CN113528506B - DNA inversion system and application thereof and target DNA inversion method - Google Patents

DNA inversion system and application thereof and target DNA inversion method Download PDF

Info

Publication number
CN113528506B
CN113528506B CN202110779459.6A CN202110779459A CN113528506B CN 113528506 B CN113528506 B CN 113528506B CN 202110779459 A CN202110779459 A CN 202110779459A CN 113528506 B CN113528506 B CN 113528506B
Authority
CN
China
Prior art keywords
sfxa101
enzyme
seq
rci
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110779459.6A
Other languages
Chinese (zh)
Other versions
CN113528506A (en
Inventor
吴毅
元英进
韩佩言
付宗恒
马渊
周晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110779459.6A priority Critical patent/CN113528506B/en
Publication of CN113528506A publication Critical patent/CN113528506A/en
Application granted granted Critical
Publication of CN113528506B publication Critical patent/CN113528506B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及基因工程技术领域,公开了一种DNA反转系统的应用以及一种目标DNA反转方法。本发明提供了一种基于Rci酶/sfxa101位点的DNA反转系统,在本发明提供的不断定向突变的Rci酶作用下,介导两个反向排列的sfxa101位点之间的目标DNA只发生反转反应,避免发生删除反应,即便是存在同向的sfxa101位点,这种删除反应的发生效率相对于反转反应的发生效率也是微乎其微的。本发明的DNA反转系统以及反转方法可以实现位点之间DNA片段的反转而几乎不删除,可以避免由删除造成的不良影响,并可以进一步生成反转文库,实现改变多个DNA元件的顺序和方向,而保证长度不变。The invention relates to the technical field of genetic engineering, and discloses an application of a DNA reversal system and a target DNA reversal method. The present invention provides a DNA inversion system based on the Rci enzyme/sfxa101 site. Under the action of the Rci enzyme that continuously mutates, the target DNA between two reversely arranged sfxa101 sites is mediated Inversion reaction occurs and deletion reaction is avoided. Even if there is a sfxa101 site in the same direction, the occurrence efficiency of this deletion reaction is negligible compared with that of inversion reaction. The DNA inversion system and inversion method of the present invention can realize the inversion of DNA fragments between sites without almost deletion, can avoid adverse effects caused by deletion, and can further generate an inversion library to realize the change of multiple DNA elements order and direction, while keeping the length constant.

Description

一种DNA反转系统及其应用以及一种目标DNA反转方法A kind of DNA reversal system and its application and a kind of target DNA reversal method

技术领域technical field

本发明涉及基因工程技术领域,具体的说是涉及一种DNA反转系统及其应用以及一种目标DNA反转方法。The invention relates to the technical field of genetic engineering, in particular to a DNA reversal system and its application and a target DNA reversal method.

背景技术Background technique

由位点特异性重组介导的DNA重排在创建生物多样性中发挥重要作用。这样的天然系统包括:在发育中的淋巴细胞中,由RAG重组酶介导的V(D)J重组,产生不同的抗原受体;在大肠杆菌15T-中,由Min转化酶介导的p15BMin系统,导致多种尾纤维基因的选择性表达。同时也开发了多种DNA重排的人工系统,例如,在合成酵母基因组(Sc2.0)中通过LoxPsym介导进化的SCRaMbLE系统可进行合成染色体重排和修饰;以及Cre重组酶介导的多个loxp位点条形码系统(Brainbow系统和Polylox系统),可随机产生染色体结构变异的多样性,并产生巨大的条形码库。DNA rearrangements mediated by site-specific recombination play an important role in creating biological diversity. Such natural systems include: in developing lymphocytes, V(D)J recombination mediated by RAG recombinase to generate different antigen receptors; in E. coli 15T-, p15BMin mediated by Min convertase system, resulting in the selective expression of multiple pigtail genes. At the same time, a variety of artificial systems for DNA rearrangement have also been developed. For example, the SCRaMbLE system evolved through LoxPsym-mediated evolution in the synthetic yeast genome (Sc2.0) can perform synthetic chromosome rearrangement and modification; and Cre recombinase-mediated multiple A loxp locus barcode system (Brainbow system and Polylox system) can randomly generate the diversity of chromosome structure variation and generate a huge barcode library.

上述DNA重排系统可以通过位点特异性重组介导删除,反转和其他结构变异而产生多样性。但是,DNA重排系统中的删除可能会发挥负面作用。例如,由SCRaMbLE介导的染色体大片段的删除通常会导致发生SCRaMbLE的细胞具有高致死率。对于Cre重组酶介导的条形码方法,Cre本质上倾向于删除而不是反转,从而导致条形码多样性降低。位点特异性DNA反转系统,只介导两个反向排列的位点之间发生反转反应,而在两个同向排列的位点之间几乎不发生删除反应。位点特异性DNA反转系统可以有效解决由删除引起的不良影响。到目前为止,位点特异性DNA反转系统仅在细菌和噬菌体中存在。因此,亟待在真核生物中开发一种类似的位点特异性DNA反转系统。The aforementioned DNA rearrangement systems can generate diversity through site-specific recombination-mediated deletions, inversions, and other structural variations. However, deletions in DNA rearrangement systems can play a negative role. For example, deletion of large chromosomal segments mediated by SCRaMbLE often results in high lethality of cells undergoing SCRaMbLE. For the Cre recombinase-mediated barcoding approach, Cre inherently favors deletion rather than inversion, resulting in reduced barcode diversity. The site-specific DNA inversion system only mediates the inversion reaction between two sites aligned in the opposite direction, and almost no deletion reaction occurs between the two sites aligned in the same direction. A site-specific DNA inversion system can effectively address adverse effects caused by deletions. So far, site-specific DNA inversion systems exist only in bacteria and phages. Therefore, there is an urgent need to develop a similar site-specific DNA inversion system in eukaryotes.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种DNA反转系统,其属于Rci酶/sfxa101位点组合物,可应用在介导目标DNA反转中,也可实现改变多个DNA元件的顺序和方向,而保证长度不变,生成反转文库;In view of this, the object of the present invention is to provide a DNA reversal system, which belongs to the Rci enzyme/sfxa101 site composition, which can be used to mediate target DNA reversal, and can also change the sequence and Direction, while keeping the length unchanged, generate a reverse library;

本发明的另外一个目的在于提供基于Rci/sfxa101系统使目标DNA高比率发生反转的方法以及提供生成DNA反转文库的方法。Another object of the present invention is to provide a method for inverting target DNA at a high rate based on the Rci/sfxa101 system and a method for generating a DNA inversion library.

为了实现上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:

一种DNA反转系统,包含sfxa101位点序列,以及Rci酶和/或其编码序列;所述sfxa101位点序列为其中一条链的序列如SEQ ID NO.1所示的双链核苷酸序列,所述Rci酶序列为SEQ ID NO.2或SEQ ID NO.3所示的氨基酸序列,所述Rci酶的编码序列为能够编码SEQ ID NO.2或SEQ ID NO.3所示氨基酸序列的核苷酸序列。A DNA inversion system comprising sfxa101 site sequence, and Rci enzyme and/or its coding sequence; said sfxa101 site sequence is a double-stranded nucleotide sequence whose sequence of one chain is shown in SEQ ID NO.1 , the Rci enzyme sequence is the amino acid sequence shown in SEQ ID NO.2 or SEQ ID NO.3, the coding sequence of the Rci enzyme is capable of encoding the amino acid sequence shown in SEQ ID NO.2 or SEQ ID NO.3 Nucleotide sequence.

sfxa101位点的31bp序列由一个7bp的间隔序列,一个12bp的右臂序列,和一个12bp的左臂序列组成,SEQ ID NO.1所示的核苷酸序列为其其中一条链,相反方向的sfxa101位点序列的一条链序列如SEQ ID NO.5所示,两个方向不同的sfxa101位点序列参见附图1。同时,本发明对Rci酶不断定向进化,在SEQ ID NO.2所示氨基酸序列的Rci8酶作用下,该系统所呈现的反转效率和删除效率的比值极高,而即便是在两个同向排列的sfxa101位点序列之间也几乎不发生删除反应,实现了在这个酶催化下反转比例显著高于删除比例的目的,在实际应用中如果只设置方向相反的sfxa101位点序列则可以只介导反转的发生。同时,在SEQ ID NO.3所示氨基酸序列的Rci26酶催化下的反转效率和删除效率的比值也表现较高。The 31bp sequence at the sfxa101 site consists of a 7bp spacer sequence, a 12bp right arm sequence, and a 12bp left arm sequence. The nucleotide sequence shown in SEQ ID NO.1 is one of the strands, and the opposite direction A chain sequence of the sfxa101 site sequence is shown in SEQ ID NO.5, and the sfxa101 site sequence in two different directions is shown in Figure 1. At the same time, the present invention continuously evolves the Rci enzyme. Under the action of the Rci8 enzyme with the amino acid sequence shown in SEQ ID NO. There is almost no deletion reaction between the sfxa101 site sequences arranged in the opposite direction, and the inversion ratio under the catalysis of this enzyme is significantly higher than the deletion ratio. In practical applications, if only the sfxa101 site sequence in the opposite direction is set only mediates inversion. At the same time, the ratio of inversion efficiency to deletion efficiency under the Rci26 enzyme catalysis of the amino acid sequence shown in SEQ ID NO.3 is also high.

在本发明具体实施方式中,所述能够编码SEQ ID NO.2所示氨基酸序列的核苷酸序列如SEQ ID NO.4所示。In a specific embodiment of the present invention, the nucleotide sequence capable of encoding the amino acid sequence shown in SEQ ID NO.2 is shown in SEQ ID NO.4.

作为优选,所述sfxa101位点序列和Rci酶的编码序列还可以以表达载体的形式存在,例如目标DNA、sfxa101位点序列以及Rci酶的编码序列插入到载体质粒上,然后转化到受体细胞(酵母细胞、HEK-293T细胞等真核细胞)。Preferably, the coding sequence of the sfxa101 site sequence and the Rci enzyme can also exist in the form of an expression vector, for example, the target DNA, the sfxa101 site sequence and the coding sequence of the Rci enzyme are inserted into the vector plasmid, and then transformed into the recipient cell (yeast cells, HEK-293T cells and other eukaryotic cells).

为了验证本发明DNA反转系统的效果,本发明借助筛选标签和荧光蛋白的指示作用,分别在质粒载体和染色体上验证真核细胞内的目标DNA反转,结果显示,以质粒载体方式在酵母细胞中表达Rci8酶/Rci26酶,目标DNA反转效率和删除效率的比值分别约为4320和1195,体现了良好的反转特异性,证明成功在酵母质粒上构建了位点特异性DNA反转系统;In order to verify the effect of the DNA inversion system of the present invention, the present invention verified the target DNA inversion in eukaryotic cells on the plasmid vector and the chromosome respectively by means of the screening label and the indication of fluorescent protein. The Rci8 enzyme/Rci26 enzyme was expressed in the cells, and the ratios of target DNA inversion efficiency and deletion efficiency were about 4320 and 1195, respectively, reflecting good inversion specificity, proving that site-specific DNA inversion was successfully constructed on yeast plasmids system;

而直接在酵母染色体上的目标DNA反转结果显示,在Rci8酶催化下反转效率和删除效率的比值约为960,同样体现了良好的反转特异性,证明成功在酵母染色体上构建了位点特异性DNA反转系统;The results of target DNA inversion directly on the yeast chromosome showed that the ratio of inversion efficiency to deletion efficiency was about 960 under the catalysis of Rci8 enzyme, which also reflected good inversion specificity, proving that the site was successfully constructed on the yeast chromosome. Point-specific DNA inversion system;

为了证明其他真核细胞同样可以使用所述反转系统,本发明在动物细胞HEK-293T中导入质粒载体,以荧光蛋白作为指示,结果显示,许多实验组的转染细胞变为绿色(表示发生反转),而对照组中几乎没有观察到绿色细胞,证明细胞内发生了反转反应。通过流式细胞仪定量分析,结果显示约21.8%的293T细胞转为绿色,而约0.24%的细胞转为红色(表示发生删除),并且通过PCR和Sanger测序验证。这些结果表明,Rci/sfxa101系统可以介导具有强烈方向性偏向的DNA重组,导致哺乳动物细胞中反向sfxa101位点之间的反转占主导地位,成功在动物细胞中构建了位点特异性DNA反转系统。In order to prove that other eukaryotic cells can also use the inversion system, the present invention introduces the plasmid vector into the animal cell HEK-293T, and uses fluorescent protein as an indicator. The results show that the transfected cells of many experimental groups turn green (indicating the occurrence Inversion), while almost no green cells were observed in the control group, proving that an inversion reaction occurred in the cells. Quantitative analysis by flow cytometry showed that about 21.8% of the 293T cells turned green, while about 0.24% of the cells turned red (indicating deletion), which was verified by PCR and Sanger sequencing. These results demonstrate that the Rci/sfxa101 system can mediate DNA recombination with a strong directional bias, resulting in the dominance of inversion between inverted sfxa101 sites in mammalian cells, successfully constructing site specificity in animal cells DNA inversion system.

基于上述技术效果,本发明提出了所述DNA反转系统在介导目标DNA反转中的应用,以及在构建DNA反转文库中的应用。Based on the above technical effects, the present invention proposes the application of the DNA inversion system in mediating the inversion of target DNA, and the application in constructing a DNA inversion library.

依据应用,本发明还提供了一种目标DNA反转方法,包括:According to the application, the present invention also provides a target DNA reversal method, comprising:

步骤1、将方向相反的两个sfxa101位点序列分别插入到目标DNA两端;Step 1. Insert two sfxa101 site sequences in opposite directions into both ends of the target DNA;

步骤2、向目标DNA所在的受体细胞中转入能够表达Rci酶的载体,表达的Rci酶作用于两个方向相反的sfxa101位点之间的目标DNA发生反转。Step 2, transfer the vector capable of expressing the Rci enzyme into the recipient cell where the target DNA is located, and the expressed Rci enzyme acts on the target DNA between the two sfxa101 sites in opposite directions to invert.

同时,本发明也提供了一种构建DNA反转文库的方法,包括:At the same time, the present invention also provides a method for constructing a DNA reversal library, comprising:

步骤1、多个需要反转的目标DNA两端均插入方向相反的两个sfxa101位点序列;Step 1. Insert two sfxa101 site sequences in opposite directions at both ends of multiple target DNAs to be reversed;

步骤2、向目标DNA所在的受体细胞中转入能够表达Rci酶的载体,表达的Rci8酶作用于两个方向相反的sfxa101位点之间的目标DNA发生反转。Step 2, transfer the vector capable of expressing Rci enzyme into the recipient cell where the target DNA is located, and the expressed Rci8 enzyme acts on the target DNA between the two sfxa101 sites in opposite directions to invert.

为了只介导DNA反生反转而避免发生删除,相邻两个sfxa101位点序列的方向相反。In order to only mediate DNA inversion and avoid deletion, the sequences of two adjacent sfxa101 sites are in the opposite direction.

其中,上述两个方法中目标DNA可以是在受体细胞的染色体上,也可以是通过插入载体形式导入到受体细胞中,采用后者的方式通常是对构建的多功能片段进行片段上目标DNA的反转。Among them, in the above two methods, the target DNA can be on the chromosome of the recipient cell, or it can be introduced into the recipient cell in the form of an insertion vector. The latter method is usually to carry out fragment on-targeting of the constructed multifunctional fragment. Inversion of DNA.

由以上技术方案可知,本发明提供了一种基于Rci酶/sfxa101位点的DNA反转系统,在本发明提供的不断定向突变的Rci酶作用下,介导两个反向排列的sfxa101位点之间的目标DNA只发生反转反应,避免发生删除反应,即便是存在同向的sfxa101位点,这种删除反应的发生效率相对于反转反应的发生效率也是微乎其微的。本发明的DNA反转系统以及反转方法可以实现位点之间DNA片段的反转而几乎不删除,可以避免由删除造成的不良影响,并可以进一步生成反转文库,实现改变多个DNA元件的顺序和方向,而保证长度不变。It can be seen from the above technical scheme that the present invention provides a DNA inversion system based on the Rci enzyme/sfxa101 site, under the action of the continuously directed mutation Rci enzyme provided by the present invention, mediates two reversely arranged sfxa101 sites The target DNA in between only undergoes an inversion reaction, avoiding a deletion reaction. Even if there is a sfxa101 site in the same direction, the efficiency of this deletion reaction is negligible compared to the inversion reaction. The DNA inversion system and inversion method of the present invention can realize the inversion of DNA fragments between sites without almost deletion, can avoid adverse effects caused by deletion, and can further generate an inversion library to realize the change of multiple DNA elements order and direction, while keeping the length constant.

附图说明Description of drawings

图1所示为方向相反的两个sfxa101位点序列示意图;Figure 1 shows a schematic diagram of two sfxa101 site sequences in opposite directions;

图2所示为质粒pHPY004图谱示意图以及质粒上的验证单元;直角箭头表示启动子,三角表示sfxa101位点序列及其方向性,T型符号表示终止子,URA3ΔATG表示反向的敲除起始密码子ATG的URA3标签序列,HIS3ΔATG表示敲除起始密码子ATG的HIS3标签序列;Figure 2 shows the schematic map of the plasmid pHPY004 and the verification unit on the plasmid; the right-angled arrow indicates the promoter, the triangle indicates the sfxa101 site sequence and its directionality, the T-shaped symbol indicates the terminator, and URA3ΔATG indicates the reverse knockout start codon The URA3 tag sequence of the sub-ATG, HIS3ΔATG represents the HIS3 tag sequence of knocking out the start codon ATG;

图3所示为质粒pHPY004上验证单元发生反转和删除的示意图;Figure 3 is a schematic diagram of the inversion and deletion of the verification unit on the plasmid pHPY004;

图4所示为利用Rci8/sfxa101系统在酿酒酵母染色体上反转目标DNA(即反向URA3)的示意图;直角箭头表示启动子,三角表示sfxa101位点序列及其方向性,T型符号表示终止子,Clover表示绿色荧光蛋白编码序列,Clover+表示细胞呈绿色发生反转;miRFP670表示红色荧光蛋白编码序列,miRFP670+表示细胞呈红色,发生删除;Figure 4 shows a schematic diagram of using the Rci8/sfxa101 system to reverse the target DNA (ie, reverse URA3) on the chromosome of Saccharomyces cerevisiae; the right-angled arrow indicates the promoter, the triangle indicates the sfxa101 site sequence and its directionality, and the T-shaped symbol indicates the termination Clover indicates the green fluorescent protein coding sequence, Clover+ indicates that the cell is green and reversed; miRFP670 indicates the red fluorescent protein coding sequence, miRFP670+ indicates that the cell is red and has been deleted;

图5所示为在HEK-293T细胞的Pcep4质粒上利用荧光蛋白验证DNA反转的示意图;Figure 5 is a schematic diagram of using fluorescent protein to verify DNA inversion on the Pcep4 plasmid of HEK-293T cells;

图6所示为质粒pHPY007图谱示意图,属于表达Rci8酶的表达载体;Figure 6 is a schematic diagram of the map of plasmid pHPY007, which belongs to the expression vector for expressing Rci8 enzyme;

图7所示为质粒pHPY004导入酿酒酵母反转/删除后不同类型培养基上菌落数目的示意图;Figure 7 is a schematic diagram of the number of colonies on different types of medium after the plasmid pHPY004 is introduced into Saccharomyces cerevisiae for reversal/deletion;

图8所示为随机挑选的24个反转后的酿酒酵母菌株PCR结果图;Figure 8 shows the PCR results of 24 randomly selected reversed Saccharomyces cerevisiae strains;

图9所示为酿酒酵母染色体上从pHPY004克隆的验证单元反转/删除后不同类型培养基上菌落数目的示意图;Figure 9 is a schematic diagram of the number of colonies on different types of media after the reversal/deletion of the verification unit cloned from pHPY004 on the chromosome of Saccharomyces cerevisiae;

图10所示为随机挑选的12个反转后的酿酒酵母菌株PCR结果图;Figure 10 shows the PCR results of 12 randomly selected reversed Saccharomyces cerevisiae strains;

图11所示为反转/删除后HEK-293T细胞颜色变化的显微图像;Figure 11 shows the microscopic image of the color change of HEK-293T cells after inversion/deletion;

图12所示为HEK-293T细胞颜色变化的流式细胞仪分析图;绿色(右下象限)表示发生反转;橙色(右上象限)表示,细胞发生翻转表达绿色荧光蛋白CLOVER,后发生删除表达miRFP670,此时CLOVER蛋白存在于细胞中,红色与绿色两者叠加为橙色,因是评估删除比例,只看单通道miRFP+,计算为发生删除;红色(左上象限)表示发生删除;灰色(左下象限)表示未发生反转和删除,由于Rci酶表达时间问题,78%的细胞没有发生反转和删除。Figure 12 shows the flow cytometry analysis of the color change of HEK-293T cells; green (lower right quadrant) indicates inversion; orange (upper right quadrant) indicates that cells are overturned to express green fluorescent protein CLOVER, and then deleted miRFP670, the CLOVER protein exists in the cell at this time, the red and green are superimposed into orange, because it is to evaluate the deletion ratio, only look at the single channel miRFP+, and it is calculated as deletion; red (upper left quadrant) indicates deletion occurs; gray (lower left quadrant) ) indicates that inversion and deletion did not occur, and 78% of the cells did not invert and delete due to the expression time of Rci enzyme.

具体实施方式detailed description

本发明实施例公开了一种DNA反转系统及其应用以及一种目标DNA反转方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明内。本发明所述DNA反转系统及其应用以及目标DNA反转方法已通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的DNA反转系统及其应用以及目标DNA反转方法进行改动或适当变更与组合,来实现和应用本发明技术。The embodiment of the present invention discloses a DNA inversion system and its application as well as a target DNA inversion method. Those skilled in the art can learn from the content of this article and appropriately improve the process parameters to realize it. In particular, it should be pointed out that all similar substitutions and modifications are obvious to those skilled in the art, and they are all considered to be included in the present invention. The DNA reversal system and its application and the target DNA reversal method described in the present invention have been described through preferred embodiments, and the relevant personnel can obviously reverse the DNA described herein without departing from the content, spirit and scope of the present invention The system and its application as well as the target DNA inversion method are modified or appropriately modified and combined to realize and apply the technology of the present invention.

在本发明中共提供了两种Rci酶,即SEQ ID NO.2所示氨基酸序列的Rci8酶和SEQID NO.3所示氨基酸序列的Rci26酶;相比较Rci26酶,Rci8酶进行了定向突变优化,在其催化下目标DNA反转效率和删除效率的比值有了极大的提升;本发明具体实施方式中基本采用最优的Rci8酶进行相关验证。Two Rci enzymes are provided in the present invention, that is, the Rci8 enzyme with the amino acid sequence shown in SEQ ID NO.2 and the Rci26 enzyme with the amino acid sequence shown in SEQ ID NO.3; compared with the Rci26 enzyme, the Rci8 enzyme has been optimized for directed mutation, Under its catalysis, the ratio of target DNA inversion efficiency and deletion efficiency has been greatly improved; in the specific embodiments of the present invention, the optimal Rci8 enzyme is basically used for related verification.

在本发明具体实施方式中,本发明以URA3和HIS3筛选标签(敲除ATG起始密码子)构建验证反转DNA效果的质粒载体,导入到酵母细胞中验证,示意图见图2;在该质粒载体上,URA3反向插入且其两端插入了方向相反的sfxa101位点序列,启动子Pcyc1和ATG起始密码子设立在反向URA3标签上游的sfxa101位点序列前;只在HIS3筛选标签的上游设立一个sfxa101位点序列,其方向与反向URA3标签上游的sfxa101位点序列相同,并在该sfxa101位点序列和反向URA3标签下游的sfxa101位点序列之间设置终止子;In the specific embodiment of the present invention, the present invention uses URA3 and HIS3 screening tags (knocking out the ATG start codon) to construct a plasmid vector for verifying the reverse DNA effect, and introduce it into yeast cells for verification. The schematic diagram is shown in Figure 2; On the vector, URA3 is inserted in reverse and the sfxa101 site sequence in the opposite direction is inserted at both ends, and the promoter Pcyc1 and ATG start codons are set before the sfxa101 site sequence upstream of the reverse URA3 tag; only in the HIS3 screening tag A sfxa101 site sequence is set up upstream, and its direction is the same as the sfxa101 site sequence upstream of the reverse URA3 tag, and a terminator is set between the sfxa101 site sequence and the sfxa101 site sequence downstream of the reverse URA3 tag;

上述质粒载体的构建方式可以借助SC-URA和SC-HIS培养基来直观反映作为目标DNA的URA3标签的反转效率以及删除效率,当两个反向sfxa101位点序列间发生DNA反转时,URA3标签得以正常表达,而HIS3标签无法表达,可以在SC-URA培养基上长出菌落;而当两个同向sfxa101位点序列间发生DNA删除时,反向URA3标签删除,HIS3标签得以正常表达,可以在SC-HIS培养基上长出菌落,示意图见图3。The construction method of the above-mentioned plasmid vector can directly reflect the inversion efficiency and deletion efficiency of the URA3 tag as the target DNA with the help of SC-URA and SC-HIS medium. When the DNA inversion occurs between the two reverse sfxa101 site sequences, The URA3 tag can be expressed normally, but the HIS3 tag cannot be expressed, and colonies can grow on the SC-URA medium; and when the DNA deletion occurs between the two sfxa101 site sequences in the same direction, the reverse URA3 tag is deleted, and the HIS3 tag can be normal expression, colonies can be grown on SC-HIS medium, as shown in Figure 3 for a schematic diagram.

按照同样的方式,将上述验证单元插入到酵母染色体上,也可以进行相同的反转效率验证,示意图见图4。In the same way, the above verification unit is inserted into the yeast chromosome, and the same inversion efficiency verification can also be performed, as shown in Figure 4 for a schematic diagram.

此外,本发明还通过荧光蛋白构建验证反转DNA效果的质粒载体,导入到动物细胞HEK-293T中验证;与前述在酵母细胞中的验证单元类似,以反向绿色荧光蛋白序列替换反向URA3标签,以红色荧光蛋白序列替换HIS3标签,其他保持相同,同时为了简便性,Rci8酶的表达系统也插入到该质粒载体上,而在之前的酵母细胞验证中则是单独转化一个表达Rci8酶的载体质粒;当两个反向sfxa101位点序列间发生DNA反转时,绿色荧光蛋白得以正常表达,而红色荧光蛋白无法表达,可以通过荧光显微镜对转染的细胞成像以及流式细胞仪检测;而当两个同向sfxa101位点序列间发生DNA删除时,反向绿色荧光蛋白序列删除,红色荧光蛋白得以正常表达,可以通过荧光显微镜对转染的细胞成像以及流式细胞仪检测,示意图见图5。In addition, the present invention also uses fluorescent protein to construct a plasmid vector to verify the effect of reverse DNA, and introduces it into animal cell HEK-293T for verification; similar to the aforementioned verification unit in yeast cells, the reverse URA3 is replaced by the reverse green fluorescent protein sequence Tag, replace the HIS3 tag with the red fluorescent protein sequence, and keep the others the same. At the same time, for simplicity, the expression system of the Rci8 enzyme is also inserted into the plasmid vector, while in the previous yeast cell verification, a single expression of the Rci8 enzyme was transformed. Vector plasmid; when the DNA inversion occurs between the two reverse sfxa101 site sequences, the green fluorescent protein can be expressed normally, but the red fluorescent protein cannot be expressed, and the transfected cells can be imaged by fluorescence microscopy and detected by flow cytometry; When the DNA deletion occurs between the two sfxa101 site sequences in the same direction, the reverse green fluorescent protein sequence is deleted, and the red fluorescent protein can be expressed normally. The transfected cells can be imaged by a fluorescence microscope and detected by flow cytometry. The schematic diagram is shown in Figure 5.

本发明所涉及的质粒pHPY004和pHPY007均是在市售质粒pRS416和pRS415上改造获得;例如pHPY004以敲掉URA3标签的pRS416质粒为基础质粒引入图3中的验证单元,筛选标签可根据实际情形选择替换、增加或保留pRS416质粒原有筛选标签,质粒图谱示意图见图2;pHPY007以pRS415质粒为基础质粒引入Rci8酶的表达系统,使用Gal诱导型启动子可以方便控制Rci8酶的表达,筛选标签可根据实际情形选择替换、增加或保留pRS415质粒原有筛选标签,质粒图谱示意图见图6。Plasmids pHPY004 and pHPY007 involved in the present invention were obtained by transformation on commercially available plasmids pRS416 and pRS415; for example, pHPY004 was introduced into the verification unit in Figure 3 based on the pRS416 plasmid with the URA3 tag knocked out, and the screening tag can be selected according to the actual situation Replace, add or retain the original screening tag of the pRS416 plasmid. See Figure 2 for a schematic diagram of the plasmid map; pHPY007 uses the pRS415 plasmid as the base plasmid to introduce the expression system of the Rci8 enzyme. The use of a Gal-inducible promoter can facilitate the control of the expression of the Rci8 enzyme. The screening tag can be Choose to replace, add or retain the original screening tag of the pRS415 plasmid according to the actual situation. The schematic diagram of the plasmid map is shown in Figure 6.

以下就本发明所提供的一种DNA反转系统的应用以及一种目标DNA反转方法做进一步说明。The application of a DNA reversal system provided by the present invention and a target DNA reversal method will be further described below.

实施例1:利用Rci8/sfxa101系统在酿酒酵母质粒上构建一种真核位点特异性DNA反转系统Example 1: Construction of a eukaryotic site-specific DNA inversion system on a Saccharomyces cerevisiae plasmid using the Rci8/sfxa101 system

1、通过酵母转化将pHPY004质粒和pHPY007质粒导入BY4741出发菌株中。其步骤如下:1. Introduce the pHPY004 plasmid and the pHPY007 plasmid into the BY4741 starting strain by yeast transformation. The steps are as follows:

a)挑取BY4741酿酒酵母单菌落于5mLYPD液体培养基中,30℃过夜培养;a) Pick a single colony of Saccharomyces cerevisiae BY4741 in 5mLYPD liquid medium, and cultivate overnight at 30°C;

b)测量过夜培养的酿酒酵母培养液OD600,接种过夜培养液到5mLYPD中(0.125OD600/ml),30℃、220rpm条件下培养至OD600达到0.5(约需要3.5–4.5hrs);b) Measure the OD600 of the overnight cultured Saccharomyces cerevisiae culture solution, inoculate the overnight culture solution into 5mL LYPD ( 0.125OD600 /ml), and cultivate at 30°C and 220rpm until the OD600 reaches 0.5 (about 3.5-4.5hrs);

c)吸取1mL酿酒酵母培养液至1.5mL EP管内,4000rpm离心2min,收集细胞;用1mL无菌水重悬细胞,同上离心,收集细胞;用1mL 0.1M LiOAc重悬细胞,同上离心,收集细胞;用移液器吸除900μL上清,剩余的100μL LiOAc重悬细胞,置于冰上,得到感受态细胞。c) Pipette 1mL of Saccharomyces cerevisiae culture solution into a 1.5mL EP tube, centrifuge at 4000rpm for 2min, and collect the cells; resuspend the cells in 1mL of sterile water, centrifuge as above, and collect the cells; resuspend the cells in 1mL 0.1M LiOAc, centrifuge as above, and collect the cells ; Remove 900 μL supernatant with a pipette, resuspend the cells in the remaining 100 μL LiOAc, and place them on ice to obtain competent cells.

d)准备转化体系:d) Prepare the transformation system:

Figure BDA0003155751310000071
Figure BDA0003155751310000071

将该体系充分混合均匀,待用。The system was thoroughly mixed and ready for use.

e)向100μL 酵母感受态细胞中加入pHPY004质粒和pHPY007质粒各2μL吹吸均匀后加入转化体系中,上下翻转混合均匀;30℃培养箱中孵育30min;加入90μLDMSO,上下翻转混合均匀;42℃热激15min;3600rpm离心30s,收集细胞;吸出上请,加入400μL5mMCaCl2,重悬细胞,静置5min;3600rpm离心30s,吸出上请,在无菌水中重悬后涂SC+HYG(潮霉素)筛选培养基筛选。e) Add 2 μL of pHPY004 plasmid and 2 μL of pHPY007 plasmid to 100 μL of yeast competent cells, blow and pipette evenly, add to the transformation system, and mix evenly by turning up and down; incubate in a 30°C incubator for 30 minutes; Stimulate for 15min; centrifuge at 3600rpm for 30s, collect cells; aspirate the mixture, add 400μL of 5mMCaCl 2 , resuspend the cells, and let stand for 5min; centrifuge at 3600rpm for 30s, aspirate, resuspend in sterile water and apply SC+HYG (hygromycin) Screening Media Screening.

待酵母在筛选培养基上生长2天,将单菌落接于SC-Leu+HYG液体培养基中,于30℃,220rpm培养至饱和。After the yeast grew on the screening medium for 2 days, a single colony was inoculated in SC-Leu+HYG liquid medium, and cultured at 30°C, 220rpm until saturated.

2、取1mL酵母菌,菌体用ddH2O洗两次以洗去葡萄糖,然后转接到半乳糖培养基中诱导培养12小时。将诱导的酵母细胞以合适的稀释倍数涂布到SC-URA和SC-HIS培养基上,在30℃培养箱中,培养3天;结果见图7,图7结果显示在SC-URA培养基上有大量菌落长出,而在SC-HIS培养基上基本没有菌落长出,说明本发明的反转系统实现位点之间DNA片段的反转而几乎不删除。2. Take 1 mL of yeast, wash the cells twice with ddH 2 O to remove glucose, and then transfer to galactose medium for induction and culture for 12 hours. Spread the induced yeast cells on SC-URA and SC-HIS medium at an appropriate dilution factor, and culture them in a 30°C incubator for 3 days; the results are shown in Figure 7, and the results in Figure 7 are shown in SC-URA medium A large number of colonies grew on the SC-HIS medium, but basically no colonies grew on the SC-HIS medium, indicating that the inversion system of the present invention realizes the inversion of DNA fragments between sites without almost deleting.

3、Rci8/sfxa101系统表达,随机选择SC-URA培养基上的24个菌落,通过PCR来测试新连接的产生,通过Sanger测序分析反转后生成的新连接,结果见图8;反转区域Sanger测序结果如下:3. Rci8/sfxa101 system expression, randomly select 24 colonies on SC-URA medium, test the generation of new junctions by PCR, and analyze the new junctions generated after inversion by Sanger sequencing, the results are shown in Figure 8; the inversion region Sanger sequencing results are as follows:

CATTAGGACCTTTGCAGCATAAATTACTATACTTCTATAGACACACAAACACAAATACACACACTAAATTAATAATGAAGGCAATACTTTCGTGCCAATCCGGTACGTGGTCGAAAGCTACATATAAGGAACGTGCTGCTACTCATCCTAGTCCTGTTGCTGCCAAGCTATTTAATATCATGCACGAAAAGCAAACAAACTTGTGTGCCATTAGGACCTTTGCAGCATAAATTACTATACTTCTATAGACACACAAACACAAATACACACACTAAATTAATAATGAAGGCAATACTTTCGTGCCAATCCGGTACGTGGTCGAAAGCTACATATAAGGAACGTGCTGCTACTCATCCTAGTCCTGTTGCTGCCAAGCTATTTAATATCATGCACGAAAAGCAAACAAACTTGTGTGC

结果显示反转效率和删除效率的比值约为4320,体现了良好的反转特异性,证明成功在酿酒酵母质粒上构建了位点特异性DNA反转系统。The results showed that the ratio of inversion efficiency to deletion efficiency was about 4320, reflecting good inversion specificity, and proved that a site-specific DNA inversion system was successfully constructed on the Saccharomyces cerevisiae plasmid.

此外,本实施例选择Rci26酶(定向优化前)替换Rci8酶进行同样的实验,结果显示反转效率和删除效率的比值约为1195。In addition, in this example, the Rci26 enzyme (before directional optimization) was selected to replace the Rci8 enzyme for the same experiment, and the results showed that the ratio of inversion efficiency to deletion efficiency was about 1195.

实施例2:利用Rci8/sfxa101系统在酿酒酵母染色体上构建一种真核位点特异性DNA反转系统。Example 2: Using the Rci8/sfxa101 system to construct a eukaryotic site-specific DNA inversion system on the chromosome of Saccharomyces cerevisiae.

1、通过酵母同源重组将从pHPY004克隆的系统的片段(即图3所示的验证单元,长度为4202bp)插入到酿酒酵母中的X染色体上(639678bp的位置),同时导入pHPY007质粒。1. Insert the fragment of the system cloned from pHPY004 (that is, the verification unit shown in Figure 3, with a length of 4202bp) into the X chromosome (position 639678bp) in Saccharomyces cerevisiae by yeast homologous recombination, and simultaneously introduce the pHPY007 plasmid.

2、取1mL酵母菌,菌体用ddH2O洗两次以洗去葡萄糖,然后转接到半乳糖培养基中诱导培养12小时。将诱导的酵母细胞以合适的稀释倍数涂布到SC-URA和SC-HIS培养基上,在30℃培养箱中,培养3天;结果见图9,图9结果显示在SC-URA培养基上有大量菌落长出,而在SC-HIS培养基上基本没有菌落长出,说明本发明的反转系统实现位点之间DNA片段的反转而几乎不删除。2. Take 1 mL of yeast, wash the cells twice with ddH 2 O to remove glucose, and then transfer to galactose medium for induction and culture for 12 hours. Spread the induced yeast cells on SC-URA and SC-HIS medium at an appropriate dilution factor, and culture them in a 30°C incubator for 3 days; the results are shown in Figure 9, and the results in Figure 9 are shown in SC-URA medium A large number of colonies grew on the SC-HIS medium, but basically no colonies grew on the SC-HIS medium, indicating that the inversion system of the present invention realizes the inversion of DNA fragments between sites without almost deleting.

3、Rci8/sfxa101系统表达,随机选择SC-URA培养基上的12个菌落,通过PCR来测试新连接的产生,通过Sanger测序分析反转后生成的新连接。结果见图10;反转区域Sanger测序结果如下:3. Rci8/sfxa101 system expression, randomly select 12 colonies on SC-URA medium, test the generation of new junctions by PCR, and analyze the new junctions generated after inversion by Sanger sequencing. The results are shown in Figure 10; the Sanger sequencing results of the inverted region are as follows:

TTGCAGCATAAATTACTATACTTCTATAGACACACAAACACAAATACACACACTAAATTAATAATGAAGGCAATACTTTCGTGCCAATCCGGTACGTGGTCGAAAGCTACATATAAGGAACGTGCTGCTACTCATCCTAGTCCTGTTGCTGCCAAGCTATTTAATATCATGCACGAAAAGCAAACAAACTTGTGTGCTTCATTGGATGTTCGTACCACCAAGGAATTACTGGAGTTAGTTGAAG(注:与实施例1中测序结果部分不同是由于所用引物不同,中间序列是相同的)TTGCAGCATAAATTACTATACTTCTATAGACACACAAACACAAATACACACACTAAATTAATAATGAAGGCAATACTTTCGTGCCAATCCGGTACGTGGTCGAAAGCTACATATAAGGAACGTGCTGCTACTCATCCTAGTCCTGTTGCTGCCAAGCTATTTAATATCATGCACGAAAAGCAAACAAACTTGTGTGCTTCATTGGATGTTCGTACCACCAAGGAATTACTGGAGTTAGTTGAAG(注:与实施例1中测序结果部分不同是由于所用引物不同,中间序列是相同的)

结果显示反转效率和删除效率的比值约为960,体现了良好的反转特异性,证明成功在酿酒酵母染色体上构建了位点特异性DNA反转系统。The results showed that the ratio of inversion efficiency to deletion efficiency was about 960, which reflected good inversion specificity, and proved that a site-specific DNA inversion system was successfully constructed on Saccharomyces cerevisiae chromosome.

实施例3:利用Rci8/sfxa101系统在动物细胞HEK-293T中构建一种真核位点特异性DNA反转系统Example 3: Construction of a eukaryotic site-specific DNA inversion system in animal cell HEK-293T using the Rci8/sfxa101 system

1、在HEK-293T细胞的Pcep4质粒上设计构建表征系统,两个反向排列的sfxa101位点之间DNA片段的反转,使得表达绿色荧光蛋白,细胞变为绿色;两个同向排列的sfxa101位点之间DNA片段的删除,使得表达红色荧光蛋白,细胞变为红色。1. Design and construct a characterization system on the Pcep4 plasmid of HEK-293T cells. The inversion of the DNA fragment between the two reversely arranged sfxa101 sites makes the expression of green fluorescent protein and the cells turn green; two aligned in the same direction The deletion of the DNA fragment between the sfxa101 sites makes the red fluorescent protein expressed and the cells turn red.

2、将表征系统质粒和Rci8质粒(pHPY007)转染到HEK-293T细胞中,只含表征系统质粒的细胞作为对照。培养72小时后,通过荧光显微镜对转染的细胞成像,图11结果显示许多实验组的转染细胞变为绿色,而对照组中几乎没有观察到绿色细胞,证明细胞内发生了反转反应。2. The characterization system plasmid and the Rci8 plasmid (pHPY007) were transfected into HEK-293T cells, and the cells containing only the characterization system plasmid were used as controls. After culturing for 72 hours, the transfected cells were imaged by a fluorescence microscope. The results in Figure 11 showed that many transfected cells in the experimental group turned green, while almost no green cells were observed in the control group, proving that a reverse reaction occurred in the cells.

通过流式细胞仪定量分析,图12结果显示约21.8%的293T细胞转为绿色,而约0.24%的细胞转为红色,并且通过PCR和Sanger测序验证。这些结果表明,Rci8/sfxa101可以介导具有强烈方向性偏向的DNA重组,导致哺乳动物细胞中反向sfxa101位点之间的反转占主导地位,成功在动物细胞中构建了位点特异性DNA反转系统。Quantitative analysis by flow cytometry, the results in Figure 12 show that about 21.8% of 293T cells turned green, and about 0.24% of cells turned red, and verified by PCR and Sanger sequencing. These results demonstrate that Rci8/sfxa101 can mediate DNA recombination with a strong directional bias, resulting in the dominance of inversion between inverted sfxa101 sites in mammalian cells, successfully constructing site-specific DNA in animal cells Invert the system.

反转区域Sanger测序结果如下:The Sanger sequencing results of the inverted region are as follows:

GGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGCAATACTTTCGTGCCAATCCGGTACGTGGACCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTCCGCGGCGAGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATAATAAGCAGAGCTGGCAATACTTTCGTGCCAATCCGGTACGTGGACCCAAGGGCGAGGAGCTGTTCACCGGGGCGGTGCCCAGTCAGGTGGTCGAGCTGGAACGCG

以上所述只是用于理解本发明的方法及其核心思想,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利的保护范围。The above description is only used to understand the method and core idea of the present invention. It should be pointed out that for those of ordinary skill in the art, some improvements and modifications can be made to the present invention without departing from the principles of the present invention. Improvements and modifications also fall within the protection scope of the rights of the present invention.

序列表sequence listing

<110> 天津大学<110> Tianjin University

<120> 一种DNA反转系统及其应用以及一种目标DNA反转方法<120> A DNA inversion system and its application and a target DNA inversion method

<130> MP21009216<130> MP21009216

<160> 5<160> 5

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 1<400> 1

ggcaatactt tcgtgccaat ccggtacgtg g 31ggcaatactt tcgtgccaat ccggtacgtg g 31

<210> 2<210> 2

<211> 384<211> 384

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 2<400> 2

Met Pro Ser Pro Arg Ile Arg Lys Met Ser Leu Ser Arg Ala Leu AspMet Pro Ser Pro Arg Ile Arg Lys Met Ser Leu Ser Arg Ala Leu Asp

1 5 10 151 5 10 15

Lys Tyr Leu Lys Thr Val Ser Val His Lys Lys Gly His Gln Gln GluLys Tyr Leu Lys Thr Val Ser Val His Lys Lys Gly His Gln Gln Glu

20 25 30 20 25 30

Phe Tyr Arg Ser Asn Val Ile Lys Arg Tyr Pro Ile Ala Leu Arg AsnPhe Tyr Arg Ser Asn Val Ile Lys Arg Tyr Pro Ile Ala Leu Arg Asn

35 40 45 35 40 45

Met Asp Val Ile Thr Thr Val Asp Ile Ala Thr Tyr Arg Asp Val ArgMet Asp Val Ile Thr Thr Val Asp Ile Ala Thr Tyr Arg Asp Val Arg

50 55 60 50 55 60

Leu Ala Glu Ile Asn Pro Arg Thr Gly Lys Pro Ile Thr Gly Asn ThrLeu Ala Glu Ile Asn Pro Arg Thr Gly Lys Pro Ile Thr Gly Asn Thr

65 70 75 8065 70 75 80

Val Arg Leu Glu Leu Ala Leu Leu Ser Ser Leu Phe Asn Ile Ala ArgVal Arg Leu Glu Leu Ala Leu Leu Ser Ser Leu Phe Asn Ile Ala Arg

85 90 95 85 90 95

Val Glu Trp Gly Thr Cys Arg Thr Asn Pro Val Glu Leu Val Arg LysVal Glu Trp Gly Thr Cys Arg Thr Asn Pro Val Glu Leu Val Arg Lys

100 105 110 100 105 110

Pro Lys Val Ser Ser Gly Arg Asp Arg Arg Leu Thr Ser Ser Glu GluPro Lys Val Ser Ser Gly Arg Asp Arg Arg Leu Thr Ser Ser Glu Glu

115 120 125 115 120 125

Arg Arg Leu Ser Arg Tyr Phe Arg Glu Lys Asn Leu Met Leu Tyr ValArg Arg Leu Ser Arg Tyr Phe Arg Glu Lys Asn Leu Met Leu Tyr Val

130 135 140 130 135 140

Ile Phe His Leu Ala Leu Glu Thr Ala Met Arg Gln Gly Glu Ile LeuIle Phe His Leu Ala Leu Glu Thr Ala Met Arg Gln Gly Glu Ile Leu

145 150 155 160145 150 155 160

Ala Leu Arg Trp Glu His Ile Asp Leu Arg His Gly Val Ala His LeuAla Leu Arg Trp Glu His Ile Asp Leu Arg His Gly Val Ala His Leu

165 170 175 165 170 175

Pro Glu Thr Lys Asn Gly His Ser Arg Asp Val Pro Leu Ser Arg ArgPro Glu Thr Lys Asn Gly His Ser Arg Asp Val Pro Leu Ser Arg Arg

180 185 190 180 185 190

Ala Arg Asn Phe Leu Gln Met Met Pro Val Asn Leu His Gly Asn ValAla Arg Asn Phe Leu Gln Met Met Pro Val Asn Leu His Gly Asn Val

195 200 205 195 200 205

Phe Asp Tyr Thr Ala Ser Gly Phe Lys Asn Ala Trp Arg Ile Ala ThrPhe Asp Tyr Thr Ala Ser Gly Phe Lys Asn Ala Trp Arg Ile Ala Thr

210 215 220 210 215 220

Gln Arg Leu Arg Ile Glu Asp Leu His Phe His Asp Leu Arg His GluGln Arg Leu Arg Ile Glu Asp Leu His Phe His Asp Leu Arg His Glu

225 230 235 240225 230 235 240

Ala Ile Ser Arg Phe Phe Glu Leu Gly Ser Leu Asn Val Met Glu IleAla Ile Ser Arg Phe Phe Glu Leu Gly Ser Leu Asn Val Met Glu Ile

245 250 255 245 250 255

Ala Ala Ile Ser Gly His Arg Ser Met Asn Met Leu Lys Arg Tyr ThrAla Ala Ile Ser Gly His Arg Ser Met Asn Met Leu Lys Arg Tyr Thr

260 265 270 260 265 270

His Leu Arg Ala Trp Gln Leu Val Ser Lys Leu Asp Ala Arg Arg ArgHis Leu Arg Ala Trp Gln Leu Val Ser Lys Leu Asp Ala Arg Arg Arg

275 280 285 275 280 285

Gln Thr Gln Lys Val Ala Ala Trp Phe Ile Pro Tyr Pro Ala His IleGln Thr Gln Lys Val Ala Ala Trp Phe Ile Pro Tyr Pro Ala His Ile

290 295 300 290 295 300

Thr Thr Ile Asp Glu Glu Asn Gly Gln Lys Ala His Arg Ile Glu IleThr Thr Ile Asp Glu Glu Asn Gly Gln Lys Ala His Arg Ile Glu Ile

305 310 315 320305 310 315 320

Gly Asp Phe Asp Asn Leu His Val Thr Ala Thr Thr Lys Glu Glu AlaGly Asp Phe Asp Asn Leu His Val Thr Ala Thr Thr Lys Glu Glu Ala

325 330 335 325 330 335

Val His Arg Ala Ser Glu Val Leu Leu Arg Thr Leu Ala Ile Ala AlaVal His Arg Ala Ser Glu Val Leu Leu Arg Thr Leu Ala Ile Ala Ala

340 345 350 340 345 350

Gln Lys Gly Glu Arg Val Pro Ser Pro Gly Ala Leu Pro Val Asn AspGln Lys Gly Glu Arg Val Pro Ser Pro Gly Ala Leu Pro Val Asn Asp

355 360 365 355 360 365

Pro Asp Tyr Ile Met Ile Cys Pro Leu Asn Pro Gly Ser Thr Pro LeuPro Asp Tyr Ile Met Ile Cys Pro Leu Asn Pro Gly Ser Thr Pro Leu

370 375 380 370 375 380

<210> 3<210> 3

<211> 384<211> 384

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 3<400> 3

Met Pro Ser Pro Arg Ile Arg Lys Met Ser Leu Ser Arg Ala Leu AspMet Pro Ser Pro Arg Ile Arg Lys Met Ser Leu Ser Arg Ala Leu Asp

1 5 10 151 5 10 15

Lys Tyr Leu Lys Thr Val Ser Val His Lys Lys Gly His Gln Gln GluLys Tyr Leu Lys Thr Val Ser Val His Lys Lys Gly His Gln Gln Glu

20 25 30 20 25 30

Phe Tyr Arg Ser Asn Val Ile Lys Arg Tyr Pro Ile Ala Leu Arg AsnPhe Tyr Arg Ser Asn Val Ile Lys Arg Tyr Pro Ile Ala Leu Arg Asn

35 40 45 35 40 45

Met Asp Glu Ile Thr Thr Val Asp Ile Ala Thr Tyr Arg Asp Val ArgMet Asp Glu Ile Thr Thr Val Asp Ile Ala Thr Tyr Arg Asp Val Arg

50 55 60 50 55 60

Leu Ala Glu Ile Asn Pro Arg Thr Gly Lys Pro Ile Thr Gly Asn ThrLeu Ala Glu Ile Asn Pro Arg Thr Gly Lys Pro Ile Thr Gly Asn Thr

65 70 75 8065 70 75 80

Val Gly Leu Glu Leu Ala Leu Leu Ser Ser Leu Phe Asn Ile Ala ArgVal Gly Leu Glu Leu Ala Leu Leu Ser Ser Leu Phe Asn Ile Ala Arg

85 90 95 85 90 95

Val Glu Trp Gly Thr Cys Arg Thr Asn Pro Val Glu Leu Val Arg LysVal Glu Trp Gly Thr Cys Arg Thr Asn Pro Val Glu Leu Val Arg Lys

100 105 110 100 105 110

Pro Lys Val Ser Ser Gly Arg Asp Arg Arg Leu Thr Ser Ser Glu GluPro Lys Val Ser Ser Gly Arg Asp Arg Arg Leu Thr Ser Ser Glu Glu

115 120 125 115 120 125

Arg Arg Leu Ser Arg Tyr Phe Arg Glu Lys Asn Leu Met Leu Tyr ValArg Arg Leu Ser Arg Tyr Phe Arg Glu Lys Asn Leu Met Leu Tyr Val

130 135 140 130 135 140

Ile Phe His Leu Ala Leu Glu Thr Ala Met Arg Gln Gly Glu Ile LeuIle Phe His Leu Ala Leu Glu Thr Ala Met Arg Gln Gly Glu Ile Leu

145 150 155 160145 150 155 160

Ala Leu Arg Trp Glu His Ile Asp Leu Arg His Gly Val Ala His LeuAla Leu Arg Trp Glu His Ile Asp Leu Arg His Gly Val Ala His Leu

165 170 175 165 170 175

Pro Glu Thr Lys Asn Gly His Ser Arg Asp Val Pro Leu Ser Arg ArgPro Glu Thr Lys Asn Gly His Ser Arg Asp Val Pro Leu Ser Arg Arg

180 185 190 180 185 190

Ala Arg Asn Phe Leu Gln Met Met Pro Val Asn Leu His Gly Asn ValAla Arg Asn Phe Leu Gln Met Met Pro Val Asn Leu His Gly Asn Val

195 200 205 195 200 205

Phe Asp Tyr Thr Ala Ser Gly Phe Lys Asn Ala Trp Arg Ile Ala ThrPhe Asp Tyr Thr Ala Ser Gly Phe Lys Asn Ala Trp Arg Ile Ala Thr

210 215 220 210 215 220

Gln Arg Leu Arg Ile Glu Asp Leu His Phe His Asp Leu Arg His GluGln Arg Leu Arg Ile Glu Asp Leu His Phe His Asp Leu Arg His Glu

225 230 235 240225 230 235 240

Ala Ile Ser Arg Phe Phe Glu Leu Gly Ser Leu Asn Val Met Glu IleAla Ile Ser Arg Phe Phe Glu Leu Gly Ser Leu Asn Val Met Glu Ile

245 250 255 245 250 255

Ala Ala Ile Ser Gly His Arg Ser Met Asn Met Leu Lys Arg Tyr ThrAla Ala Ile Ser Gly His Arg Ser Met Asn Met Leu Lys Arg Tyr Thr

260 265 270 260 265 270

His Leu Arg Ala Trp Gln Leu Val Ser Lys Leu Asp Ala Arg Arg ArgHis Leu Arg Ala Trp Gln Leu Val Ser Lys Leu Asp Ala Arg Arg Arg

275 280 285 275 280 285

Gln Thr Gln Lys Val Ala Ala Trp Phe Val Pro Tyr Pro Ala His IleGln Thr Gln Lys Val Ala Ala Trp Phe Val Pro Tyr Pro Ala His Ile

290 295 300 290 295 300

Thr Thr Ile Asp Glu Glu Asn Gly Gln Lys Ala His Arg Ile Glu IleThr Thr Ile Asp Glu Glu Asn Gly Gln Lys Ala His Arg Ile Glu Ile

305 310 315 320305 310 315 320

Gly Asp Phe Asp Asn Leu His Val Thr Ala Thr Thr Lys Glu Glu AlaGly Asp Phe Asp Asn Leu His Val Thr Ala Thr Thr Lys Glu Glu Ala

325 330 335 325 330 335

Val His Arg Ala Ser Glu Val Leu Leu Arg Thr Leu Ala Ile Ala AlaVal His Arg Ala Ser Glu Val Leu Leu Arg Thr Leu Ala Ile Ala Ala

340 345 350 340 345 350

Gln Lys Gly Glu Arg Val Pro Ser Pro Gly Ala Leu Pro Val Asn AspGln Lys Gly Glu Arg Val Pro Ser Pro Gly Ala Leu Pro Val Asn Asp

355 360 365 355 360 365

Pro Asp Tyr Ile Met Ile Cys Pro Leu Asn Pro Gly Ser Thr Pro LeuPro Asp Tyr Ile Met Ile Cys Pro Leu Asn Pro Gly Ser Thr Pro Leu

370 375 380 370 375 380

<210> 4<210> 4

<211> 1155<211> 1155

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 4<400> 4

atgccttcac ctaggattcg taaaatgtcc ctgtcaaggg cgctagataa atatcttaaa 60atgccttcac ctaggattcg taaaatgtcc ctgtcaaggg cgctagataa atatcttaaa 60

actgtgagtg tccataaaaa ggggcaccaa caagaattct atcgttcaaa tgtcatcaaa 120actgtgagtg tccataaaaa ggggcaccaa caagaattct atcgttcaaa tgtcatcaaa 120

aggtatccta ttgctttaag aaacatggac gtgataacca cggtcgacat agccacatac 180aggtatccta ttgctttaag aaacatggac gtgataacca cggtcgacat agccacatac 180

cgtgatgtta gattggccga aatcaaccca agaacaggaa aacctattac tggaaacact 240cgtgatgtta gattggccga aatcaaccca agaacaggaa aacctattac tggaaacact 240

gtcagattgg agctggccct gctttcatcc ttgttcaata ttgcaagagt cgaatggggt 300gtcagattgg agctggccct gctttcatcc ttgttcaata ttgcaagagt cgaatggggt 300

acgtgcagga ctaaccctgt tgaactagtt cgtaaaccaa aagtgtctag tggtagggat 360acgtgcagga ctaaccctgt tgaactagtt cgtaaaccaa aagtgtctag tggtagggat 360

agaaggttaa catccagtga agaaagaaga ctgtcaagat attttagaga aaagaactta 420agaaggttaa catccagtga agaaagaaga ctgtcaagat attttagaga aaagaactta 420

atgttatatg ttattttcca tttggcctta gaaacagcaa tgagacaagg tgaaatatta 480atgttatatg ttattttcca tttggcctta gaaacagcaa tgagacaagg tgaaatatta 480

gctttgcgtt gggaacatat agatttacgt cacggtgtag cccatttacc tgaaaccaaa 540gctttgcgtt gggaacatat agattacgt cacggtgtag cccattacc tgaaaccaaa 540

aatggtcaca gcagagatgt tccacttagt agaagagctc gtaatttctt gcagatgatg 600aatggtcaca gcagagatgt tccacttagt agaagagctc gtaatttctt gcagatgatg 600

ccagtcaatt tgcacggtaa cgtatttgac tacaccgctt ccggttttaa aaacgcatgg 660ccagtcaatt tgcacggtaa cgtatttgac tacaccgctt ccggttttaa aaacgcatgg 660

agaattgcca ctcaaagact tagaatagaa gacctgcact tccatgactt aagacacgag 720agaattgcca ctcaaagact tagaatagaa gacctgcact tccatgactt aagacacgag 720

gccatatcaa gattttttga attgggtagc ttgaacgtga tggaaatagc tgcgattagt 780gccatatcaa gattttttga attgggtagc ttgaacgtga tggaaatagc tgcgattagt 780

gggcacagat ctatgaatat gttaaagcgt tacactcacc ttagagcgtg gcagttagtg 840gggcacagat ctatgaatat gttaaagcgt tacactcacc ttagagcgtg gcagttagtg 840

agcaagttag acgcaagaag aaggcaaact cagaaggtcg cagcttggtt tataccttat 900agcaagttag acgcaagaag aaggcaaact cagaaggtcg cagcttggtt tataccttat 900

ccggcacata ttactactat cgatgaagag aatggtcaaa aagcccatag aatagagata 960ccggcacata ttactactat cgatgaagag aatggtcaaa aagcccatag aatagagata 960

ggtgattttg ataatttgca tgtaactgcg accactaaag aggaagctgt acatagagca 1020ggtgattttg ataatttgca tgtaactgcg accactaaag aggaagctgt acatagagca 1020

tccgaggttc tattgagaac cctagcgatc gctgcacaga agggtgaaag agttccttca 1080tccgaggttc tattgagaac cctagcgatc gctgcacaga agggtgaaag agttccttca 1080

ccaggagctt tgccggttaa cgacccggat tatattatga tctgtccctt gaaccctggt 1140ccaggagctt tgccggttaa cgacccggat tatattatga tctgtccctt gaaccctggt 1140

tctacacctt tataa 1155tctacacctt tataa 1155

<210> 5<210> 5

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 5<400> 5

ccacgtaccg gattggcacg aaagtattgc c 31ccacgtaccg gattggcacg aaagtattgc c 31

Claims (8)

1.Rci酶和sfxa101位点的组合物,其特征在于,包含sfxa101位点,以及Rci酶和/或其编码核酸;所述sfxa101位点为其中一条链的序列如SEQ ID NO.1所示的双链核苷酸,所述Rci酶的氨基酸序列为SEQ ID NO.2或SEQ ID NO.3所示的氨基酸序列,所述Rci酶的编码核酸为编码SEQ ID NO.2或SEQ ID NO.3所示氨基酸序列的核酸。1. The composition of Rci enzyme and sfxa101 site, is characterized in that, comprises sfxa101 site, and Rci enzyme and/or its coding nucleic acid; Described sfxa101 site is wherein the sequence of a chain is as shown in SEQ ID NO.1 The double-stranded nucleotide of the Rci enzyme, the amino acid sequence of the Rci enzyme is the amino acid sequence shown in SEQ ID NO.2 or SEQ ID NO.3, and the encoding nucleic acid of the Rci enzyme is the encoding of SEQ ID NO.2 or SEQ ID NO .3 A nucleic acid having the amino acid sequence shown. 2.根据权利要求1所述的组合物,其特征在于,所述编码SEQ ID NO.2所示氨基酸序列的核苷酸序列如SEQ ID NO.4所示。2. The composition according to claim 1, characterized in that, the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO.2 is shown in SEQ ID NO.4. 3.根据权利要求1所述的组合物,其特征在于,所述sfxa101位点序列和Rci酶的编码序列以表达载体的形式存在。3. The composition according to claim 1, wherein the sfxa101 site sequence and the coding sequence of the Rci enzyme exist in the form of an expression vector. 4.权利要求1-3任意一项所述的组合物在介导目标DNA反转中的应用。4. Use of the composition according to any one of claims 1-3 in mediating target DNA inversion. 5.权利要求1-3任意一项所述的组合物在构建DNA反转文库中的应用。5. The application of the composition described in any one of claims 1-3 in the construction of a DNA reversal library. 6.一种目标DNA反转方法,其特征在于,包括:6. A target DNA reversal method, characterized in that, comprising: 步骤1、将方向相反的两个sfxa101位点分别插入到目标DNA两端;Step 1. Insert two sfxa101 sites in opposite directions into both ends of the target DNA; 步骤2、向目标DNA所在的受体细胞中转入表达Rci酶的载体,表达的Rci酶作用于两个方向相反的sfxa101位点之间的目标DNA发生反转;Step 2, transfer the vector expressing the Rci enzyme into the recipient cell where the target DNA is located, and the expressed Rci enzyme acts on the target DNA between the two sfxa101 sites in opposite directions to invert; 所述sfxa101位点为其中一条链的序列如SEQ ID NO.1所示的双链核苷酸,所述Rci酶的氨基酸序列为SEQ ID NO.2或SEQ ID NO.3所示的氨基酸序列,所述Rci酶的编码核酸为编码SEQ ID NO.2或SEQ ID NO.3所示氨基酸序列的核酸。 The sfxa101 site is a double-stranded nucleotide whose sequence of one chain is shown in SEQ ID NO.1, and the amino acid sequence of the Rci enzyme is the amino acid sequence shown in SEQ ID NO.2 or SEQ ID NO.3 , the encoding nucleic acid of the Rci enzyme is the nucleic acid encoding the amino acid sequence shown in SEQ ID NO.2 or SEQ ID NO.3. 7.一种构建DNA反转文库的方法,其特征在于,包括:7. A method for constructing a DNA reversal library, comprising: 步骤1、多个需要反转的目标DNA两端均插入方向相反的两个sfxa101位点;Step 1. Insert two sfxa101 sites in opposite directions at both ends of multiple target DNAs that need to be reversed; 步骤2、向目标DNA所在的受体细胞中转入表达Rci酶的载体,表达的Rci8酶作用于两个方向相反的sfxa101位点之间的目标DNA发生反转;Step 2, transfer the vector expressing Rci enzyme into the recipient cell where the target DNA is located, and the expressed Rci8 enzyme acts on the target DNA between the two sfxa101 sites in opposite directions to invert; 所述sfxa101位点为其中一条链的序列如SEQ ID NO.1所示的双链核苷酸,所述Rci酶的氨基酸序列为SEQ ID NO.2或SEQ ID NO.3所示的氨基酸序列,所述Rci酶的编码核酸为编码SEQ ID NO.2或SEQ ID NO.3所示氨基酸序列的核酸。 The sfxa101 site is a double-stranded nucleotide whose sequence of one chain is shown in SEQ ID NO.1, and the amino acid sequence of the Rci enzyme is the amino acid sequence shown in SEQ ID NO.2 or SEQ ID NO.3 , the encoding nucleic acid of the Rci enzyme is the nucleic acid encoding the amino acid sequence shown in SEQ ID NO.2 or SEQ ID NO.3. 8.根据权利要求7所述方法,其特征在于,相邻两个sfxa101位点序列的方向相反。8. The method according to claim 7, wherein the directions of the sequences of two adjacent sfxa101 sites are opposite.
CN202110779459.6A 2021-07-09 2021-07-09 DNA inversion system and application thereof and target DNA inversion method Active CN113528506B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110779459.6A CN113528506B (en) 2021-07-09 2021-07-09 DNA inversion system and application thereof and target DNA inversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110779459.6A CN113528506B (en) 2021-07-09 2021-07-09 DNA inversion system and application thereof and target DNA inversion method

Publications (2)

Publication Number Publication Date
CN113528506A CN113528506A (en) 2021-10-22
CN113528506B true CN113528506B (en) 2022-12-20

Family

ID=78127324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110779459.6A Active CN113528506B (en) 2021-07-09 2021-07-09 DNA inversion system and application thereof and target DNA inversion method

Country Status (1)

Country Link
CN (1) CN113528506B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006221A1 (en) * 1991-09-25 1993-04-01 Stichting Phytogenetics Method for providing a deletion or inversion mutation in a plant genome; recombinant dna usable therefor; mutated plant
WO2017009126A1 (en) * 2015-07-10 2017-01-19 Deutsches Krebsforschungszentrum Genetic random dna barcode generator for in vivo cell tracing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001087A2 (en) * 2003-06-11 2005-01-06 Regeneron Pharmaceuticals, Inc. Methods of modifying genes in eukaryotic cells
WO2017044476A1 (en) * 2015-09-08 2017-03-16 Massachusetts Institute Of Technology Methods and compositions for recombinase-based genetic diversification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006221A1 (en) * 1991-09-25 1993-04-01 Stichting Phytogenetics Method for providing a deletion or inversion mutation in a plant genome; recombinant dna usable therefor; mutated plant
WO2017009126A1 (en) * 2015-07-10 2017-01-19 Deutsches Krebsforschungszentrum Genetic random dna barcode generator for in vivo cell tracing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
In vivo generation of DNA sequence diversity for cellular barcoding;Ian D. Peikon等;《Nucleic Acids Research》;20140710;第42卷(第16期);第1页右栏最后1段,第2页左栏2段至右栏第2段,第9页左栏第2段,第3页右栏最后1段,第3页右栏sfx sites used部分 *
Sequence-specific and Non-specific Binding of the RciProtein to the Asymmetric Recombination Sites of the R64 Shufflon;Atsuko Gyohda等;《J. Mol. Biol.》;20020510;第318卷(第4期);第975–983页 *

Also Published As

Publication number Publication date
CN113528506A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
CN105907785B (en) Application of chemically synthesized crRNA in CRISPR/Cpf1 system in gene editing
WO2017190664A1 (en) Use of chemosynthetic crrna and modified crrna in crispr/cpf1 gene editing systems
CN106987570A (en) A kind of Cas9 Nuclease Rs 780A and application thereof
CN106957831A (en) A kind of Cas9 nucleases K918A and application thereof
CN106957830A (en) A kind of Cas9 nucleases Δ F916 and application thereof
CN109706109A (en) An in vivo plasmid editing system based on CRISPR/Cas and lambda Red recombination system and its application
CN109929839B (en) Split type single base gene editing system and application thereof
CN107893073B (en) Method for screening glutamine synthetase defect type HEK293 cell strain
CN111254164A (en) A method and cell line for rapidly establishing CRISPR gene editing liver cancer cell line
CN110607320A (en) A plant genome directed base editing backbone vector and its application
CN102703424A (en) Method for recombination-mediated escherichia coli genome point mutation
CN116286931B (en) Double-plasmid system for rapid gene editing of Ralstonia eutropha and application thereof
CN113528506B (en) DNA inversion system and application thereof and target DNA inversion method
CN110592131B (en) Construction and Screening of Mutant Library of Maltose Transcription Activator MalR and Its Application
CN113969284B (en) Site for stably expressing protein in CHO cell gene NW _003614889.1 and application thereof
CN113621635A (en) Methods and systems for self-induced protein expression
CN118460591A (en) A large-scale parallel DNA sequence editing method and its application
CN108486140A (en) A kind of cloning vector preparation method and kit based on seamless clone technology
CN114606199B (en) A method for preparing target gene fragment deletion mutant cells
CN117701606A (en) mApple protein mutants and their application in double-label chimeric analysis
CN114163506B (en) Application of Pseudomonas stutzeri-derived PsPIWI-RE protein in mediating homologous recombination
CN107287226B (en) Cpf 1-based DNA construct and DNA in-vitro splicing method
CN102250937A (en) Construction method of recombinant plasmid vector p18-kan+/- containing loxP-kanr-loxP segments
CN108929882A (en) A kind of the gene editing method and application of bacillus licheniformis
CN110747224B (en) A lipid-rich Nannochloropsis chloroplast transgenic system and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant