CN114649426A - 一种增益平坦的宽光谱光电探测器及其制备方法 - Google Patents

一种增益平坦的宽光谱光电探测器及其制备方法 Download PDF

Info

Publication number
CN114649426A
CN114649426A CN202210141417.4A CN202210141417A CN114649426A CN 114649426 A CN114649426 A CN 114649426A CN 202210141417 A CN202210141417 A CN 202210141417A CN 114649426 A CN114649426 A CN 114649426A
Authority
CN
China
Prior art keywords
carbon
film
gain
electrode
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210141417.4A
Other languages
English (en)
Inventor
曹军
陈宏志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Science and Industry Appliance Co Ltd
Original Assignee
Shanghai Aerospace Science and Industry Appliance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Science and Industry Appliance Co Ltd filed Critical Shanghai Aerospace Science and Industry Appliance Co Ltd
Priority to CN202210141417.4A priority Critical patent/CN114649426A/zh
Publication of CN114649426A publication Critical patent/CN114649426A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种增益平坦的宽光谱光电探测器及其制备方法,该光电探测器由下向上依次包括硅衬底和光有源区,所述光有源区包括双层碳薄膜及置于双层碳薄膜之间的表面等离激元结构,所述双层碳薄膜之间形成范德瓦尔兹异质结,底部碳薄膜成型于硅衬底上,顶部碳薄膜包覆所述底部碳薄膜,所述硅衬底的顶部两侧分别成型有源极和漏极,且所述源极和漏极与顶部碳薄膜接触,所述硅衬底的背部成型有背栅电极。所制备的光电探测器解决了现有碳基宽光谱探测器响应度低,响应曲线随波长波动大,增益不平坦的问题。

Description

一种增益平坦的宽光谱光电探测器及其制备方法
技术领域
本发明属于光通讯技术领域,特别涉及一种增益平坦的宽光谱光电探测器及其制备方法。
背景技术
在光通讯及光电传感领域,光电探测器实现将光信号转化为电信号的功能,是光链路核心器件。
目前传统的光电探测器基于半导体材料体系,如硅锗、InP等,其特点在于光吸收材料受限于固定带隙,只能在特定波长或极窄波段范围内具有光电响应,限制了其在宽光谱范围场景下的使用。宽光谱探测器在一定波段范围内可以实现光的探测,在实际应用场景中可以降低成本及探测器的种类和数量,有巨大的应用需求。而碳材料具有在紫外波段到近红外波段范围内的光吸收特性,在宽光谱探测方面具有巨大的应用潜力。近年来,基于碳纳米材料如石墨烯、碳纳米管等材料,研究人员制备了性能优异的宽光谱探测器,并且通过碳纳米材料与其他材料体系结合,利用光栅门效应(photogating效应)等实现了光生载流子的倍增,制备了高增益探测器,但是也导致了较低的探测响应速度。但是碳材料基探测器的宽光谱响应主要源自于碳材料的宽光谱吸收,而根据碳纳米材料的吸收特性可以得知,其在紫外及可见光波段吸收较强,在近红外波段光吸收明显减弱,而近红外波段在通讯、夜视、生物检测等方面有重要应用,基于碳纳米材料的探测器响应曲线呈现出明显的波动,在近红外波段响应下降,据研究其在短波长(405nm)的光响应要比长波长(1550nm)的光响应度高出一个数量级,导致后置信号处理的复杂度上升。因此通过在碳基光电探测器中引入其他结构或材料,实现全波段尤其是近红外波段的光响应增强,从而使探测器在宽光谱范围内增益平坦,快速响应,对于宽光谱探测器的广泛应用有重要的意义。
发明内容
本发明针对现有碳基宽光谱光电探测技术存在的不足,提供了一种增益平坦的宽光谱光电探测器及其制备方法,解决了现有碳基宽光谱探测器响应度低,响应曲线随波长波动大,增益不平坦的问题。具体技术方案如下:
一种增益平坦的宽光谱光电探测器,该探测器主体结构包括光有源区、源漏电极及背栅电极,所述光有源区包括双层碳薄膜及复合结构,底部碳薄膜为主要光吸收区,位于硅衬底上,提供光生载流子,上部碳薄膜为载流子传输通道,与底层碳薄膜一起在界面处构成光生载流子分离及倍增区。在双层碳薄膜之间为表面等离激元结构,通过设计表面等离激元结构实现探测器在紫外波段及可见光波段增益较小,近红外波段随光响应增强而增益较大,从而实现从紫外波段到近红外波段的增益平坦的光探测。所述源漏电极位于硅衬底上面,与上层碳薄膜接触,提供光电探测器电路通道。背栅电极位于硅衬底下方,用于调节光电探测器载流子类型,以调节探测器光电流,从而实现对探测器光电响应的调控。
进一步地,所述光有源区底部碳薄膜为高纯度半导体性碳纳米管组成的连续薄膜,所述的半导体碳纳米管薄膜为主要的光吸收区与载流子俘获层,提供宽光谱范围内的光吸收,产生光生载流子,俘获空穴,将电子注入上部碳薄膜。所述上部碳薄膜为石墨烯薄膜,所述的石墨烯薄膜为载流子输运通道,与源漏电极构成电流传输通道,所述的石墨烯薄膜与碳纳米管薄膜形成范德瓦尔兹(van derWaals)异质结,产生光栅门效应,导致探测器的高增益。
进一步地,所述半导体性碳纳米管薄膜为一层或者少层结构,厚度3-4nm,保证有效的光吸收及与所述的石墨烯薄膜高质量的界面结合。
进一步地,所述源漏电极只与关于有源区上层石墨烯薄膜接触,不与底层碳纳米管薄膜接触,保证碳纳米管薄膜产生的光生载流子注入石墨烯层。
进一步地,所述的表面等离激元结构为周期性纳米棒光栅结构,材料为金,通过设计改变光栅结构的尺寸及周期实现不同波段光场的增强,从而实现不同波段的光响应设计。
进一步地,所述背栅电极位于硅衬底底部,用来调节有源区载流子的类型和浓度,从而实现对探测器光电流的调控。
本发明的有益效果为:(1)本发明采用双层碳薄膜的主体结构,采用高纯度半导体性碳纳米管薄膜作为光吸收层与载流子捕获层,相对于杂化的碳纳米管,其获得了更高效的宽光谱光吸收,同时半导体碳纳米管薄膜作为光俘获层,将光生空穴俘获在其中,电子注入石墨烯层,在界面处通过电容耦合作用产生非常强的光栅门效应,导致光生载流子的高增益效果。石墨烯作为载流子输运通道,其超高的载流子迁移率保证了探测器高响应速度;
(2)本发明在碳基薄膜体系中引入表面等离激元结构,将热载流子与直接激发载流子结合,增加了载流子浓度,导致整体光增益的提高;同时根据碳纳米管薄膜的吸收特性,设计表面等离激元结构的尺寸、周期等参数,实现特定波段的光响应增强度及响应速率的提高,从而实现碳基薄膜探测器的宽波段范围内的增益平坦;
(3)本发明采用碳薄膜作为光有源区主体结构,其制备方式与传统CMOS工艺兼容,便于大规模阵列化制备。
附图说明
图1为本发明的光电探测器结构示意图;
图2为本发明光电探测器中半导体性碳纳米管薄膜形貌图;
图3为本发明中不同表面等离激元结构不同波段的光场增强;
图4为本发明中不同表面等离激元结构对光响应增强效果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合实施例对本发明技术方案进行清楚、完整地描述。
实施例
如图1所示,为本发明光电探测器的结构示意图。该光电探测器从下到上依次包括硅衬底10、半导体碳纳米管薄膜20、表面等离激元光栅结构30和石墨烯薄膜40,该硅衬底10为含有285nm sio2热氧化层的N型掺杂的硅片,石墨烯薄膜40的两侧具有源极50和漏极60。
采用高纯度的半导体碳纳米管薄膜20作为光吸收层与载流子捕获层,相对于杂化的碳纳米管,其获得了更高效的宽光谱光吸收,同时半导体碳纳米管薄膜20作为光俘获层,将光生空穴俘获在其中,电子注入石墨烯薄膜40,在界面处通过电容耦合作用产生非常强的光栅门效应,导致光生载流子的高增益效果。
石墨烯作为载流子输运通道,其超高的载流子迁移率保证了探测器高响应速度。半导体碳纳米管薄膜20通过沉积方法制备,其形貌如图2所示。
当表面等离激元光栅结构30诱导的偶极场相互作用同相位时,局域场得到剧烈的增强。而增强的电磁场又导致半导体碳纳米管薄膜20中直接激发的载流子的增强,特别是在光与光栅天线共振波长处。同时,由于表面等离激元光栅结构30存在导致的热载流子也贡献了载流子密度,从而导致光电流的增强。
通过仿真设计不同尺寸、周期的表面等离激元光栅结构30,其中单个金属棒的尺寸为240nmx60nm,厚度为30nm,设计初始周期,记为周期T1,改变周期分别得到周期为T2-T7,得到不同波段局域场增强效果如图3所示。
本实施例中同时提供了光电探测器成型方法,具体步骤如下:
步骤一、wafer清洗,将含有285nm sio2热氧化层的N型掺杂的硅片清洗吹干待用;
步骤二、s-SWCNT沉积,将清洗好的wafer放入s-SWCNT/甲苯溶液中沉积6h,然后取出用氮气枪吹干,放到加热板上120℃加热30min后备用;
步骤三、s-SWCNT沟道制备,利用光刻刻蚀制程制备碳纳米管薄膜沟道;
步骤四、金属光栅图形制备,以步骤三制备的方形碳薄膜为基底,通过光刻、电子束曝光、刻蚀制备周期为T2的金属光栅结构,具体周期为金属棒宽度方向周期为150nm,长度方向周期为300nm;
步骤五、石墨烯转移,以步骤四制备的有s-SWCNT及金属光栅阵列的样品为基底,将石墨稀薄膜转移到金属光栅阵列上面;
步骤六、石墨烯沟道制备,利用光刻刻蚀制程制备碳纳米管薄膜沟道;
步骤七、金属电极的制备,图案化电极位置,然后用磁控溅射设备蒸镀已经显影好的源漏电极,电极材料为Cr/Au,厚度分别为5nm和100nm,用热蒸镀设备在wafer背面蒸镀In作为背电极,厚度为20nm。
在另一个实施例中,金属光栅周期为T6,具体周期为金属棒宽度方向周期为200nm,长度方向周期为400nm,其他步骤与实施例1相同。
如图4所示,为所制得的光电探测器在1550nm波长入射下单个响应波形,图中上方波形对应T6的金属光栅结构,中间的波形对应T2的金属光栅结构,下方的波形对应无光栅结构。T2的金属光栅结构相对于无光栅结构器件有着900%的光响应强度的提高,响应速度达到50us,T6的金属光栅结构相对于T2的金属光栅结构光响应增强明显。
以上实施例仅用以说明本发明的技术方案,而非对其限制。

Claims (8)

1.一种增益平坦的宽光谱光电探测器,其特征在于,由下向上依次包括硅衬底和光有源区,所述光有源区包括双层碳薄膜及置于双层碳薄膜之间的表面等离激元结构,所述双层碳薄膜之间形成范德瓦尔兹异质结,底部碳薄膜成型于硅衬底上,顶部碳薄膜包覆所述底部碳薄膜,所述硅衬底的顶部两侧分别成型有源极和漏极,且所述源极和漏极与顶部碳薄膜接触,所述硅衬底的背部成型有背栅电极。
2.根据权利要求1所述的一种增益平坦的宽光谱光电探测器,其特征在于,所述底部碳薄膜为高纯度半导体性碳纳米管组成的连续薄膜。
3.根据权利要求1所述的一种增益平坦的宽光谱光电探测器,其特征在于,所述半导体性碳纳米管薄膜为3-4nm的一层或者少层结构。
4.根据权利要求1所述的一种增益平坦的宽光谱光电探测器,其特征在于,所述顶部碳薄膜为石墨烯薄膜。
5.根据权利要求1所述的一种增益平坦的宽光谱光电探测器,其特征在于,所述表面等离激元结构为周期性纳米棒光栅结构。
6.一种增益平坦的宽光谱光电探测器的制备方法,其特征在于,包括如下步骤:
步骤一、将含有SiO2热氧化层的N型掺杂的硅片清洗吹干待用;
步骤二、将清洗好的硅片放入s-SWCNT/甲苯溶液中沉积6h,然后取出用氮气枪吹干,放到加热板上加热备用;
步骤三、利用光刻刻蚀制程制备碳纳米管薄膜沟道;
步骤四、以步骤三制备的方形碳薄膜为基底,制备周期性金属光栅结构;
步骤五、以步骤四制备的有s-SWCNT及金属光栅阵列的样品为基底,将石墨稀薄膜转移到金属光栅阵列上面;
步骤六、利用光刻刻蚀制程制备碳纳米管薄膜沟道;
步骤七、图案化电极位置,然后用磁控溅射设备蒸镀已经显影好的源漏电极,用热蒸镀设备在硅片背面蒸镀In作为背电极。
7.根据权利要求6所述的一种增益平坦的宽光谱光电探测器的制备方法,其特征在于,所述源漏电极材料为Cr/Au,厚度分别为5nm和100nm。
8.根据权利要求6所述的一种增益平坦的宽光谱光电探测器的制备方法,其特征在于,所述背电极的厚度为20nm。
CN202210141417.4A 2022-02-16 2022-02-16 一种增益平坦的宽光谱光电探测器及其制备方法 Pending CN114649426A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210141417.4A CN114649426A (zh) 2022-02-16 2022-02-16 一种增益平坦的宽光谱光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210141417.4A CN114649426A (zh) 2022-02-16 2022-02-16 一种增益平坦的宽光谱光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN114649426A true CN114649426A (zh) 2022-06-21

Family

ID=81993016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210141417.4A Pending CN114649426A (zh) 2022-02-16 2022-02-16 一种增益平坦的宽光谱光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114649426A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117894858A (zh) * 2024-03-15 2024-04-16 苏州大学 一种纳米手性结构、圆偏振光电探测器及其制备方法
CN117894858B (zh) * 2024-03-15 2024-05-28 苏州大学 一种纳米手性结构、圆偏振光电探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
FR3042333A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a double filtration plasmonique face arriere et simple filtration plasmonique face avant
CN106653930A (zh) * 2016-09-13 2017-05-10 北京大学 基于半导体纳米材料的等离激元增强光电探测器及其制备方法
CN110556478A (zh) * 2019-08-30 2019-12-10 桂林医学院 一种基于等离激元效应的钙钛矿弱光探测器
CN113540154A (zh) * 2021-06-25 2021-10-22 西安交通大学 基于二维材料的双异质结构的柔性光电探测器及其制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
FR3042333A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a double filtration plasmonique face arriere et simple filtration plasmonique face avant
CN106653930A (zh) * 2016-09-13 2017-05-10 北京大学 基于半导体纳米材料的等离激元增强光电探测器及其制备方法
CN110556478A (zh) * 2019-08-30 2019-12-10 桂林医学院 一种基于等离激元效应的钙钛矿弱光探测器
CN113540154A (zh) * 2021-06-25 2021-10-22 西安交通大学 基于二维材料的双异质结构的柔性光电探测器及其制备工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
云斯宁: "《新型能源材料与器件》", 31 May 2019, 中国建材工业出版社, pages: 88 - 91 *
方哲宇等: "《表面等离激元纳米结构制备与近场光学表征》", 30 April 2015, 知识产权出版社, pages: 13 - 15 *
曹未未等: "宽谱响应的混合碳纳米管光电探测器的制备和性能", 广州化学, vol. 44, no. 4, pages 7 - 12 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117894858A (zh) * 2024-03-15 2024-04-16 苏州大学 一种纳米手性结构、圆偏振光电探测器及其制备方法
CN117894858B (zh) * 2024-03-15 2024-05-28 苏州大学 一种纳米手性结构、圆偏振光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Tong et al. Surface plasmon enhanced infrared photodetection
US10784394B2 (en) Electromagnetic wave detector and electromagnetic wave detector array
Wu et al. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging
CN111554757A (zh) 一种基于等离激元增强的石墨烯中红外光探测器及制备方法
CN110416235B (zh) 一种中空表面等离激元结构的二维材料复合多色红外探测芯片
CN110335908B (zh) 异质结分波段探测器及其制备方法与应用
CN111682087A (zh) 一种二维材料极化激元增强的红外光探测器及其制备方法
CN111952385B (zh) 一种二维材料极化激元与异质结结合的红外光探测器
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
Tetseo et al. CuO nanowire-based metal semiconductor metal infrared photodetector
Dong et al. Plasmon-enhanced lateral photovoltaic effect observed in Ag-ZnO core–shell nanoparticles
Veeralingam et al. based flexible, VIS-NIR photodetector with actively variable spectrum and enhanced responsivity using surface engineered transitional metal buffer layer
CN111883607A (zh) 一种基于石墨烯/锗复合薄膜的高灵敏度位置探测器的构筑方法
Zhang et al. A broadband 3D microtubular photodetector based on a single wall carbon nanotube–graphene heterojunction
Ferhati et al. Multispectral photodetection using low-cost sputtered NiO/Ag/ITO heterostructure: From design concept to elaboration
Zhang et al. A micro broadband photodetector based on single wall carbon nanotubes-graphene heterojunction
Hong et al. Nanodome-patterned transparent conductor for highly responsive photoelectric device
Qu et al. Graphene/GaAs Schottky Junction Near-Infrared Photodetector With a MoS 2 Quantum Dots Absorption Layer
CN110233182B (zh) 一种复合结构双吸收层石墨烯探测器及其制备工艺
CN116344662B (zh) 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法
CN114649426A (zh) 一种增益平坦的宽光谱光电探测器及其制备方法
Kim et al. Three-dimensional nanodome-printed transparent conductors for high-performing Si photodetectors
Zhao et al. Broadband photodetectors with enhanced performance in UV–Vis–NIR band based on PbS quantum dots/ZnO film heterostructure
CN115332376A (zh) 红外光电探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination