期性变化的电压差,从而完成太赫兹波的探测。
本发明进一步的改进在于,通过改变栅电极(1)的电压Vg改变石墨烯载流子浓度,进而改变费米能级,改变石墨烯等离激元强度和与太赫兹波的共振频率。
本发明进一步的改进在于,通过改变刻蚀硅基底(2)上光栅结构的周期,能够制备针对某一波段的太赫兹探测器。
一种硅光栅增强的石墨烯场效应管太赫兹探测器的制备工艺,包括以下步骤:
1)在硅基底上蒸镀栅电极;
2)通过紫外光刻技术,让光栅结构显现在步骤1)的硅基底非电极面上;
3)通过ICP刻蚀技术,在步骤2)的硅基底上刻蚀出光栅结构;
4)在步骤3)的硅基底光栅结构面制备栅介电层;
5)转移石墨烯到步骤4)的光栅结构面上;
6)在步骤5)的石墨烯两端制备源极和漏极,得到一个硅光栅增强的石墨烯场效应管太赫兹探测器。
本发明进一步的改进在于,步骤1)中采用电子束蒸发技术,在硅基底上制备10nm-20nm厚的Cr作为过渡层,50nm-100nm厚的Au作为电极层,Cr是缓冲材料,导电性能好的Au作为电极层。
本发明进一步的改进在于,步骤3)中,采用ICP刻蚀技术,在硅基底上刻蚀出光栅结构。
本发明进一步的改进在于,其特征在于,步骤4)中,采用磁控溅射技术,溅射30nm厚的氧化铝作为栅极介电层;
步骤5)中石墨烯转移采用PMMA湿法转移的方法。
本发明进一步的改进在于,步骤6)中采用电子束蒸发技术结合lift-off剥离技术等微纳制造工艺,在是单层石墨烯两侧制备10nm-20nm厚的Ni及50nm-100nm厚的Au电极,其中Ni作为过渡层,增加Au与基底的结合性,导电性能优异的Au作为电极材料。
本发明至少具有如下有益的技术效果:
本发明所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺,包括栅电极、硅基底、栅极介电层、单层石墨烯、源极、漏极六个部分。入射太赫兹辐射在光栅衍射的作用下,激发石墨烯表面等离激元,利用石墨烯等离子体增强效应在源极和漏极之间产生电压差,从而完成光电探测。并且可以通过改变栅极电压,调节石墨烯载流子浓度实现调控耦合太赫兹波的强度和共振频率。该探测器相应的制备工艺简单、操作容易、室温下工作、响应速度快、灵敏度高,可以解决太赫兹探测的重大需求。
附图说明
图1是硅光栅增强的石墨烯场效应管太赫兹探测器的示意图;
附图标记说明:
1、栅电极,2、硅基底,3、栅极介电层,4、单层石墨烯,5、源极,6、漏极。
具体实施方式
为使本发明的目的、技术方案及优势更加清楚明了,下面结合附图对本发明原理及实验过程作进一步说明。
如图1所示,本发明提供的一种硅光栅增强的石墨烯场效应管太赫兹探测器,包括栅电极1、硅基底2、栅极介电层3、单层石墨烯4、源极5、漏极6,六个部分。
本发明基于等离子体增强原理,利用石墨烯表面等离激元的共振频率处于太赫兹波段的特性,将硅基底刻蚀成硅光栅基底,利用光栅对太赫兹波的衍射作用,耦合太赫兹波并激发石墨烯表面等离激元,利用石墨烯等离子体增强效应在源极和漏极之间产生电压差,从而完成光电探测。并且可以通过改变栅极电压,调节石墨烯载流子浓度实现调控耦合太赫兹波的强度和共振频率。
为了简单明了的实现上述硅光栅增强的石墨烯场效应管太赫兹探测器,本发明提供了一套可靠的制备工艺流程。如图1所示,包括一下步骤:
1)在硅基底上蒸镀栅电极;
2)通过紫外光刻技术,让光栅结构显现在上述的硅基底非电极面上;
3)通过ICP刻蚀技术,在上述的硅基底上刻蚀出光栅结构;
4)在上述的硅基底光栅结构面制备栅介电层;
5)转移石墨烯到上述硅基底光栅结构面上;
6)在上述石墨烯两端制备源极和漏极,得到一个硅光栅增强的石墨烯场效应管太赫兹探测器。其中:
步骤1)中采用电子束蒸发技术,在硅基底上制10nm-20nm厚的Cr作为过渡层,80nm-100nm厚的Au作为电极层,Cr是缓冲材料,导电性能好的Au作为电极层,硅基底采用P型重掺杂硅,厚度为400um-500um;
步骤2)中,紫外光刻技术为本领域技术人员所熟知且常用的方法,在此不再详述;
步骤3)中,采用ICP刻蚀技术,刻蚀参数与刻蚀的深度和硅光栅的周期有关;
步骤4)中采用磁控溅射技术,溅射氧化铝作为栅极介电层;
步骤5)中采用PMMA湿法转移单层石墨烯的方法为本领域技术人员所熟知的方法,在此不再详述;
步骤6)中采用电子束蒸发技术结合lift-off剥离技术等微纳制造工艺,在是单层石墨烯两侧制备10-20nm厚的Ni及80-100nm厚的Au电极,其中Ni作为过渡层,增加Au与基底的结合性,导电性能优异的Au作为电极材料,最终得到硅光栅增强的石墨烯场效应管太赫兹探测器。
实施例1
制备栅电极时,采用电子束蒸发工艺制备20nm厚的Cr和80nm厚的Au作为电极,制备源漏电极时采用20nm厚的Ni和80nm的Au作为电极;其中Cr和Ni作为过渡层,Au作为电极材料。金属Ni与石墨烯接触具有较小的接触电阻,对石墨烯载流子迁移率的影响最小,因此源漏电极采用金属Ni作为过渡层。
实施例2
制备栅极介电层时,采用磁控溅射技术制备30nm的氧化铝,将硅片放置在溅射位置,氧化铝放置在靶材位置,工作气体为纯度99.99%的氩气,反应气体为纯度99.99%的氧气,采用射频溅射,沉积速度随着射频功率增大而增大。氧化铝的相较二氧化硅有更大的相对介电常数,在栅极施加大电压时,相同厚度的氧化铝介电层和二氧化硅相比更不容易被击穿。
实施例3
利用光栅结构对入射电磁波的衍射作用,使得入射太赫兹波与石墨烯等离激元波矢相比配,设计合适的光栅周期,来探测特定波段的太赫兹波。石墨烯等离激元波矢与入射波矢的关系如下:
kspp=km=kinc,x+2mπ/d
其中:kspp为石墨烯等离激元波矢;kinc,x为入射光波矢;m为波矢级数;d为光栅周期。利用石墨烯的双极性特点,通过改变栅极电压的方式改变石墨烯载流子浓度,从而实现对一定频率范围内的太赫兹波的探测。
以上结合附图对本发明的具体实施方法作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (10)

1.一种硅光栅增强的石墨烯场效应管太赫兹探测器,其特征在于,包括栅电极(1)、硅基底(2)、栅极介电层(3)、单层石墨烯(4)、源极(5)和漏极(6);其中,
栅电极(1)设置在硅基底(2)下;硅基底(2)采用P型重掺杂硅片;栅极介电层(3)设置在硅基底(2)上,氧化铝和硅光栅基底界面具有良好的稳定性;单层石墨烯(4)位于栅极介电层(3)的表面,为导电沟道;源极(5)和漏极(6)位于单层石墨烯(4)的两侧,与石墨烯形成欧姆接触。
2.根据权利要求1所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器,其特征在于,栅电极(1)采用10nm-20nm金属Cr作为过渡层和50nm-100nm金属Au作为电极,硅基底(2)为P型掺杂硅,栅极介电层(3)采用氧化铝,源极(5)和漏极(6)材料采用10nm-20nm金属Ni为过渡层和50nm-100nm金属Au作为电极。
3.根据权利要求1所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器,其特征在于,通过刻蚀硅基底(2)形成硅光栅基底对入射太赫兹波进行耦合并激发石墨烯等离激元,产生石墨烯等离子体共振效应,在源极(5)和漏极(6)之间产生一个周期性变化的电压差,从而完成太赫兹波的探测。
4.根据权利要求1所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器,其特征在于,通过改变栅电极(1)的电压Vg改变石墨烯载流子浓度,进而改变费米能级,改变石墨烯等离激元强度和与太赫兹波的共振频率。
5.根据权利要求1所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器,其特征在于,通过改变刻蚀硅基底(2)上光栅结构的周期,能够制备针对某一波段的太赫兹探测器。
6.一种硅光栅增强的石墨烯场效应管太赫兹探测器的制备工艺,其特征在于,包括以下步骤:
1)在硅基底上蒸镀栅电极;
2)通过紫外光刻技术,让光栅结构显现在步骤1)的硅基底非电极面上;
3)通过ICP刻蚀技术,在步骤2)的硅基底上刻蚀出光栅结构;
4)在步骤3)的硅基底光栅结构面制备栅介电层;
5)转移石墨烯到步骤4)的光栅结构面上;
6)在步骤5)的石墨烯两端制备源极和漏极,得到一个硅光栅增强的石墨烯场效应管太赫兹探测器。
7.根据权利要求6所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器的制备工艺,其特征在于,步骤1)中采用电子束蒸发技术,在硅基底上制备10nm-20nm厚的Cr作为过渡层,50nm-100nm厚的Au作为电极层,Cr是缓冲材料,导电性能好的Au作为电极层。
8.根据权利要求6所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器的制备工艺,其特征在于,步骤3)中,采用ICP刻蚀技术,在硅基底上刻蚀出光栅结构。
9.根据权利要求6所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器的制备工艺,其特征在于,步骤4)中,采用磁控溅射技术,溅射30nm厚的氧化铝作为栅极介电层;
步骤5)中石墨烯转移采用PMMA湿法转移的方法。
10.根据权利要求6所述的一种硅光栅增强的石墨烯场效应管太赫兹探测器的制备工艺,其特征在于,步骤6)中采用电子束蒸发技术结合lift-off剥离技术等微纳制造工艺,在是单层石墨烯两侧制备10nm-20nm厚的Ni及50nm-100nm厚的Au电极,其中Ni作为过渡层,增加Au与基底的结合性,导电性能优异的Au作为电极材料。
CN202110713651.5A 2021-06-25 2021-06-25 一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺 Pending CN113540267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110713651.5A CN113540267A (zh) 2021-06-25 2021-06-25 一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110713651.5A CN113540267A (zh) 2021-06-25 2021-06-25 一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺

Publications (1)

Publication Number Publication Date
CN113540267A true CN113540267A (zh) 2021-10-22

Family

ID=78096811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110713651.5A Pending CN113540267A (zh) 2021-06-25 2021-06-25 一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺

Country Status (1)

Country Link
CN (1) CN113540267A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032728A (zh) * 2022-01-28 2022-09-09 昆明理工大学 一种频带宽/窄可调的太赫兹吸收器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109606A1 (en) * 2013-10-18 2015-04-23 University Of Central Florida Research Foundation, Inc. Plasmonic phototransistor
CN106129135A (zh) * 2016-07-20 2016-11-16 电子科技大学 基于石墨烯场效应晶体管的太赫兹探测器及其制备方法
US20200111925A1 (en) * 2017-06-01 2020-04-09 The Regents Of The University Of California Metallo-Graphene Nanocomposites and Methods for using Metallo-Graphene Nanocomposites for Electromagnetic Energy Conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109606A1 (en) * 2013-10-18 2015-04-23 University Of Central Florida Research Foundation, Inc. Plasmonic phototransistor
CN106129135A (zh) * 2016-07-20 2016-11-16 电子科技大学 基于石墨烯场效应晶体管的太赫兹探测器及其制备方法
US20200111925A1 (en) * 2017-06-01 2020-04-09 The Regents Of The University Of California Metallo-Graphene Nanocomposites and Methods for using Metallo-Graphene Nanocomposites for Electromagnetic Energy Conversion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREY BYLINKIN: ""Tight-Binding Terahertz Plasmons in Chemical-Vapor-Deposited Graphene"", 《PHYSICAL REVIEW APPLIED》 *
YISHENG FANG: ""On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region"", 《OPTICS LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032728A (zh) * 2022-01-28 2022-09-09 昆明理工大学 一种频带宽/窄可调的太赫兹吸收器

Similar Documents

Publication Publication Date Title
Wu et al. Ultrahigh photoresponsivity MoS2 photodetector with tunable photocurrent generation mechanism
Kumar et al. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes
JP6073530B2 (ja) 電磁波検出器および電磁波検出器アレイ
CN105762281A (zh) 一种铁电局域场增强型二维半导体光电探测器及制备方法
Ferhati et al. Highly sensitive, ultra-low dark current, self-powered solar-blind ultraviolet photodetector based on ZnO thin-film with an engineered rear metallic layer
CN111952385B (zh) 一种二维材料极化激元与异质结结合的红外光探测器
CN108987525B (zh) 一种msm光电探测器及其制作方法
CN205723636U (zh) 一种铁电局域场增强型二维半导体光电探测器
CN108630782A (zh) 一种宽探测波段双重等离子工作光电探测器及其制备方法
WO2022165905A1 (zh) 一种含有插层的石墨烯/硅肖特基结光电探测器及制备工艺
Singh et al. Low Operating Voltage Solution Processed (Li₂ZnO₂) Dielectric and (SnO₂) Channel-Based Medium Wave UV-B Phototransistor for Application in Phototherapy
CN113540267A (zh) 一种硅光栅增强的石墨烯场效应管太赫兹探测器及其制备工艺
Chen et al. Comprehensive analysis of optoelectronic performance of ultraviolet phototransistors based on AlGaN/GaN heterostructure
Yan et al. Anisotropic performances and bending stress effects of the flexible solar-blind photodetectors based on β-Ga2O3 (1 0 0) surface
CN111755576A (zh) 非晶氧化镓刻蚀方法及在三端器件和阵列成像系统的应用
CN108963065A (zh) 一种激光烧蚀制备单层多层石墨烯热电探测器的方法
CN106098804B (zh) 石墨烯/氧化锌单晶基片肖特基结紫外光电探测器及其制备方法
CN110233182B (zh) 一种复合结构双吸收层石墨烯探测器及其制备工艺
CN219350245U (zh) 一种铊镍硒和硒化铋异质结构光电探测器
CN112071939A (zh) 一种基于铁电半导体和薄层二维材料的光电探测器
CN106206829A (zh) 一种基于锰掺杂氮化铜薄膜的可见光探测器
CN114649426A (zh) 一种增益平坦的宽光谱光电探测器及其制备方法
CN110707176B (zh) 一种超宽频带的薄膜光电探测器件及其制备方法
Teker et al. Improving detectivity of self-powered GaN ultraviolet photodetector by nickel nanoparticles
KR20140110473A (ko) 그래핀-부도체-반도체의 구조를 갖는 투과 다이오드, 투과 트랜지스터, 투과 광다이오드 및 투과 광트랜지스터

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211022

RJ01 Rejection of invention patent application after publication