CN113528763A - 超高强度大壁厚水下采油树井口连接器锻件的生产工艺 - Google Patents

超高强度大壁厚水下采油树井口连接器锻件的生产工艺 Download PDF

Info

Publication number
CN113528763A
CN113528763A CN202110816216.5A CN202110816216A CN113528763A CN 113528763 A CN113528763 A CN 113528763A CN 202110816216 A CN202110816216 A CN 202110816216A CN 113528763 A CN113528763 A CN 113528763A
Authority
CN
China
Prior art keywords
forging
less
heating
thickness
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110816216.5A
Other languages
English (en)
Inventor
周勇
葛辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Regham Hengrui Energy Equipment Engineering Co ltd
Original Assignee
Suzhou Lygm Subsea Oil Equipment Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Lygm Subsea Oil Equipment Tech Co ltd filed Critical Suzhou Lygm Subsea Oil Equipment Tech Co ltd
Priority to CN202110816216.5A priority Critical patent/CN113528763A/zh
Publication of CN113528763A publication Critical patent/CN113528763A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种超高强度大壁厚水下采油树井口连接器锻件的生产工艺,生产步骤如下:下料;锻造;锻后热处理;调质热处理;无损探伤及机械加工。本发明的优点在于:通过调整材料化学成分配比,改进锻造工艺,制定新的热处理工艺来提高8630材料的性能,使之在生产超高强度大壁厚的水下采油树井口连接器锻件时具备极高的材料淬透性,并获得超过标准所要求的材料设计厚度以及满足所需的全截面均匀的综合机械性能,从而提升设备性能,增长使用寿命,保证产品使用安全。

Description

超高强度大壁厚水下采油树井口连接器锻件的生产工艺
技术领域
本发明涉及超高强度大壁厚水下采油树井口连接器锻件的生产工艺。
背景技术
我国深水油气开发面临内波和台风等的恶劣海洋环境和地形条件,且海底地形和工程地址条件复杂;另一方面,我国油气藏特性复杂,在勘探、开发技术等方面仍与西方存在较大差距,深水应急救援能力仍处于空白状态。因此要自主创新和开展国际合作相结合,创新海洋石油工程的技术开发模式。而这一切需要高性能材料作为基础。
水下井口和采油树是海洋油气田开发中的重要单元装备,也是水下生产系统的关键设备。长期以来,水下井口和采油树装备受西方发达国家的技术垄断和高技术,高风险及高价位等多方面因素的影响,包括我国在内的许多发展中国家只能依赖于进口以实施海洋油气田的开发建设。目前国内具备该大壁厚材料制造能力的厂家很少,其材料选用和工艺流程的参数存在空缺。一般以标准为参考的8630材料,在制造大壁厚锻件并不能满足产品的性能要求。使用普通8630级别材料,无法用于生产大壁厚的水下井口和采油树,缺少相关参数;而若选用F22材料,其屈服强度无法满足110K且成本较8630更高。
发明内容
为了解决8630材料无法用于生产大壁厚的水下井口和采油树的缺陷,本发明提供一种超高强度大壁厚水下采油树井口连接器锻件的生产工艺,通过调整材料化学成分配比,改进锻造工艺,制定新的热处理工艺来提升8630材料的性能。
为实现上述目的,本发明所采用的技术方案是:超高强度大壁厚水下采油树井口连接器锻件的生产工艺,生产步骤如下:
a、下料:去化学成分及重量百分比为:C:0.25~0.33,Si:0.1~0.4,Mn:0.65~1.1,S≤0.01,P≤0.015,Cr:0.6~1.1,Ni:0.6~0.99,Mo:0.3~0.5,Al≤0.03,Nb≤0.02,V≤0.06,Ti≤0.025,Sn≤0.015,Sb≤0.02,As≤0.02,Pb≤0.01,Bi≤0.01,B≤0.0005,N:≤0.012,H≤1.6ppm,O≤25ppm,CE(IIW)≥(Qualified CE-0.03)*see note的钢坯为原料;
b、锻造:将钢坯置入锻造炉中,先将钢坯加热至850℃并保温,保温时间≥3.5h,然后将850℃的钢坯加热至1200±20℃并保温,保温时间≥6h,然后对钢坯进行锻造,将钢坯锻造成锻件,在锻造过程中,始锻温度为1200±20℃,终锻温度为900±20℃,在锻造过程中,控制拔长比>2:1、镦粗比>2.5:1、总锻造比>5:1,锻造完成后的锻件空冷至室温;
c、锻后热处理:将锻件加热至930℃并保温8h,然后空冷至室温,再将锻件加热至660℃并保温12h,然后空冷至室温;
d、调质热处理:先将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至890±10℃并保温,保温时间控制在0.5~1.5小时/英寸(英寸为锻件的最大壁厚尺寸),然后在90秒内将锻件转移到冷却水中进行快速水冷;然后再将锻件加热至200℃并保温1h,再将200℃的锻件加热至510℃并保温1.5h,然后将510℃的锻件加热至590±8℃并保温,保温时间控制在0.5~1.5小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;
e、无损探伤及机械加工。
进一步的,前述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其中,在下料步骤中,采用EF+LF+VD底注式真空保护浇注的冶炼工艺。
进一步的,前述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其中,锻造过程中的加热速率控制在不高于110℃/h。
进一步的,前述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其中,锻后热处理过程中的加热速率控制在不高于150℃/h。
进一步的,前述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其中,调整热处理过程中的加热速率控制在不高于150℃/h。
本发明的优点在于:通过调整材料化学成分配比,改进锻造工艺,制定新的热处理工艺来提高8630材料的性能,使之在生产超高强度大壁厚的水下采油树井口连接器锻件时具备极高的材料淬透性,并获得超过标准所要求的材料设计厚度以及满足所需的全截面均匀的综合机械性能,从而提升设备性能,增长使用寿命,保证产品使用安全。
具体实施方式
下面结合优选实施例对本发明所述的技术方案作进一步说明。
本发明所述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其特征在于:生产步骤如下:
a、下料:去化学成分及重量百分比为:C:0.25~0.33,Si:0.1~0.4,Mn:0.65~1.1,S≤0.01,P≤0.015,Cr:0.6~1.1,Ni:0.6~0.99,Mo:0.3~0.5,Al≤0.03,Nb≤0.02,V≤0.06,Ti≤0.025,Sn≤0.015,Sb≤0.02,As≤0.02,Pb≤0.01,Bi≤0.01,B≤0.0005,N:≤0.012,H≤1.6ppm,O≤25ppm,CE(IIW)≥(Qualified CE-0.03)*see note的钢坯为原料;然后采用EF+LF+VD底注式真空保护浇注的冶炼工艺
b、锻造:将钢坯置入锻造炉中,以不高于110℃/h的加热速率对钢坯进行加热,先将钢坯加热至850℃并保温,保温时间≥3.5h,然后将850℃的钢坯加热至1200±20℃并保温,保温时间≥6h,然后对钢坯进行锻造,将钢坯锻造成锻件,在锻造过程中,始锻温度为1200±20℃,终锻温度为900±20℃,在锻造过程中,控制拔长比>2:1、镦粗比>2.5:1、总锻造比>5:1,锻造完成后的锻件空冷至室温;
c、锻后热处理:将锻件加热至930℃并保温8h,然后空冷至室温,再将锻件加热至660℃并保温12h,然后空冷至室温;
d、调质热处理:以不高于150℃/h的加热速率对锻件进行加热,先将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至890±10℃并保温,保温时间控制在0.5~1.5小时/英寸(英寸为锻件的最大壁厚尺寸),然后在90秒内将锻件转移到冷却水中进行快速水冷;
然后以不高于150℃/h的加热速率对锻件进行加热,将锻件加热至200℃并保温1h,再将200℃的锻件加热至510℃并保温1.5h,然后将510℃的锻件加热至590±8℃并保温,保温时间控制在0.5~1.5小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;
e、无损探伤及机械加工。
以本发明所述生产工艺制造出来的超高强度大壁厚水下采油树井口连接器锻件的机械测试结果如下表:
Figure BDA0003170198650000031
Figure BDA0003170198650000041

Claims (5)

1.超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其特征在于:生产步骤如下:
a、下料:去化学成分及重量百分比为:C:0.25~0.33,Si:0.1~0.4,Mn:0.65~1.1,S≤0.01,P≤0.015,Cr:0.6~1.1,Ni:0.6~0.99,Mo:0.3~0.5,Al≤0.03,Nb≤0.02,V≤0.06,Ti≤0.025,Sn≤0.015,Sb≤0.02,As≤0.02,Pb≤0.01,Bi≤0.01,B≤0.0005,N:≤0.012,H≤1.6ppm,O≤25ppm,CE(IIW)≥(Qualified CE-0.03)*see note的钢坯为原料;
b、锻造:将钢坯置入锻造炉中,先将钢坯加热至850℃并保温,保温时间≥3.5h,然后将850℃的钢坯加热至1200±20℃并保温,保温时间≥6h,然后对钢坯进行锻造,将钢坯锻造成锻件,在锻造过程中,始锻温度为1200±20℃,终锻温度为900±20℃,在锻造过程中,控制拔长比>2:1、镦粗比>2.5:1、总锻造比>5:1,锻造完成后的锻件空冷至室温;
c、锻后热处理:将锻件加热至930℃并保温8h,然后空冷至室温,再将锻件加热至660℃并保温12h,然后空冷至室温;
d、调质热处理:先将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至890±10℃并保温,保温时间控制在0.5~1.5小时/英寸(英寸为锻件的最大壁厚尺寸),然后在90秒内将锻件转移到冷却水中进行快速水冷;然后再将锻件加热至200℃并保温1h,再将200℃的锻件加热至510℃并保温1.5h,然后将510℃的锻件加热至590±8℃并保温,保温时间控制在0.5~1.5小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;
e、无损探伤及机械加工。
2.根据权利要求1所述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其特征在于:在下料步骤中,采用EF+LF+VD底注式真空保护浇注的冶炼工艺。
3.根据权利要求1所述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其特征在于:锻造过程中的加热速率控制在不高于110℃/h。
4.根据权利要求1所述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其特征在于:锻后热处理过程中的加热速率控制在不高于150℃/h。
5.根据权利要求1所述的超高强度大壁厚水下采油树井口连接器锻件的生产工艺,其特征在于:调整热处理过程中的加热速率控制在不高于150℃/h。
CN202110816216.5A 2021-07-20 2021-07-20 超高强度大壁厚水下采油树井口连接器锻件的生产工艺 Pending CN113528763A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110816216.5A CN113528763A (zh) 2021-07-20 2021-07-20 超高强度大壁厚水下采油树井口连接器锻件的生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110816216.5A CN113528763A (zh) 2021-07-20 2021-07-20 超高强度大壁厚水下采油树井口连接器锻件的生产工艺

Publications (1)

Publication Number Publication Date
CN113528763A true CN113528763A (zh) 2021-10-22

Family

ID=78100313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110816216.5A Pending CN113528763A (zh) 2021-07-20 2021-07-20 超高强度大壁厚水下采油树井口连接器锻件的生产工艺

Country Status (1)

Country Link
CN (1) CN113528763A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170369976A1 (en) * 2014-10-21 2017-12-28 Bharat Forge Limited Ultra-high strength thermo-mechanically processed steel
CN112281069A (zh) * 2020-10-30 2021-01-29 张家港海锅新能源装备股份有限公司 深海采油树装备用8630超长锻件的生产方法
CN113088820A (zh) * 2021-04-02 2021-07-09 苏州雷格姆海洋石油设备科技有限公司 深海井口套管挂用8630mod3-85k锻件的生产工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170369976A1 (en) * 2014-10-21 2017-12-28 Bharat Forge Limited Ultra-high strength thermo-mechanically processed steel
CN112281069A (zh) * 2020-10-30 2021-01-29 张家港海锅新能源装备股份有限公司 深海采油树装备用8630超长锻件的生产方法
CN113088820A (zh) * 2021-04-02 2021-07-09 苏州雷格姆海洋石油设备科技有限公司 深海井口套管挂用8630mod3-85k锻件的生产工艺

Similar Documents

Publication Publication Date Title
CN106591680B (zh) 一种连铸坯生产深海采油井口装置用CrNiMo30C钢锻材的工艺
CN109536691B (zh) 一种耐低温冲击CrMo合金钢锻圆的制备方法
CN111020409B (zh) 一种高强度微合金钢、水下油气管线快速连接器及制造方法
CN109822024B (zh) 一种750℃级高温合金锻件的锻造和热处理工艺
CN110484821B (zh) 一种深海采油管道互连防爆组件用锻件原料的生产方法
CN108866431B (zh) 一种工程机械高淬透性用钢及其控轧控冷制备方法
CN112626412B (zh) 一种耐蚀高强低合金钢及其制备方法
CN112281069A (zh) 深海采油树装备用8630超长锻件的生产方法
CN108823384B (zh) 一种大型不锈钢环件高温锻造细化晶粒方法
CN108754308A (zh) 一种深海采油装备中油管头用高强度钢锻件原料的生产方法
CN103620275B (zh) 压力环及其制造方法
CN113528763A (zh) 超高强度大壁厚水下采油树井口连接器锻件的生产工艺
CN101333609B (zh) 重力、低压铸造用低铍铜合金模具材料及其生产工艺
CN113528968A (zh) 深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件
CN105543748A (zh) 一种Nimonic101镍基合金的热处理方法
CN108907061B (zh) 一种树头四通阀的制造方法
CN106916996B (zh) 一种低温超高韧耐磨铜合金及其制备方法
CN111996469B (zh) 一种高硬度铁合金及其制备方法和应用
CN109023144B (zh) 一种30CrMnTi钢大型螺旋伞齿轮的耐腐蚀金属涂层
CN102936693A (zh) 拉丝模模具钢的加工方法
CN109967672B (zh) 一种CuAl10Fe5Ni5铜合金的锻造方法
TWI657145B (zh) 易切削雙相沃斯回火球墨鑄鐵之製造方法
CN109971993A (zh) 一种高耐蚀铜合金及其制备方法
CN111254274A (zh) 一种铁素体高温合金环件晶粒细化方法
CN104532167A (zh) 一种耐高温合金模具钢的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220809

Address after: 215636 Suzhou regme Hengrui energy equipment Engineering Co., Ltd., Daxin village, Daxin Town, Zhangjiagang City, Suzhou City, Jiangsu Province

Applicant after: Suzhou regham Hengrui energy equipment Engineering Co.,Ltd.

Address before: 215631 Suzhou regum offshore oil equipment Technology Co., Ltd., gangyang Road, Jingang town, Zhangjiagang City, Suzhou City, Jiangsu Province

Applicant before: SUZHOU LYGM SUBSEA OIL EQUIPMENT TECH. CO.,LTD.

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211022