CN113528968A - 深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件 - Google Patents

深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件 Download PDF

Info

Publication number
CN113528968A
CN113528968A CN202110817497.6A CN202110817497A CN113528968A CN 113528968 A CN113528968 A CN 113528968A CN 202110817497 A CN202110817497 A CN 202110817497A CN 113528968 A CN113528968 A CN 113528968A
Authority
CN
China
Prior art keywords
forging
percent
equal
less
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110817497.6A
Other languages
English (en)
Inventor
葛辉
周勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Lygm Subsea Oil Equipment Tech Co ltd
Original Assignee
Suzhou Lygm Subsea Oil Equipment Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Lygm Subsea Oil Equipment Tech Co ltd filed Critical Suzhou Lygm Subsea Oil Equipment Tech Co ltd
Priority to CN202110817497.6A priority Critical patent/CN113528968A/zh
Publication of CN113528968A publication Critical patent/CN113528968A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件的生产工艺,步骤如下:下料;锻造;正火、淬火、回火处理;进行无损探伤及机械加工。本发明的优点在于:通过上述生产工艺生产的F65特大壁厚快速连接器锻件,在壁厚超过100mm后还具备非常优良的可焊性和低温性能,在保证冲击性能的同时,锻件中心的屈服强度大于450Mpa,解决了在低温冲击出现单个最低要求不满足的问题。

Description

深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度 锻件
技术领域
本发明涉及深海高端装备用高性能锻件材料应用领域,尤其涉及深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件。
背景技术
中国在海洋石油工程上面临诸多挑战,如中国在EPC中侧重于制造和组装,工程设计和设备采购有待加强;海洋工程风险高,安全环保责任大;近几年国际油价大幅下跌导致国内外海洋石油开发项目大幅压缩和推迟,需警惕汇率变化失去价格优势。我国深水油气开发面临内波和台风等的恶劣海洋环境和地形条件,且海底地形和工程地址条件复杂;另一方面,我国油气藏特性复杂,在勘探、开发技术等方面仍与西方存在较大差距,深水应急救援能力仍处于空白状态。因此要自主创新和开展国际合作相结合,创新海洋石油工程的技术开发模式。而这一切需要高性能材料作为基础。
深海快速连接器锻件材料一般采用美标ASTM A182 F22或小壁厚普通F65级别材料锻件。但是ASTM A182 F22级别的可焊性较差,焊接后必须进行焊后热处理,对现场施工造成难度并且成本大幅提高;而小壁厚普通F65级别材料锻件设计则造成设备整机结构复杂,安全系数降低,不便于安装及维护,后期维护成本巨大。标准F65微合金钢属于低碳钢加以微合金化处理,淬透性较差,即一般在管线大量采用,其牌号为X65。在石油天然气管线领域的管线应用,其钢管壁厚相对都是薄壁(壁厚<100mm)。而锻件需要考虑产品结构设计的标准化与模块化,其材料尺寸的设计和选择不得不面临大壁厚,超临界状态的挑战。当锻件壁厚超过100mm时,综合考虑其可焊性限制(碳当量要求-Ce,焊接裂纹敏感系数-Pcm),锻件的强韧性超出材料性能极限,产生了不稳定性,导致强度与低温韧性不得予以匹配,极其难以控制。
使用普通F65级别材料时,确保冲击性能的情况下,锻件中心位置的屈服强度低于450MPa,在意大利知名深海锻件制造厂同样出现相同的结果,并且一直没有获得解决方案;而当调整工艺保证锻件中心位置屈服强度达到450MPa要求后,低温冲击-29℃和-46℃冲击试验结果出现单个最低不满足要求的现象,其同一组三个冲击值的偏差极大,相差10倍以上。
发明内容
为了解决现有F65级别材料在壁厚超过100mm后出现可焊性差、强韧性不稳定及不耐低温的问题,本发明提供了一种深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件。
为实现上述目的,本发明所采用的技术方案是:深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件的生产工艺,步骤如下:
a、下料:取化学成分及重量百分比为:C≤0.12、Si:0.2~0.45、Mn:1.1~1.4、S≤0.01、P≤0.015、Cr:0.1~0.5、Ni:0.5~0.99、Mo:0.15~0.5、Al:0.02~0.055、Nb≤0.02、V≤0.06、Ca≤0.005、Ti≤0.025、Sn≤0.015、Sb≤0.02、As≤0.02、Pb≤0.01、Bi≤0.01、B≤0.0005、Cu≤0.3、H≤2ppm、N≤0.012、O≤25ppm、Cev:0.4~0.45的钢坯为原材料;
b、锻造:将钢坯置入锻造炉中,先将钢坯加热至800℃并保温,保温时间≥2h,再将800℃的钢坯加热至1180±20℃并保温,保温时间≥3.5h,然后对钢坯进行锻造,将钢坯锻造成带有内孔的锻件,在锻造过程中,始锻温度为1180±20℃,终锻温度为850±20℃,在锻造过程中,控制拔长比>3:1、镦粗比>2:1、总锻造比>6:1,锻造完成后,锻件空冷至室温;
c、正火、淬火、回火处理:先将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至960±10℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;再将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至920±10℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后在90秒内转移到冷却水中进行水淬至室温,在水淬过程中,用高压流体泵持续往锻件上的内孔中喷冲冷却水;再将锻件加热至200℃并保温1h,然后将200℃的锻件加热至510℃并保温1.5h,最后将510℃的锻件加热至550±8℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;
d、进行无损探伤及机械加工。
进一步的,前述的深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件,其中,在下料步骤中,采用EF+LF+VD底注式真空保护浇注的冶炼工艺。
进一步的,前述的深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件,其中,锻造过程中的加热速率控制在不高于125℃/h。
进一步的,前述的深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件,其中,在正火、淬火、回火处理过程中的加热速率均控制在不高于150℃/h。
本发明的优点在于:通过上述生产工艺生产的F65特大壁厚快速连接器锻件,在壁厚超过100mm后还具备非常优良的可焊性和低温性能,在保证冲击性能的同时,锻件中心的屈服强度大于450Mpa,解决了在低温冲击出现单个最低要求不满足的问题。
具体实施方式
下面结合优选实施例对本发明所述的技术方案作进一步说明。
本发明所述的深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件的生产工艺,步骤如下:
a、下料:取化学成分及重量百分比为:C≤0.12、Si:0.2~0.45、Mn:1.1~1.4、S≤0.01、P≤0.015、Cr:0.1~0.5、Ni:0.5~0.99、Mo:0.15~0.5、Al:0.02~0.055、Nb≤0.02、V≤0.06、Ca≤0.005、Ti≤0.025、Sn≤0.015、Sb≤0.02、As≤0.02、Pb≤0.01、Bi≤0.01、B≤0.0005、Cu≤0.3、H≤2ppm、N≤0.012、O≤25ppm、Cev:0.4~0.45的钢坯为原材料;然后采用EF+LF+VD底注式真空保护浇注的冶炼工艺;
b、锻造:将钢坯置入锻造炉中,以不高于125℃/h的加热速率对钢坯进行加热,先将钢坯加热至800℃并保温,保温时间≥2h,再将800℃的钢坯加热至1180±20℃并保温,保温时间≥3.5h,然后对钢坯进行锻造,将钢坯锻造成带有内孔的锻件,在锻造过程中,始锻温度为1180±20℃,终锻温度为850±20℃,在锻造过程中,控制拔长比>3:1、镦粗比>2:1、总锻造比>6:1,锻造完成后,锻件空冷至室温;
c、正火、淬火、回火处理:以不高于150℃/h的加热速率对锻件进行加热,先将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至960±10℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;
以不高于150℃/h的加热速率对锻件进行加热,将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至920±10℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后在90秒内转移到冷却水中进行水淬至室温,在水淬过程中,用高压流体泵持续往锻件上的内孔中喷冲冷却水;
以不高于150℃/h的加热速率对锻件进行加热,将锻件加热至200℃并保温1h,然后将200℃的锻件加热至510℃并保温1.5h,最后将510℃的锻件加热至550±8℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;
d、进行无损探伤及机械加工。
以本发明所述生产工艺制造出来的F65M特大壁厚高强度锻件的机械测试结果如下表:
序号 性能 指标
1 抗拉强度 产品芯部性能满足>=530MPa
2 屈服强度 产品芯部性能满足>=450MPa
3 断后伸长率 A≥18%
4 冲击温度 -46℃
5 冲击(J) ≥50/38

Claims (4)

1.深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件的生产工艺,其特征在于:步骤如下:
a、下料:取化学成分及重量百分比为:C≤0.12、Si:0.2~0.45、Mn:1.1~1.4、S≤0.01、P≤0.015、Cr:0.1~0.5、Ni:0.5~0.99、Mo:0.15~0.5、Al:0.02~0.055、Nb≤0.02、V≤0.06、Ca≤0.005、Ti≤0.025、Sn≤0.015、Sb≤0.02、As≤0.02、Pb≤0.01、Bi≤0.01、B≤0.0005、Cu≤0.3、H≤2ppm、N≤0.012、O≤25ppm、Cev:0.4~0.45的钢坯为原材料;
b、锻造:将钢坯置入锻造炉中,先将钢坯加热至800℃并保温,保温时间≥2h,再将800℃的钢坯加热至1180±20℃并保温,保温时间≥3.5h,然后对钢坯进行锻造,将钢坯锻造成带有内孔的锻件,在锻造过程中,始锻温度为1180±20℃,终锻温度为850±20℃,在锻造过程中,控制拔长比>3:1、镦粗比>2:1、总锻造比>6:1,锻造完成后,锻件空冷至室温;
c、正火、淬火、回火处理:先将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至960±10℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;再将锻件加热至580℃并保温1.5h,然后将580℃的锻件加热至920±10℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后在90秒内转移到冷却水中进行水淬至室温,在水淬过程中,用高压流体泵持续往锻件上的内孔中喷冲冷却水;再将锻件加热至200℃并保温1h,然后将200℃的锻件加热至510℃并保温1.5h,最后将510℃的锻件加热至550±8℃并保温,保温时间控制在0.5~1小时/英寸(英寸为锻件的最大壁厚尺寸),然后空冷至室温;
d、进行无损探伤及机械加工。
2.根据权利要求1所述的深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件,其特征在于:在下料步骤中,采用EF+LF+VD底注式真空保护浇注的冶炼工艺。
3.根据权利要求1所述的深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件,其特征在于:锻造过程中的加热速率控制在不高于125℃/h。
4.根据权利要求1所述的深海天然气管线测试压力帽及对接毂用F65M特大壁厚高强度锻件,其特征在于:在正火、淬火、回火处理过程中的加热速率均控制在不高于150℃/h。
CN202110817497.6A 2021-07-19 2021-07-19 深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件 Pending CN113528968A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110817497.6A CN113528968A (zh) 2021-07-19 2021-07-19 深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110817497.6A CN113528968A (zh) 2021-07-19 2021-07-19 深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件

Publications (1)

Publication Number Publication Date
CN113528968A true CN113528968A (zh) 2021-10-22

Family

ID=78128934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110817497.6A Pending CN113528968A (zh) 2021-07-19 2021-07-19 深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件

Country Status (1)

Country Link
CN (1) CN113528968A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115961129A (zh) * 2022-12-26 2023-04-14 无锡派克新材料科技股份有限公司 一种提高高强度焊接结构钢低温冲击性能的工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110067787A1 (en) * 2008-05-13 2011-03-24 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
CN111020409A (zh) * 2019-12-31 2020-04-17 苏州雷格姆海洋石油设备科技有限公司 一种高强度微合金钢、水下油气管线快速连接器及制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110067787A1 (en) * 2008-05-13 2011-03-24 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
CN111020409A (zh) * 2019-12-31 2020-04-17 苏州雷格姆海洋石油设备科技有限公司 一种高强度微合金钢、水下油气管线快速连接器及制造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
《锻压技术手册》编委会: "《锻压技术手册 上》", 30 September 1989 *
上海市第一机电工业局《读本》编审委员会: "《工人技术教育读本 热处理工》", 31 December 1985 *
侯德政: "《机械工程材料及热加工基础》", 31 January 2008 *
周峥,张安刚,李士凯: "《焊工技能培训与鉴定考试用书 中级》", 31 October 2006 *
李爱农,刘钰如: "《工程材料及应用》", 31 January 2019 *
李遇昌,王一戎: "《热加工工艺 第2册》", 31 December 1988 *
沙明红,郭庆涛,李娜,李胜利,李久慧: "《金属材料凝固原理与技术》", 30 August 2018 *
谢绍志: "《热处理质量控制与检验实务全书 第1册》", 29 February 2004 *
颜国君: "《金属材料学》", 31 March 2019 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115961129A (zh) * 2022-12-26 2023-04-14 无锡派克新材料科技股份有限公司 一种提高高强度焊接结构钢低温冲击性能的工艺

Similar Documents

Publication Publication Date Title
CN111020409B (zh) 一种高强度微合金钢、水下油气管线快速连接器及制造方法
CN105132807B (zh) 一种海底耐酸腐蚀性能优异的管线钢及生产方法
CN102181793B (zh) 深海采油设备输送立管用钢锻件制造工艺
CN113549828B (zh) 一种低屈强比超高强海工钢及其制造方法
CN102039326B (zh) 碱回收锅炉用双金属无缝钢管的制备方法
CN110205553B (zh) 低温dwtt性能优异的厚规格x70级管线钢生产方法
CN102851607A (zh) 110ksi级高抗CO2腐蚀油套管及其制造方法
CN111054881A (zh) 深海采油设备用采油树本体锻件制造工艺
CN110408862A (zh) 无缝钢管、制造方法及其应用
AU2020467306A1 (en) Thick low-carbon-equivalent high-toughness wear-resistant steel plate and manufacturing method therefor
CN113528968A (zh) 深海天然气管线测试压力帽及对接毂用f65m特大壁厚高强度锻件
CN113523166A (zh) 深海连接器用25%Cr大壁厚超级双目不锈钢锻件的生产工艺
CN101984119A (zh) Nv-f690超高强度船板钢及其制备方法
CN105132833A (zh) 一种经济型高强度海底管线钢及生产方法
CN110541112A (zh) 一种提高核电用sa508-3接管大锻件强韧性的制造方法
CN111218624B (zh) 一种耐二氧化碳腐蚀无缝钢管及其制备方法
CN105296845B (zh) 一种超低温耐腐蚀的高强度锻件毛坯的制造方法
CN111069505A (zh) 一种轴承套圈自动化锻造工艺
CN111234863B (zh) 一种渣油沸腾床加氢裂化合金管件的成型工艺
CN105882775A (zh) 锰钢包覆钛合金复合坦克车履带板
CN102912253A (zh) 一种高频直缝焊管及其制造方法
CN112317540A (zh) 一种钎杆中空钢管的加工方法
CN103014473B (zh) 一种含Ti耐蚀合金密封环的加工工艺
CN111922650A (zh) 一种油气开发用三明治结构冶金复合管及其制备方法
CN110714158A (zh) 一种地质钻探用合金钢无缝钢管及其加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211022

WD01 Invention patent application deemed withdrawn after publication