CN110484821B - 一种深海采油管道互连防爆组件用锻件原料的生产方法 - Google Patents

一种深海采油管道互连防爆组件用锻件原料的生产方法 Download PDF

Info

Publication number
CN110484821B
CN110484821B CN201910867639.2A CN201910867639A CN110484821B CN 110484821 B CN110484821 B CN 110484821B CN 201910867639 A CN201910867639 A CN 201910867639A CN 110484821 B CN110484821 B CN 110484821B
Authority
CN
China
Prior art keywords
forging
equal
less
explosion
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910867639.2A
Other languages
English (en)
Other versions
CN110484821A (zh
Inventor
陈一凡
肖静先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhangjiagang Haiguo New Energy Equipment Co ltd
Original Assignee
Zhangjiagang Haiguo New Energy Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhangjiagang Haiguo New Energy Equipment Co ltd filed Critical Zhangjiagang Haiguo New Energy Equipment Co ltd
Priority to CN201910867639.2A priority Critical patent/CN110484821B/zh
Publication of CN110484821A publication Critical patent/CN110484821A/zh
Application granted granted Critical
Publication of CN110484821B publication Critical patent/CN110484821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases

Abstract

本发明公开了一种深海采油管道互连防爆组件用锻件原料的生产方法,其步骤为:1)坯钢选择、2)锻造、3)锻后热处理、4)性能热处理。本申请公开的技术方案,通过精炼配方设计、锻造工艺、锻后热处理、性能热处理工艺优化,使得深海采油管道互连用防爆组件用锻件原料,具有晶粒细化、淬透性高、综合力学性能好等优势。

Description

一种深海采油管道互连防爆组件用锻件原料的生产方法
技术领域
本发明具体涉及一种深海采油管道互连防爆组件用锻件原料的生产方法。
背景技术
采油对设备的要求是耐腐、耐压、抗冲击等要求。采油技术目前美国最先进,世界几大采油设备制造公司均在美国,如:NOV、DQ、FMC、CMR、GE等。
开发采油设备上的锻件是研发采油设备的关键。采油设备用锻件的材料,主要有8630、4130、F22等材料,主要用于深海阀体、活塞杆、阀盖等,目前中国的锻件生产深海采油设备,主要存在的问题是机械性能不过关,和内部有疏松、微裂纹、晶粒粗大等缺陷。
发明内容
本发明所要解决的技术问题是:提供一种深海采油管道互连防爆组件用锻件原料的生产方法。
为解决上述技术问题,本发明提供的技术方案为:一种深海采油管道互连防爆组件用锻件原料的生产方法,其步骤为:
1)坯钢选择:坯钢为完全镇静细化晶粒,底部浇铸;其碳当量(CEV)为:0.85~0.92;
按质量百分含量,坯钢的化学组成为:C:0.31~0.34%,Si:0.15~0.35%,Mn:0.95~1.05%,P:≤0.015%,S:≤0.006%,Cr:1.10~1.20%,Mo:0.35~0.50%,Ni:0.80~0.92%,Al:0.015~0.030%,Cu:≤0.20%,Nb:≤0.050%,Ti:≤0.010%,V:0.030~0.060%,B:≤0.0005%,Ca:≤0.005%,H:≤2ppm,O:≤20ppm,N:≤100ppm;其余元素为Fe和其他残余元素;
对坯钢的化学组成优化配比,来提高淬透性、提升综合力学性能,在冶炼时,需要优选炉料和生产工艺,确保钢中非金属夹杂物和Pb、Sb、Sn、As、Bi有害元素,降到最低值,添加具有细化晶粒提高强度作用的微合金Nb、V,提高锻件用钢的低温冲击韧性;Cr和Mo都是提高淬透性的元素,二种元素同时加入对提高淬透性更为明显。Mo又要强碳化物形成Mo2C,能阻止奥氏体晶粒长大,Mo又是防止第二类回火脆性的元素,对提高高温回火后的冲击韧性有很大的帮助,再加入Ni后可以大大提高低温下的冲击韧性,V的加入进一步细化晶粒,提高强度和回火稳定性;
2)锻造:始锻温度1200℃,终锻温度为850℃,锻造比≥3.5:1;
始锻温度1200℃,超过1250℃容易造成过热,甚至过烧;根据坯料的大小确定合理的保温时间,合理的保温时间是保证晶粒不易粗大的基础;终锻温度为850℃,过低的终锻温度将增大零件开裂的可能性,过高易造成晶粒粗大;锻造比≥3.5:1,可确保锻造后结构紧密,而且能打碎粗大的奥氏体晶粒,夹杂物弥散分布,消除带状组织,减轻各向异性;在锻造温度850~900℃时,采用轻打快锻的锻造工艺,可以使晶粒更细小,对提高力学性能奠定基础;
3)锻后热处理:正火880~900℃,风冷,回火650℃;
4)性能热处理:将锻件升温速度控制≤80℃/h,升温至650±8℃,保温1.5小时后,按≥100℃/h升温速度升温至880~900℃,在880~900℃保温1小时,然后降温至0~5℃,降温时间为1~2h,冷却时冷却水循环、搅拌;
锻件回火温度为610~630℃,保温30~60min后空冷。可得到回火索氏体金相组织,使产品具有高的强度、好的低温韧性和良好的淬透性及抗过热等性能。
所述的坯钢材料是中碳高合金钢材料淬透性高,要获得高的性能不仅要完善锻造工艺,而且还需良好的锻后热处理工艺和性能热处理工艺,目的是得到细小晶粒和提高淬硬层深度。
有益效果:本申请公开的技术方案,通过精炼配方设计、锻造工艺、锻后热处理、性能热处理工艺优化,使得深海采油管道互连用防爆组件用锻件原料,具有晶粒细化、淬透性高、综合力学性能好等优势。
所述的深海采油管道互连用防爆组件用锻件原料具备较高的硬度、屈服强度、抗拉强度,同时具有良好的低温冲击韧性、伸长率,耐腐、耐压,抗过热性能好,满足深海采油设备使用要求。
附图说明
图1是深海采油管道互连用防爆组件用锻件原料金相图。
具体实施方式
下面结合实施例对本发明的方法予以进一步地说明,但并不因此而限制本发明。
所述的深海采油管道互连防爆组件用锻件原料的生产方法,其步骤为:
1)坯钢选择:坯钢为完全镇静细化晶粒,底部浇铸;其碳当量(CEV)为:0.85~0.92;
按质量百分含量,坯钢的化学组成为:C:0.31~0.34%,Si:0.15~0.35%,Mn:0.95~1.05%,P:≤0.015%,S:≤0.006%,Cr:1.10~1.20%,Mo:0.35~0.50%,Ni:0.80~0.92%,Al:0.015~0.030%,Cu:≤0.20%,Nb:≤0.050%,Ti:≤0.010%,V:0.030~0.060%,B:≤0.0005%,Ca:≤0.005%,H:≤2ppm,O:≤20ppm,N:≤100ppm;其余元素为Fe和其他残余元素;
2)锻造:始锻温度1200℃,终锻温度为850℃,锻造比必须保证≥3.5:1;
始锻温度1200℃,超过1250℃容易造成过热,甚至过烧;根据坯料的大小确定合理的保温时间,合理的保温时间是保证晶粒不易粗大的基础;终锻温度为850℃,过低的终锻温度将增加零件开裂的可能性,过高易造成晶粒粗大;锻造比必须保证≥3.5:1,可确保锻造后结构紧密,而且能打碎粗大的奥氏体晶粒,夹杂物弥散分布,消除带状组织,减轻各向异性;在接近锻造温度850~900℃时,采用轻打快锻的锻造工艺,可以使晶粒更细小,对提高力学性能奠定基础;
3)锻后热处理:正火880~900℃风冷,回火650℃;
4)性能热处理:将锻件升温速度控制≤80℃/h,升温至650±8℃,保温1.5小时后,按≥100℃/h升温速度升温至880~900℃,在880~900℃保温1小时,然后降温至0~5℃,降温时间为1~2h,冷却时冷却水循环、搅拌;
锻件回火温度为610~630℃,保温30~60min后空冷;可得到回火索氏体金相组织,使产品具有高的强度、好的低温韧性和良好的淬透性及抗过热等性能。
所述的深海采油管道互连用防爆组件用锻件原料技术指标:
Figure BDA0002201739830000041
Figure BDA0002201739830000051
试制样产品经张家港市海宇金属材料研究有限公司检测,各项指标均已符合美国ASTM A370-14标准。
深海采油管道互连用防爆组件用锻件原料金相检验:用直接淬硬法显示晶粒度,885℃保温1h,水冷,饱和苦味酸溶液腐蚀,测试结果:见图1,晶粒度:6级。

Claims (2)

1.一种深海采油管道互连防爆组件用锻件原料的生产方法,其步骤为:
1)坯钢选择:按质量百分含量,坯钢的化学组成为:C:0.31~0.34%,Si:0.15~0.35%,Mn:0.95~1.05%,P:≤0.015%,S:≤0.006%,Cr:1.10~1.20%,Mo:0.35~0.50%,Ni:0.80~0.92%,Al:0.015~0.030%,Cu:≤0.20%,Nb:≤0.050%,Ti:≤0.010%,V:0.030~0.060%,B:≤0.0005%,Ca:≤0.005%,H:≤2ppm,O:≤20ppm,N:≤100ppm;其余元素为Fe和其他残余元素;坯钢碳当量为:0.85~0.92;
2)锻造:始锻温度1200℃,终锻温度为850℃,锻造比≥3.5:1;在锻造温度850~900℃时,采用轻打快锻的锻造工艺;
3)锻后热处理:正火880~900℃,风冷,回火650℃;
4)性能热处理:升温速度控制≤80℃/h,将锻件升温至650±8℃,在650±8℃保温1.5小时后,按≥100℃/h升温速度升温至880~900℃,在880~900℃保温1小时,然后降温至0~5℃,降温时间为1~2h,冷却时冷却水循环、搅拌;
锻件回火温度为610~630℃,保温30~60min后空冷。
2.根据权利要求1所述的一种深海采油管道互连防爆组件用锻件原料的生产方法,其特征在于:所述的步骤1)坯钢选择中,坯钢为完全镇静细化晶粒。
CN201910867639.2A 2019-09-13 2019-09-13 一种深海采油管道互连防爆组件用锻件原料的生产方法 Active CN110484821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910867639.2A CN110484821B (zh) 2019-09-13 2019-09-13 一种深海采油管道互连防爆组件用锻件原料的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910867639.2A CN110484821B (zh) 2019-09-13 2019-09-13 一种深海采油管道互连防爆组件用锻件原料的生产方法

Publications (2)

Publication Number Publication Date
CN110484821A CN110484821A (zh) 2019-11-22
CN110484821B true CN110484821B (zh) 2021-06-04

Family

ID=68557982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910867639.2A Active CN110484821B (zh) 2019-09-13 2019-09-13 一种深海采油管道互连防爆组件用锻件原料的生产方法

Country Status (1)

Country Link
CN (1) CN110484821B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471926B (zh) * 2020-04-09 2021-06-15 烟台大学 一种管接头及其制备方法
CN112301281A (zh) * 2020-10-30 2021-02-02 蒂森克虏伯罗特艾德(徐州)环锻有限公司 一种42CrMo4NIC高性能钢及其环锻件的制备方法
CN112281069A (zh) * 2020-10-30 2021-01-29 张家港海锅新能源装备股份有限公司 深海采油树装备用8630超长锻件的生产方法
CN115044835B (zh) * 2022-07-29 2023-04-21 张家港海锅新能源装备股份有限公司 一种齿轮箱锻件用合金钢及其锻件的制造方法和应用
CN115747630B (zh) * 2022-08-30 2023-09-12 张家港海锅新能源装备股份有限公司 一种深海采油装备管道连接器用钢及其锻造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740914A (zh) * 2013-10-28 2014-04-23 张家港海锅重型锻件有限公司 深海采油设备用410钢锻件的生产工艺
CN106119723A (zh) * 2016-06-24 2016-11-16 张家港海锅重型锻件有限公司 一种深海采油船用4130钢管接头锻件原料的生产方法
CN109518090A (zh) * 2018-10-31 2019-03-26 中国铁道科学研究院集团有限公司金属及化学研究所 一种辙叉心轨用贝氏体钢及其制造方法
CN110016619A (zh) * 2019-05-28 2019-07-16 营口市特殊钢锻造有限责任公司 一种矿用高强度耐磨材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU950793A1 (ru) * 1981-01-04 1982-08-15 Предприятие П/Я Г-4385 Литейна штампова сталь
KR900003375B1 (ko) * 1986-03-17 1990-05-16 한국중공업 주식회사 플라스틱 사출 금형재료

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740914A (zh) * 2013-10-28 2014-04-23 张家港海锅重型锻件有限公司 深海采油设备用410钢锻件的生产工艺
CN106119723A (zh) * 2016-06-24 2016-11-16 张家港海锅重型锻件有限公司 一种深海采油船用4130钢管接头锻件原料的生产方法
CN109518090A (zh) * 2018-10-31 2019-03-26 中国铁道科学研究院集团有限公司金属及化学研究所 一种辙叉心轨用贝氏体钢及其制造方法
CN110016619A (zh) * 2019-05-28 2019-07-16 营口市特殊钢锻造有限责任公司 一种矿用高强度耐磨材料及其制备方法

Also Published As

Publication number Publication date
CN110484821A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN110484821B (zh) 一种深海采油管道互连防爆组件用锻件原料的生产方法
CN110484806B (zh) 一种深海采油装备用20Mn2锻件原料的生产方法
KR102263332B1 (ko) 고경도 열간압연된 강 제품 및 이를 제조하는 방법
CN107475620B (zh) 低温压力容器用调质型A537Cl2钢板及其生产方法
US20180291475A1 (en) Ultra-high strength and ultra-high toughness casing steel, oil casing, and manufacturing method thereof
JP2010001525A (ja) 熱処理用鋼
JP2006274350A (ja) ラインパイプ用厚肉継目無鋼管およびその製造方法
EP2841612B1 (en) High strength, high toughness steel alloy
CN112281069A (zh) 深海采油树装备用8630超长锻件的生产方法
CN110129658A (zh) 一种高锰无氮型高强高韧抗氢脆奥氏体不锈钢及制备方法
US10450621B2 (en) Low alloy high performance steel
TWI642790B (zh) Metastable Wostian iron-based stainless steel belt or steel plate and manufacturing method thereof
CN110306127B (zh) 一种超高强度高韧性合金钢及其制备方法
CN108754308B (zh) 一种深海采油装备中油管头用高强度钢锻件原料的生产方法
US4671827A (en) Method of forming high-strength, tough, corrosion-resistant steel
CN110284057B (zh) 一种高强度长寿命齿轮钢
JP2016504498A (ja) 高強度析出硬化型ステンレス鋼
CN111893386A (zh) 基于塑变和抗压溃性设计深水管线用厚板及其生产方法
CN113737091A (zh) 一种低磁高强度耐蚀紧固件用钢以及紧固件
CN103502498B (zh) 高强度、高韧性钢
JP6242415B2 (ja) 強度−低温靱性バランスに優れたCu含有低合金鋼およびその製造方法
CN113737090B (zh) 一种高强韧合金结构钢及其制备方法
CN110592489B (zh) 一种f6nm马氏体不锈钢泵轴锻件原料的生产方法
IL282451B2 (en) Alloy steel with high strength, high impact toughness and superior fatigue life for mud motor axle applications
CN104532132A (zh) 一种高强度低合金抗硫化氢应力腐蚀用油井管及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant