CN113538845B - 一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法 - Google Patents

一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法 Download PDF

Info

Publication number
CN113538845B
CN113538845B CN202110783843.3A CN202110783843A CN113538845B CN 113538845 B CN113538845 B CN 113538845B CN 202110783843 A CN202110783843 A CN 202110783843A CN 113538845 B CN113538845 B CN 113538845B
Authority
CN
China
Prior art keywords
garbage
construction
early warning
construction site
construction waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110783843.3A
Other languages
English (en)
Other versions
CN113538845A (zh
Inventor
李知勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Construction Network Information Technology Co ltd
Original Assignee
China Railway Construction Network Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Construction Network Information Technology Co ltd filed Critical China Railway Construction Network Information Technology Co ltd
Priority to CN202110783843.3A priority Critical patent/CN113538845B/zh
Publication of CN113538845A publication Critical patent/CN113538845A/zh
Application granted granted Critical
Publication of CN113538845B publication Critical patent/CN113538845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Alarm Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,通过对建筑施工现场区域进行区域划分,进而在划分的各子区域分别设置立体监控摄像头和预警终端,以对各子区域是否存在建筑垃圾进行远程视频监控分析,并对存在建筑垃圾的子区域进行危险性评估,从而根据评估的危险性进行预警,实现了对建筑施工现场建筑垃圾的安全监管,弥补了目前对建筑施工现场的安全监测管理方向过于单一的不足,并通过监测管理结果对相应的子区域进行预警,不仅极大保障了相应子区域施工人员的人身安全,还避免了大气环境污染的进一步加剧污染,有利于提升建筑施工现场的安全监管水平。

Description

一种基于远程视频监控分析技术的建筑施工现场安全生产实 时监测预警方法
技术领域
本发明属于建筑施工现场安全管理领域,具体而言,是一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法。
背景技术
我国城市化的进程越来越快,与此同时也引来了建筑行业飞速发展的阶段。随着建筑工程数量的不断增加,使得建筑施工现场在城市中随处可见。施工现场是建筑施工的主要场所,在施工现场经常可以看到许多大型危险的建筑设备,且人员的流动性非常大,导致整个施工现场危险源众多,容易产生安全事故。因此为了对建筑施工现场的安全隐患进行监督防护,现在很多建筑企业都对施工现场进行了安全监测管理工作。
然而目前对建筑施工现场的安全监测管理方向大多集中在对建筑施工现场的建筑设备安全使用情况及施工人员本身的安全防护上面,忽略了对建筑施工现场建筑垃圾的安全监测管理。这具体体现在:建筑工程施工过程中,不可避免地会产生建筑垃圾,如废旧建筑材料、废渣土等,由于建筑垃圾在建筑施工现场管理不严格,是使得产生的建筑垃圾随意丢弃,在丢弃的建筑垃圾中存在一些具有人身危险性的建筑垃圾,如废旧钉、废玻璃渣等,也存在一些具有环境污染性的建筑垃圾,如油漆、涂料、沥青等,如果不对建筑施工现场丢弃的建筑垃圾进行安全监测管理,一方面会使施工人员的人身安全处于危险之中,另一方面会造成环境污染,影响施工现场的空气质量。由此可见,对建筑施工现场的建筑垃圾进行安全监测管理也是建筑施工现场安全监测管理的一个重要方向,是非常有必要的。
发明内容
有鉴于此,本发明提出一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,能够有效实现对建筑施工现场建筑垃圾的安全监测管理。
本发明的目的可以通过以下技术方案实现:
一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,包括以下步骤;
S1.子区域划分:将建筑施工现场区域按照平面网格化的划分方式进行区域划分,并对划分的各子区域进行编号且分别设置立体监控摄像头和预警终端;
S2.子区域立体图像获取:通过各子区域设置的立体监控摄像头实时对各子区域进行视频采集,并将采集的视频按照视频帧数进行图像分割,得到各子区域立体图像;
S3.子区域建筑垃圾识别:将获取的各子区域立体图像进行建筑垃圾识别,对识别到存在建筑垃圾的子区域立体图像进行保留,并将该子区域记为建筑垃圾子区域;
S4.垃圾参数提取:从各建筑垃圾子区域立体图像中提取垃圾参数;
S5.垃圾所在地理位置分析判断:对各建筑垃圾子区域对应垃圾参数中的垃圾所在地理位置进行分析,判断是否处在施工现场安全通道上,若处在,则执行步骤S6,若不处在,则执行步骤S7;
S6.通行阻碍系数统计:获取施工现场安全通道对应的通道参数,以此综合通道参数和该建筑垃圾子区域对应的垃圾参数统计该建筑垃圾对施工现场安全通道的通行阻碍系数,并将其与预设值进行对比,若大于预设值,则启动该建筑垃圾子区域的预警终端进行预警;
S7.垃圾类型分析判断:从该建筑垃圾子区域对应的垃圾参数中提取垃圾类型,并进行判断,若是人身危险类型,则执行步骤S8,若是环境污染类型,则执行步骤S9;
S8.人身危险系数评估及预警:对该建筑垃圾子区域对应的周边区域进行施工人员参数获取,进而根据施工人员参数和该建筑垃圾子区域对应的垃圾参数评估该建筑垃圾子区域对应的人身危险系数,并将其与设定值进行对比,若大于设定值,则启动该建筑垃圾子区域对应的预警终端进行预警;
S9.大气环境污染系数评估及预警:对该建筑垃圾子区域对应的周边区域进行大气环境参数采集,以此评估该建筑垃圾子区域对应的大气环境污染系数,并将其与预定义值进行对比,若大于预定义值,则启动该建筑垃圾子区域对应的预警终端进行预警。
进一步优化本技术方案,所述预警终端包括语音提示器和蜂鸣器。
进一步优化本技术方案,所述建筑垃圾识别的具体识别方法为将采集的各子区域立体图像与该子区域标准立体图像进行对比,判断是否存在异常,若某子区域存在异常,表明该子区域存在建筑垃圾。
进一步优化本技术方案,所述子区域标准立体图像是指不存在建筑垃圾的子区域立体图像。
进一步优化本技术方案,所述垃圾参数包括垃圾类型、垃圾尺寸和垃圾所在地理位置,其中垃圾尺寸包括垃圾宽度和垃圾体积。
进一步优化本技术方案,所述通道参数包括通道宽度和通道宽度中点所在地理位置。
进一步优化本技术方案,所述统计该建筑垃圾对施工现场安全通道的通行阻碍系数的具体统计方法如下:
A1:将该建筑垃圾子区域对应的垃圾所在地理位置与施工现场安全通道对应通道宽度中点所在地理位置进行对比,获取垃圾距离施工现场安全通道对应通道宽度中点之间的距离,该距离记为阻碍距离;
A2:将该建筑垃圾子区域对应的垃圾类型与预设的各种垃圾类型对应的阻碍危险指数进行对比,得到该建筑垃圾对施工现场安全通道的阻碍危险指数;
A3:将该建筑垃圾子区域对应的垃圾宽度除以施工现场安全通道对应的通道宽度,得到该建筑垃圾对施工现场安全通道的阻碍宽度指数;
A4:根据该建筑垃圾对施工现场安全通道的阻碍距离、阻碍危险指数和阻碍宽度指数统计该建筑垃圾对施工现场安全通道的通行阻碍系数
Figure BDA0003158317100000042
η表示为该建筑垃圾对施工现场安全通道的通行阻碍系数,l、ε、δ分别表示为该建筑垃圾对施工现场安全通道的阻碍距离、阻碍危险指数、阻碍宽度指数。
进一步优化本技术方案,所述周边区域的划分方法为以该建筑垃圾子区域的垃圾所在地理位置为圆心,以设定的长度为半径作圆,其圆内的区域即为周边区域。
进一步优化本技术方案,所述评估该建筑垃圾子区域对应人身危险系数的具体评估过程包括以下步骤:
B1:从施工人员参数中提取施工人员数量,并将其与该建筑垃圾子区域对应的周边区域面积进行对比,计算该建筑垃圾子区域对应的施工人员密集度,其计算公式为
Figure BDA0003158317100000041
ρ表示为该建筑垃圾子区域对应的施工人员密集度,k表示为施工人员数量,r表示为设定的长度;
B2:从施工人员参数中提取施工人员平均靠近距离,并将其与设定的长度进行对比,计算该建筑垃圾子区域对应的施工人员靠近危险系数,其计算公式为
Figure BDA0003158317100000051
λ表示为该建筑垃圾子区域对应的施工人员靠近危险系数,x表示为施工人员平均靠近距离;
B3:从该建筑垃圾子区域对应的垃圾参数中提取垃圾体积,将其与预定义的人身危险类型的各种垃圾体积对应的垃圾自身危险系数进行对比,从中筛选出该建筑垃圾子区域对应的垃圾自身危险系数;
B4:根据该建筑垃圾子区域对应的施工人员密集度、施工人员靠近危险系数和垃圾自身危险系数评估该建筑垃圾子区域对应的人身危险系数
Figure BDA0003158317100000052
Figure BDA0003158317100000053
表示为该建筑垃圾子区域对应的人身危险系数,χ表示为该建筑垃圾子区域对应的垃圾自身危险系数。
进一步优化本技术方案,所述评估该建筑垃圾子区域对应大气环境污染系数的具体评估方法如下:
C1:将该建筑垃圾子区域对应周边区域的大气环境参数构成周边区域大气环境参数集合G(g1,g2,g3,g4),其中g1,g2,g3,g4分别表示为硫化氢浓度,二氧化硫浓度,氨气浓度,粉尘浓度;
C2:将周边区域大气环境参数集合与标准大气环境参数进行对比,以此根据对比结果评估该建筑垃圾子区域对应的大气环境污染系数
Figure BDA0003158317100000054
ψ表示为该建筑垃圾子区域对应的大气环境污染系数,g1标准、g2标准、g3标准、g4标准分别表示为标准硫化氢浓度、标准二氧化硫浓度、标准氨气浓度、标准粉尘浓度,a1、a2、a3、a4分别表示为硫化氢浓度、二氧化硫浓度、氨气浓度、粉尘浓度对大气环境污染的比例系数。
本发明的有益效果如下:
(1)本发明通过对建筑施工现场区域进行区域划分,进而在划分的各子区域分别设置立体监控摄像头和预警终端,以对各子区域是否存在建筑垃圾进行远程视频监控分析,体现了对建筑施工现场建筑垃圾监管的自动化、智能化特点,该种监管方式相较于通过人工进行监管,大大提高了监管效率、监管可靠度和监管及时度,同时减轻了监管人员的工作负担,具有强大的实用性。
(2)本发明在对建筑施工现场各子区域是否存在建筑垃圾进行远程视频监控分析过程中,对存在建筑垃圾的子区域进行危险性评估,从而根据评估的危险性进行预警,实现了对建筑施工现场建筑垃圾的安全监管,弥补了目前对建筑施工现场的安全监测管理方向过于单一的不足,并通过监测管理结果对相应的子区域进行预警,不仅极大保障了相应子区域施工人员的人身安全,还避免了大气环境污染的进一步加剧污染,有利于提升建筑施工现场的安全监管水平。
(3)本发明在对存在建筑垃圾的子区域进行危险性评估时,首先对存在建筑垃圾的子区域进行垃圾参数提取,并对垃圾参数中的垃圾所在地理位置和垃圾类型进行分析判断,进而根据分析判断结果针对性地统计建筑垃圾对施工现场安全通道的通行阻碍系数或建筑垃圾子区域对应的人身危险系数或建筑垃圾子区域对应的大气环境污染系数,以这样的操作方法进行存在建筑垃圾子区域的危险性评估,体现了危险性评估的灵活性和针对性,更加能够贴近建筑垃圾子区域对应建筑垃圾的实际真实状况,避免用统一的评估方式进行危险性评估造成的不切合实际问题,影响评估结果的可靠度。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1为本发明的方法实施步骤流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1所示,一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,包括以下步骤;
S1.子区域划分:将建筑施工现场区域按照平面网格化的划分方式进行区域划分,并对划分的各子区域进行编号且分别设置立体监控摄像头和预警终端,其中预警终端包括语音提示器和蜂鸣器;
本实施例通过对建筑施工现场区域进行区域划分,进而在划分的各子区域分别设置立体监控摄像头和预警终端,以对各子区域是否存在建筑垃圾进行远程视频监控分析,使得整个建筑施工现场区域均在监控范围内,体现了对建筑施工现场建筑垃圾监管的自动化、智能化特点,该种监管方式相较于通过人工进行监管,大大提高了监管效率、监管可靠度和监管及时度,同时减轻了监管人员的工作负担,具有强大的实用性;
S2.子区域立体图像获取:通过各子区域设置的立体监控摄像头实时对各子区域进行视频采集,并将采集的视频按照视频帧数进行图像分割,得到各子区域立体图像;
S3.子区域建筑垃圾识别:将获取的各子区域立体图像进行建筑垃圾识别,具体识别方法为将采集的各子区域立体图像与该子区域标准立体图像进行对比,判断是否存在异常,若某子区域存在异常,表明该子区域存在建筑垃圾,其中子区域标准立体图像是指不存在建筑垃圾的子区域立体图像,对识别到存在建筑垃圾的子区域立体图像进行保留,并将该子区域记为建筑垃圾子区域;
本实施例通过对采集的各子区域立体图像进行建筑垃圾识别,进而保留建筑垃圾子区域立体图像,为后续进行建筑垃圾子区域对应的危险性评估提供评估目标,且在建筑垃圾识别过程中将采集的各子区域立体图像与子区域标准立体图像进行对比,使得识别过程更加直观形象,进而使得识别结果更加准确,大大降低了识别错误几率;
S4.垃圾参数提取:从各建筑垃圾子区域立体图像中提取垃圾参数,所述垃圾参数包括垃圾类型、垃圾尺寸和垃圾所在地理位置,所述垃圾尺寸包括垃圾宽度和垃圾体积,其中垃圾类型的提取过程如下:
Z1:将各建筑垃圾子区域立体图像分别聚焦在垃圾区域,进而抓取单个垃圾的外观特征,这里所述的外观特征包括垃圾颜色、垃圾形状、表面纹理、呈现状态等,其中呈现状态是指固体或液态;
Z2:将抓取的单个垃圾的外观特征与各种垃圾名称对应的外观特征进行匹配,从中获取各建筑垃圾子区域立体图像对应的垃圾名称;
Z3:将获取的各建筑垃圾子区域立体图像对应的垃圾名称与各种垃圾类型对应的若干垃圾名称进行比对,若某建筑垃圾子区域立体图像对应的垃圾名称与某种垃圾类型对应的某个垃圾名称一致,则该建筑垃圾子区域立体图像对应的垃圾类型即为该垃圾类型,以此得到各建筑垃圾子区域立体图像对应的垃圾类型,这里所述的垃圾类型包括人身危险类型和环境污染类型,其中人身危险类型对应的垃圾名称包括废旧钉、废旧刀片、废旧玻璃渣等,环境污染类型对应的垃圾名称包括胶、油漆、涂料、石棉、锯末等;
其中垃圾尺寸的提取过程如下:
Y1:将各建筑垃圾子区域立体图像进行灰度化处理,得到各建筑垃圾子区域立体灰度图像;
Y2:将各建筑垃圾子区域立体灰度图像分别聚焦在垃圾区域,并采用边缘检测技术提取垃圾区域的立体边缘轮廓线;
Y3:根据提取的立体边缘轮廓线获取各建筑垃圾子区域立体图像对应的垃圾体积;
Y4:从提取的立体边缘轮廓线中获取垃圾区域两侧边轮廓线,并根据获取的垃圾区域两侧边轮廓线提取两侧边轮廓线之间的间距,即为垃圾宽度;
S5.垃圾所在地理位置分析判断:对各建筑垃圾子区域对应垃圾参数中的垃圾所在地理位置进行分析,判断是否处在施工现场安全通道上,具体判断方法为将垃圾所在地理位置与施工现场安全通道所处区域范围进行对比,若垃圾所在地理位置位于施工现场安全通道所处区域范围内,则表明该垃圾所在地理位置处在施工现场安全通道上,若垃圾所在地理位置位于施工现场安全通道所处区域范围外,则表明该垃圾所在地理位置不处在施工现场安全通道上,若处在,则执行步骤S6,若不处在,则执行步骤S7;
S6.通行阻碍系数统计:获取施工现场安全通道对应的通道参数,其中通道参数包括通道宽度和通道宽度中点所在地理位置,以此综合通道参数和该建筑垃圾子区域对应的垃圾参数统计该建筑垃圾对施工现场安全通道的通行阻碍系数,其具体统计方法如下:
A1:将该建筑垃圾子区域对应的垃圾所在地理位置与施工现场安全通道对应通道宽度中点所在地理位置进行对比,获取垃圾距离施工现场安全通道对应通道宽度中点之间的距离,该距离记为阻碍距离;
A2:将该建筑垃圾子区域对应的垃圾类型与预设的各种垃圾类型对应的阻碍危险指数进行对比,得到该建筑垃圾对施工现场安全通道的阻碍危险指数;
A3:将该建筑垃圾子区域对应的垃圾宽度与施工现场安全通道对应的通道宽度进行对比,得到该建筑垃圾对施工现场安全通道的阻碍宽度指数,其计算公式为
Figure BDA0003158317100000101
w、W分别表示为该建筑垃圾子区域对应的垃圾宽度、施工现场安全通道对应的通道宽度;
A4:根据该建筑垃圾对施工现场安全通道的阻碍距离、阻碍危险指数和阻碍宽度指数统计该建筑垃圾对施工现场安全通道的通行阻碍系数
Figure BDA0003158317100000102
η表示为该建筑垃圾对施工现场安全通道的通行阻碍系数,l、ε、δ分别表示为该建筑垃圾对施工现场安全通道的阻碍距离、阻碍危险指数、阻碍宽度指数,其中阻碍距离越短、阻碍危险指数越大、阻碍宽度指数越大,通行阻碍系数越大,表明通行阻碍程度越高,即危险性越大;
此时将该建筑垃圾对施工现场安全通道的通行阻碍系数与预设值进行对比,若大于预设值,则启动该建筑垃圾子区域的预警终端进行预警,其具体预警方式为启动预警终端中的蜂鸣器进行蜂鸣预警,并启动预警终端中的语音提示器进行通行阻碍语音播报;
S7.垃圾类型分析判断:从该建筑垃圾子区域对应的垃圾参数中提取垃圾类型,并进行判断,若是人身危险类型,则执行步骤S8,若是环境污染类型,则执行步骤S9;
S8.人身危险系数评估及预警:对该建筑垃圾子区域对应的周边区域进行施工人员参数获取,其中周边区域的划分方法为以该建筑垃圾子区域的垃圾所在地理位置为圆心,以设定的长度为半径作圆,其圆内的区域即为周边区域,所述施工人员参数包括施工人员数量和施工人员平均靠近距离,其中施工人员平均靠近距离的获取方法执行以下步骤:
H1:分别定位各施工人员所在地理位置,并根据各施工人员所在地理位置和该建筑垃圾子区域的垃圾所在地理位置获取各施工人员距离垃圾的靠近距离;
H2:将各施工人员距离垃圾的靠近距离进行均值计算,得到施工人员平均靠近距离;
进而根据施工人员参数和该建筑垃圾子区域对应的垃圾参数评估该建筑垃圾子区域对应的人身危险系数,其具体评估过程包括以下步骤:
B1:从施工人员参数中提取施工人员数量,并将其与该建筑垃圾子区域对应的周边区域面积进行对比,计算该建筑垃圾子区域对应的施工人员密集度,其计算公式为
Figure BDA0003158317100000111
ρ表示为该建筑垃圾子区域对应的施工人员密集度,k表示为施工人员数量,r表示为设定的长度;
B2:从施工人员参数中提取施工人员平均靠近距离,并将其与设定的长度进行对比,计算该建筑垃圾子区域对应的施工人员靠近危险系数,其计算公式为
Figure BDA0003158317100000112
λ表示为该建筑垃圾子区域对应的施工人员靠近危险系数,x表示为施工人员平均靠近距离;
B3:从该建筑垃圾子区域对应的垃圾参数中提取垃圾体积,将其与预定义的人身危险类型的各种垃圾体积对应的垃圾自身危险系数进行对比,从中筛选出该建筑垃圾子区域对应的垃圾自身危险系数;
B4:根据该建筑垃圾子区域对应的施工人员密集度、施工人员靠近危险系数和垃圾自身危险系数评估该建筑垃圾子区域对应的人身危险系数
Figure BDA0003158317100000113
Figure BDA0003158317100000121
表示为该建筑垃圾子区域对应的人身危险系数,χ表示为该建筑垃圾子区域对应的垃圾自身危险系数,其中施工人员密集度越大、施工人员靠近危险系数越大、垃圾自身危险系数越大,人身危险系数越大,表明人身危险程度越高;
此时将该建筑垃圾子区域对应的人身危险系数与设定值进行对比,若大于设定值,则启动该建筑垃圾子区域对应的预警终端进行预警,其具体预警方式为启动预警终端中的蜂鸣器进行蜂鸣预警,并启动预警终端中的语音提示器进行人身危险语音播报;
S9.大气环境污染系数评估及预警:对该建筑垃圾子区域对应的周边区域进行大气环境参数采集,其中大气环境参数包括硫化氢浓度、二氧化硫浓度,氨气浓度和粉尘浓度,以此评估该建筑垃圾子区域对应的大气环境污染系数,其具体评估方法如下:
C1:将该建筑垃圾子区域对应周边区域的大气环境参数构成周边区域大气环境参数集合G(g1,g2,g3,g4),其中g1,g2,g3,g4分别表示为硫化氢浓度,二氧化硫浓度,氨气浓度,粉尘浓度;
C2:将周边区域大气环境参数集合与标准大气环境参数进行对比,其中标准大气环境参数为标准硫化氢浓度、标准二氧化硫浓度、标准氨气浓度和标准粉尘浓度,以此根据对比结果评估该建筑垃圾子区域对应的大气环境污染系数
Figure BDA0003158317100000122
ψ表示为该建筑垃圾子区域对应的大气环境污染系数,g1标准、g2标准、g3标准、g4标准分别表示为标准硫化氢浓度、标准二氧化硫浓度、标准氨气浓度、标准粉尘浓度,a1、a2、a3、a4分别表示为硫化氢浓度、二氧化硫浓度、氨气浓度、粉尘浓度对大气环境污染的比例系数,其中硫化氢浓度越高、二氧化硫浓度越高、氨气浓度越高、粉尘浓度越高,大气环境污染系数越大,表明大气环境污染程度越高;
本实施例中将大气环境参数定为硫化氢浓度、二氧化硫浓度、氨气浓度和粉尘浓度,是由于环境污染类型的垃圾在丢弃过程中由于温度、水分等的综合作用,会发生有机物分解,进而产生有害气体,如硫化氢、二氧化硫、氨气等,释放在大气环境中,同时一些粉末状的垃圾在丢弃过程中随风飘荡,造成粉尘肆虐,使得粉尘浓度变高;
本实施例在对存在建筑垃圾的子区域进行危险性评估时,首先对存在建筑垃圾的子区域进行垃圾参数提取,并对垃圾参数中的垃圾所在地理位置和垃圾类型进行分析判断,进而根据分析判断结果针对性地统计建筑垃圾对施工现场安全通道的通行阻碍系数或建筑垃圾子区域对应的人身危险系数或建筑垃圾子区域对应的大气环境污染系数,以这样的操作方法进行存在建筑垃圾子区域的危险性评估,体现了危险性评估的灵活性和针对性,更加能够贴近建筑垃圾子区域对应建筑垃圾的实际真实状况,避免用统一的评估方式进行危险性评估造成的不切合实际问题,影响评估结果的可靠度;
此时将该建筑垃圾子区域对应的大气环境污染系数与预定义值进行对比,若大于预定义值,则启动该建筑垃圾子区域对应的预警终端进行预警,其具体预警方式为启动预警终端中的蜂鸣器进行蜂鸣预警,并启动预警终端中的语音提示器进行环境污染语音播报。
本实施例中预警的方式包括声音预警及语音提示预警,其中声音预警是为了提醒管理人员及施工人员注意远离建筑垃圾所在地,而语音提示预警是对相应建筑垃圾子区域的危险类型进行播报,便于管理人员了解建筑垃圾的危险类型,进而为管理人员对建筑垃圾子区域的垃圾处理提供处理方向。
本发明通过对建筑施工现场区域进行区域划分,进而在划分的各子区域分别设置立体监控摄像头和预警终端,以对各子区域是否存在建筑垃圾进行远程视频监控分析,并对存在建筑垃圾的子区域进行危险性评估,从而根据评估的危险性进行预警,实现了对建筑施工现场建筑垃圾的安全监管,弥补了目前对建筑施工现场的安全监测管理方向过于单一的不足,并通过监测管理结果对相应的子区域进行预警,不仅极大保障了相应子区域施工人员的人身安全,还避免了大气环境污染的进一步加剧污染,有利于提升建筑施工现场的安全监管水平。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (10)

1.一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于,包括以下步骤;
S1.子区域划分:将建筑施工现场区域按照平面网格化划分方式进行区域划分,并对划分的各子区域进行编号且分别设置立体监控摄像头和预警终端;
S2.子区域立体图像获取:通过各子区域设置的立体监控摄像头实时对各子区域进行视频采集,并将采集的视频按照视频帧数进行图像分割,得到各子区域立体图像;
S3.子区域建筑垃圾识别:将获取的各子区域立体图像进行建筑垃圾识别,对识别到存在建筑垃圾的子区域立体图像进行保留,并将该子区域记为建筑垃圾子区域;
S4.垃圾参数提取:从各建筑垃圾子区域立体图像中提取垃圾参数;
S5.垃圾所在地理位置分析判断:对各建筑垃圾子区域对应垃圾参数中的垃圾所在地理位置进行分析,判断是否处在施工现场安全通道上,若处在,则执行步骤S6,若不处在,则执行步骤S7;
S6.通行阻碍系数统计:获取施工现场安全通道对应的通道参数,以此综合通道参数和该建筑垃圾子区域对应的垃圾参数统计该建筑垃圾对施工现场安全通道的通行阻碍系数,并将其与预设值进行对比,若大于预设值,则启动该建筑垃圾子区域的预警终端进行预警;
S7.垃圾类型分析判断:从该建筑垃圾子区域对应的垃圾参数中提取垃圾类型,并进行判断,若是人身危险类型,则执行步骤S8,若是环境污染类型,则执行步骤S9;
S8.人身危险系数评估及预警:对该建筑垃圾子区域对应的周边区域进行施工人员参数获取,进而根据施工人员参数和该建筑垃圾子区域对应的垃圾参数评估该建筑垃圾子区域对应的人身危险系数,并将其与设定值进行对比,若大于设定值,则启动该建筑垃圾子区域对应的预警终端进行预警;
S9.大气环境污染系数评估及预警:对该建筑垃圾子区域对应的周边区域进行大气环境参数采集,以此评估该建筑垃圾子区域对应的大气环境污染系数,并将其与预定义值进行对比,若大于预定义值,则启动该建筑垃圾子区域对应的预警终端进行预警。
2.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述预警终端包括语音提示器和蜂鸣器。
3.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述建筑垃圾识别的具体识别方法为将采集的各子区域立体图像与该子区域标准立体图像进行对比,判断是否存在异常,若某子区域存在异常,表明该子区域存在建筑垃圾。
4.根据权利要求3所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述子区域标准立体图像是指不存在建筑垃圾的子区域立体图像。
5.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述垃圾参数包括垃圾类型、垃圾尺寸和垃圾所在地理位置,其中垃圾尺寸包括垃圾宽度和垃圾体积。
6.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述通道参数包括通道宽度和通道宽度中点所在地理位置。
7.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述统计该建筑垃圾对施工现场安全通道的通行阻碍系数的具体统计方法如下:
A1:将该建筑垃圾子区域对应的垃圾所在地理位置与施工现场安全通道对应通道宽度中点所在地理位置进行对比,获取垃圾距离施工现场安全通道对应通道宽度中点之间的距离,该距离记为阻碍距离;
A2:将该建筑垃圾子区域对应的垃圾类型与预设的各种垃圾类型对应的阻碍危险指数进行对比,得到该建筑垃圾对施工现场安全通道的阻碍危险指数;
A3:将该建筑垃圾子区域对应的垃圾宽度除以施工现场安全通道对应的通道宽度,得到该建筑垃圾对施工现场安全通道的阻碍宽度指数;
A4:根据该建筑垃圾对施工现场安全通道的阻碍距离、阻碍危险指数和阻碍宽度指数统计该建筑垃圾对施工现场安全通道的通行阻碍系数
Figure FDA0003158317090000031
η表示为该建筑垃圾对施工现场安全通道的通行阻碍系数,l、ε、δ分别表示为该建筑垃圾对施工现场安全通道的阻碍距离、阻碍危险指数、阻碍宽度指数。
8.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述周边区域的划分方法为以该建筑垃圾子区域的垃圾所在地理位置为圆心,以设定的长度为半径作圆,其圆内的区域即为周边区域。
9.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述评估该建筑垃圾子区域对应人身危险系数的具体评估过程包括以下步骤:
B1:从施工人员参数中提取施工人员数量,并将其与该建筑垃圾子区域对应的周边区域面积进行对比,计算该建筑垃圾子区域对应的施工人员密集度,其计算公式为
Figure FDA0003158317090000041
ρ表示为该建筑垃圾子区域对应的施工人员密集度,k表示为施工人员数量,r表示为设定的长度;
B2:从施工人员参数中提取施工人员平均靠近距离,并将其与设定的长度进行对比,计算该建筑垃圾子区域对应的施工人员靠近危险系数,其计算公式为
Figure FDA0003158317090000042
λ表示为该建筑垃圾子区域对应的施工人员靠近危险系数,x表示为施工人员平均靠近距离;
B3:从该建筑垃圾子区域对应的垃圾参数中提取垃圾体积,将其与预定义的人身危险类型的各种垃圾体积对应的垃圾自身危险系数进行对比,从中筛选出该建筑垃圾子区域对应的垃圾自身危险系数;
B4:根据该建筑垃圾子区域对应的施工人员密集度、施工人员靠近危险系数和垃圾自身危险系数评估该建筑垃圾子区域对应的人身危险系数
Figure FDA0003158317090000043
Figure FDA0003158317090000044
表示为该建筑垃圾子区域对应的人身危险系数,χ表示为该建筑垃圾子区域对应的垃圾自身危险系数。
10.根据权利要求1所述的一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法,其特征在于:所述评估该建筑垃圾子区域对应大气环境污染系数的具体评估方法如下:
C1:将该建筑垃圾子区域对应周边区域的大气环境参数构成周边区域大气环境参数集合G(g1,g2,g3,g4),其中g1,g2,g3,g4分别表示为硫化氢浓度,二氧化硫浓度,氨气浓度,粉尘浓度;
C2:将周边区域大气环境参数集合与标准大气环境参数进行对比,以此根据对比结果评估该建筑垃圾子区域对应的大气环境污染系数
Figure FDA0003158317090000051
ψ表示为该建筑垃圾子区域对应的大气环境污染系数,g1标准、g2标准、g3标准、g4标准分别表示为标准硫化氢浓度、标准二氧化硫浓度、标准氨气浓度、标准粉尘浓度,a1、a2、a3、a4分别表示为硫化氢浓度、二氧化硫浓度、氨气浓度、粉尘浓度对大气环境污染的比例系数。
CN202110783843.3A 2021-07-12 2021-07-12 一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法 Active CN113538845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110783843.3A CN113538845B (zh) 2021-07-12 2021-07-12 一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110783843.3A CN113538845B (zh) 2021-07-12 2021-07-12 一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法

Publications (2)

Publication Number Publication Date
CN113538845A CN113538845A (zh) 2021-10-22
CN113538845B true CN113538845B (zh) 2022-07-12

Family

ID=78098506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110783843.3A Active CN113538845B (zh) 2021-07-12 2021-07-12 一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法

Country Status (1)

Country Link
CN (1) CN113538845B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115082545B (zh) * 2022-06-08 2023-02-07 国网黑龙江省电力有限公司大庆供电公司 应用于电力现场的安全系统
CN115389385B (zh) * 2022-09-20 2023-05-09 复旦大学 基于作业环境和人体职业健康的粉尘智能监测预警系统
CN116721530A (zh) * 2023-05-24 2023-09-08 苏州中恒通路桥股份有限公司 一种适用于轨道桥梁结构施工监测的安全预警分析系统
CN116634367B (zh) * 2023-07-21 2023-10-03 三峡高科信息技术有限责任公司 一种基于物联网的智能施工监控管理系统
CN116757556B (zh) * 2023-08-14 2023-10-31 成都建工雅安建设有限责任公司 一种基于图像处理的防水施工管理方法及系统
CN116777122B (zh) * 2023-08-21 2023-11-03 安徽塔联智能科技有限责任公司 一种数字乡村综合治理ai预警平台
CN117455206B (zh) * 2023-12-25 2024-03-08 海江科技集团有限公司 一种基于摄像头图像识别的施工现场安全风险评估方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003006277A (ja) * 2001-06-22 2003-01-10 Iida Sangyo:Kk 現場の画像をリアルタイムで監視可能な工程管理サーバーシステム
KR101786923B1 (ko) * 2017-05-15 2017-11-15 주식회사 두원전자통신 다목적 통합 운영 cctv 시스템
CN110497419A (zh) * 2019-07-15 2019-11-26 广州大学 建筑废弃物分拣机器人
CN110648364A (zh) * 2019-09-17 2020-01-03 华侨大学 一种多维度空间固废视觉检测定位及识别方法与系统
CN110728815A (zh) * 2019-10-25 2020-01-24 深圳市商汤科技有限公司 基于视频分析的预警方法及装置、电子设备和存储介质
CN111814527A (zh) * 2020-01-16 2020-10-23 北京嘀嘀无限科技发展有限公司 城市占道施工监测方法、存储介质、车载终端和监控终端
CN112511807A (zh) * 2020-12-16 2021-03-16 绿漫科技有限公司 一种消防通道监控联动方法
CN112916416A (zh) * 2021-03-18 2021-06-08 武汉科技大学 一种建筑垃圾分拣系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10579961B2 (en) * 2017-01-26 2020-03-03 Uptake Technologies, Inc. Method and system of identifying environment features for use in analyzing asset operation
US11341845B2 (en) * 2018-12-12 2022-05-24 Here Global B.V. Methods and systems for roadwork zone identification
US11381726B2 (en) * 2019-09-14 2022-07-05 Constru Ltd Generating tasks from images of construction sites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003006277A (ja) * 2001-06-22 2003-01-10 Iida Sangyo:Kk 現場の画像をリアルタイムで監視可能な工程管理サーバーシステム
KR101786923B1 (ko) * 2017-05-15 2017-11-15 주식회사 두원전자통신 다목적 통합 운영 cctv 시스템
CN110497419A (zh) * 2019-07-15 2019-11-26 广州大学 建筑废弃物分拣机器人
CN110648364A (zh) * 2019-09-17 2020-01-03 华侨大学 一种多维度空间固废视觉检测定位及识别方法与系统
CN110728815A (zh) * 2019-10-25 2020-01-24 深圳市商汤科技有限公司 基于视频分析的预警方法及装置、电子设备和存储介质
CN111814527A (zh) * 2020-01-16 2020-10-23 北京嘀嘀无限科技发展有限公司 城市占道施工监测方法、存储介质、车载终端和监控终端
CN112511807A (zh) * 2020-12-16 2021-03-16 绿漫科技有限公司 一种消防通道监控联动方法
CN112916416A (zh) * 2021-03-18 2021-06-08 武汉科技大学 一种建筑垃圾分拣系统

Also Published As

Publication number Publication date
CN113538845A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN113538845B (zh) 一种基于远程视频监控分析技术的建筑施工现场安全生产实时监测预警方法
CN111125641B (zh) 一种大气污染异常识别与成因分析方法、装置及存储介质
CN113155102A (zh) 一种河流综合治理系统
CN104077872A (zh) 一种基于图像识别的输电线路防外力监控预警方法
CN115326661B (zh) 一种基于大气环境的监测方法、系统和可读存储介质
US11605158B2 (en) System and method for early identification and monitoring of defects in transportation infrastructure
CN113018725B (zh) 基于远程图像分析处理技术的智慧消防分析管理一体化平台
CN112816380A (zh) 基于大数据分析的建筑工程工地施工环境在线监测方法及监测云平台
CN115081806B (zh) 一种基于物联网技术的建筑工程施工现场智能监理分析管理系统
WO2021085738A1 (ko) 실시간 악취 추적 통합 모니터링 시스템
CN111881970A (zh) 一种基于深度学习的外破图像智能识别方法
CN116341776A (zh) 一种基于大数据的森林防火智能检测系统与方法
CN115239209B (zh) 用于垃圾填埋场筛除含重金属腐殖土的方法、设备和系统
CN112802560A (zh) 一种基于云计算的信息处理方法和系统
CN113267601B (zh) 一种基于机器视觉和数据分析的工业生产环境远程实时监测云平台
CN115372571A (zh) 一种水环境智能监测系统
KR102240397B1 (ko) 실시간 차량용 악취 측정 장치를 이용한 악취 추적 시스템
CN117092297A (zh) 一种工业园区大气污染物的溯源方法、系统、设备及介质
CN115964757A (zh) 基于区块链的流域环境监测及处置方法和装置
CN114814107A (zh) 一种大气质量环境检测系统
Harun et al. End-of-Life Vehicle (ELV) emission evaluation using IoT in Malaysia
CN110543809A (zh) 一种电力作业现场风险监管入侵视频识别方法
CN112884273A (zh) 基于云计算和大数据的道路项目工程质量检测监理智能管理系统
CN110458147B (zh) 人工智能云计算非应用感应器的液体气体污染排放监控方法
CN113359651B (zh) 一种数字化智能制造工业车间生产安全实时在线监测云平台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220608

Address after: 100043 No. 318, floor 3, podium building, Wanshang building, No. 22, Shijingshan Road, Shijingshan District, Beijing

Applicant after: China Railway Construction Network Information Technology Co.,Ltd.

Address before: 430061 Changyin building, building 46, Shouyi new village, Wuchang District, Wuhan City, Hubei Province

Applicant before: Wuhan Jiameng Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant