CN113528471B - 一种从头合成黄烷酮的三功能酶及其合成方法和应用 - Google Patents

一种从头合成黄烷酮的三功能酶及其合成方法和应用 Download PDF

Info

Publication number
CN113528471B
CN113528471B CN202110817915.1A CN202110817915A CN113528471B CN 113528471 B CN113528471 B CN 113528471B CN 202110817915 A CN202110817915 A CN 202110817915A CN 113528471 B CN113528471 B CN 113528471B
Authority
CN
China
Prior art keywords
ala
leu
gly
val
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110817915.1A
Other languages
English (en)
Other versions
CN113528471A (zh
Inventor
张新跃
何妍之
聂也森
张智萍
丁笠
陈磊
廖凯
赵晨宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202110817915.1A priority Critical patent/CN113528471B/zh
Publication of CN113528471A publication Critical patent/CN113528471A/zh
Application granted granted Critical
Publication of CN113528471B publication Critical patent/CN113528471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12N9/1037Naringenin-chalcone synthase (2.3.1.74), i.e. chalcone synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01074Naringenin-chalcone synthase (2.3.1.74), i.e. chalcone synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01006Chalcone isomerase (5.5.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/010124-Coumarate-CoA ligase (6.2.1.12)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提出了一种从头合成黄烷酮的高活性三功能酶,将4‑香豆酰辅酶A连接酶基因和查尔酮异构酶基因、查尔酮合酶基因克隆至原核表达载体构建重组质粒,再转化大肠杆菌,以诱导表达重组酶,并利用纯化的重组酶建立无细胞合成体系,实现黄烷酮的体外酶促合成。本发明克服了黄烷酮的体外多酶合成体系中产量和底物转化率较低的问题,同时建立一种成分简单的体外酶促合成体系,不存在工程菌细胞内复杂的调控作用,反应过程易于精确控制、副产物少、产品分离相对简单、生产周期明显缩短、生产成本显著降低。

Description

一种从头合成黄烷酮的三功能酶及其合成方法和应用
技术领域
本发明涉及一种从头合成黄烷酮的三功能酶及其合成方法和应用,分类号为C12P,属于生物医药技术领域。
背景技术
黄酮类化合物一般是指基本母核为2-苯基色原酮的一大类天然小分子植物次生代谢产物,现在泛指两个苯环通过中央三碳链相互连接形成具有C6-C3-C6主体结构的一系列化合物。根据中央C环的差异,一般将黄酮类化合物分为黄烷醇、黄酮、黄酮醇、黄烷酮、花青素和异黄酮等六个亚类。这些化合物具有多种生物学和药理学活性,是当前生物医药领域的热点之一,在医药、食品、化妆品等行业具有广泛的应用开发前景。其中,黄烷酮化合物由于具有抗肿瘤、抗氧化、抗炎、抗高血压、抗血小板凝集等有利于人类健康的重要活性而受到广泛关注。
黄烷酮在自然界分布非常广泛,由于其显著的药理生理活性及其独特的可塑性结构,一般作为形成黄酮类化合物各个主要亚类的骨架,在研究黄酮类化合物的生物合成途径中具有重要作用。制备黄烷酮的主要方法一般可以分为三大类:传统的植物组织有机溶剂提取法、化学合成法、微生物细胞工厂发酵法。这三种方法各有弊端。传统的植物组织有机溶剂提取法精度低、杂质含量相对较高、非常耗时、需要大量的原材料,同时原材料受到季节的限制。化学合成法的反应条件苛刻、反应过程复杂、副产物多,而且有些化学试剂剧毒,安全性较低。这些因素在很大程度上限制了黄烷酮的开发利用。微生物细胞工厂发酵法在一定程度上克服了上述两种方法的局限性,是一种很有希望的工业化生产黄烷酮分子的方法。同时,随着黄烷酮生物合成途径的基本阐明,学者们通过将其关键酶基因导入微生物细胞内,重编程微生物细胞的代谢途径,构建微生物细胞工厂,用于合成此类分子。然而,该方法也存在明显的弊端,如细胞系统的复杂性、人工合成的遗传元件和宿主的不相容性、目标产物对宿主细胞的抑制以及工程生物系统的不稳定性,都限制了该方法在生产中的应用,而且并非所有工程微生物都能用于生产目标化合物分子。
为了克服上述方法的不足,学者们又开发了另一种有前景的替代策略,即利用体外多酶合成体系生产黄烷酮。该方法采用了微生物发酵法的基本原理,却不受宿主细胞的影响,具有明显的优势。但是,就复杂化合物的体外酶促合成而言,实际生产过程较为繁琐,并且底物通道形成不易,这就常常导致体外酶促合成产量较低。
发明内容
本发明所要解决的技术问题是,克服现有技术存在的问题而提供一种从头合成黄烷酮的高活性三功能酶,以促进底物通道的形成,从而提高目标分子的体外酶促合成效率,同时还通过优化体外反应条件以提高目标分子的产量和底物的总转化率。
本发明提供了一种从头合成黄烷酮的三功能酶,该三功能酶的氨基酸序列如SEQID NO.9所示。
本发明还提供了一种从头合成黄烷酮的三功能酶的合成方法,包括以下步骤:
步骤1、从大豆中克隆4-香豆酰辅酶A连接酶基因4CL1和查尔酮异构酶基因CHI、从高粱中克隆查尔酮合酶基因CHS至原核表达载体pET-32a-SUMO,构建重组质粒pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI
步骤2、将重组质粒pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI转化大肠杆菌表达株BL21(DE3)或Rosetta(DE3),经IPTG诱导、表达,利用镍柱亲和纯化,得到重组酶蛋白。
所述步骤1中,利用重叠延伸PCR技术将关键酶基因重组为单一序列,并克隆至原核表达载体pET-32a-SUMO,各个关键酶之间通过连接肽(GGGGS)2相连接。克隆4CL1基因时,设计一对PCR引物:正向引物为5’-GAACAGATTGGTGGTGGATCCATGGCACCTTCTCCACAA-3’(如SEQID No.6所示),斜体碱基示酶切位点BamHI;
反向引物为5’-CGACCCACCTCCGCCCGACCCACCTCCGCCACTAGTATTGGCCACCACCAAACC-3’(如SEQ ID No.7所示);
克隆CHS2基因时,设计一对PCR引物:
正向引物为5’-GGCGGAGGTGGGTCGGCTAGCATGGCCGGCGCGACTGTG-3’(如SEQ ID No.8所示);
反向引物为5’-ACTGCCCCCGCCACCCGATCCCCCGCCACCGGATCCGGCGGTGATGGCCGCTCCG-3’(如SEQ ID No.9所示);
克隆CHI基因时,设计一对PCR引物:
正向引物为5’-GGTGGCGGGGGCAGTGAATTCATGGCAACGATCAGCGCG-3’(如SEQ IDNo.10所示);
反向引物为5’-GTGGTGGTGGTGGTGCTCGAGTCAGACTATAATGCCGTGGC-3’(如SEQ IDNo.11所示),斜体碱基示酶切位点XhoI。
上述步骤利用重叠延伸PCR技术拼接各个基因片段,用南京诺唯赞生物科技股份有限公司的非连接酶依赖型单片段快速克隆试剂盒(ClonExpress II One Step CloningKit)将PCR片段克隆至原核表达质粒pET-32a-SUMO。
研究过程中,测试了不同排列顺序、不同连接肽类型以及不同长度的融合蛋白,结果发现4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI的活性明显高于其他融合蛋白,推测可能是由于这些融合蛋白未能有效折叠形成正确的底物通道。本发明中,利用2个柔性连接肽GGGGS依次连接基因4CL1CHS2CHI,得到一个特定排列顺序的三功能酶,用于显著提高黄烷酮的体外酶促合成产量。
另外,为了改善三功能酶在大肠杆菌中的表达,对重组质粒pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI中4CL1基因的部分稀有密码子进行优化(第82和232位密码子CTA优化为CTG,第326我密码子AGG优化为CGT,第327位密码子CTA优化为CTG),优化4CL1的稀有密码子的目的在于提高4CL1在大肠杆菌中的可溶性表达量,这种密码子优化并不改变其氨基酸序列,因此不会影响三功能酶的活性,但能使三功能酶的原核表达和纯化更容易,因为可溶性表达水平高意味着更容易纯化得到更多的酶蛋白。同时,考虑到可溶性表达问题,本发明没有优化4CL1的所有稀有密码子,以避免形成包涵体,而是优化了部分稀有密码子,本发明所述的4CL1序列是可以获得最佳可溶性表达的序列。
所述步骤2中,将重组质粒pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI按照常规方法转化大肠杆菌表达株Rosetta(DE3),在16℃条件下由0.05 mM IPTG诱导表达12h,离心收集大肠杆菌,采用细菌裂解缓冲液重悬菌体,经超声破碎后,用镍琼脂糖凝胶纯化重组蛋白。
本发明还提供一种三功能酶在生物催化4-香豆酸合成黄烷酮中的应用。
进一步的,利用三功能酶催化合成黄烷酮时,需要建立包含所述三功能酶的体外酶促合成黄烷酮的反应体系。
再进一步的,所述体外酶促合成黄烷酮的反应体系包括Tris-HCl、磷酸钾缓冲液、甘油、MgCl2、BSA、DMSO、β-ME、ATP、CoA、丙二酰辅酶A和三功能酶。
上述体外酶促合成黄烷酮的反应体系,成分简单,不存在工程菌细胞内复杂的调控作用,并且反应过程具有易于精确控制、副产物少、产品分离相对简单、生产周期明显缩短、生产成本显著降低等特点。
更进一步的,所述体外酶促合成黄烷酮的反应体系包括0.1 M Tris-HCl(pH 7.5-7.8),0.1M磷酸钾缓冲液(pH 7.5-7.8),10%甘油,5 mM MgCl2,0.1 mg/mL BSA,1% DMSO,1mM β-ME,5 mM ATP,0.3 mM CoA,0.6 mM 丙二酰辅酶A和60 μg/mL三功能酶。该将反应体系在一定条件下反应可得到反应产物,具体的反应条件为:30-35℃,3-4 h。反应产物经等体积乙酸乙酯萃取后进行聚酰胺薄层色谱和高效液相色谱质谱分析。
本发明所提供的从头合成黄烷酮的方法,操作简便、产品分离相对简单、生产周期明显缩短、生产成本显著降低的制备方法。以酿酒酵母生产柚皮素为例,发酵培养一般超过48小时,而使用本发明的方法,每次耗时仅3小时,受原材料和人力的限制较小,易于放大。如果算上人工成本,则相对生产成本还会进一步降低,因此潜在的经济效益将是相当可观的。
本发明的优点是建立了体外酶促反应体系,并克服了黄烷酮体外多酶合成体系中产量和底物转化率较低的问题,以4-香豆酸为原材料在三功能酶的催化下一步合成黄烷酮,产量高达16.16±0.70 mg/L,该三功能重组酶的米氏常数是0.082±0.022mM。
附图说明
图1为本发明中黄烷酮生物合成途径的原理图。
图2为本发明中SDS-PAGE电泳分析纯化融合蛋白的结果图。图中:M、蛋白质分子量标准品;1、4CL1;2、CHS2;3、CHI;4、CHS2-CHI;5、4CL1-CHS2-CHI。
图3为本发明中体外酶促合成柚皮素的TLC分析图。图中:PHC、4-香豆酸;NRN、柚皮素;1、三个自由酶(4CL1、CHS2和CHI)催化的合成反应产物;2、由重组酶4CL1和CHS2-(GGGGS)2-CHI催化的合成反应产物;3、由三功能酶4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI催化的合成反应产物。
图4为本发明中体外酶促合成柚皮素的HPLC分析图。图中:4+C+C、三个自由酶(4CL1、CHS2和CHI)催化的合成反应产物;4+CC、由重组酶4CL1和CHS2-(GGGGS)2-CHI催化的合成反应产物;4CC、由三功能酶4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI催化的合成反应产物;NRN、柚皮素。
具体实施方式
下面结合实施例对本发明的技术方案做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护权限不限于下述的实施例。
本实施例所涉及的其余试剂及材料均为市购,此处不再一一列举。本实施例中所涉及的“%”若没有特殊说明,一般为质量百分比。
实施例1
1.黄烷酮生物合成途径中关键酶的克隆、表达和纯化
用常规方法分别从大豆中克隆4-香豆酰辅酶A连接酶(4CL)基因4CL1、从高粱中克隆查尔酮合酶(CHS)基因CHS2至原核表达载体pET-32a(+),构建重组质粒pET-32a-4CL1和pET-32a-CHS2。然后将重组质粒pET-32a-4CL1和pET-32a-CHS2分别转化大肠杆菌BL21(DE3),在20℃条件下经0.1 mM IPTG诱导基因表达3-4小时,采用细菌裂解缓冲液(50 mMNaH2PO4,300 mM NaCl,pH8.0,1 mM DTT,1 mM PMSF,1 μg/ mL抑肽酶,1 μg/ mL亮肽素和1μg/ mL胃蛋白酶抑制剂)将细菌悬浮液超声处理后,使用镍琼脂糖凝胶按制造商说明书(碧云天BeyoGold His-tag Purification Resin试剂说明书)纯化重组蛋白,补加1 mM DTT后超滤离心管浓缩蛋白得到上清液,最终获得4-香豆酰辅酶A连接酶4CL1(其氨基酸序列如SEQ ID No.1所示)和查尔酮合酶CHS2(其氨基酸序列如SEQ ID No.2所示)。
用常规方法从大豆中克隆查尔酮异构酶(CHI)基因CHI至原核表达载体pET-32a(+),构建重组质粒pET-32a-CHI,然后将重组质粒pET-32a-CHI转化大肠杆菌BL21(DE3),在37℃条件下经1mM IPTG诱导基因表达3-4小时,采用细菌裂解缓冲液(50 mM NaH2PO4,300mM NaCl,pH8.0,1 mM DTT,1 mM PMSF,1 μg/ mL抑肽酶,1 μg/ mL亮肽素和1 μg/ mL胃蛋白酶抑制剂)将细菌悬浮液超声处理后,使用镍琼脂糖凝胶按制造商说明书纯化重组蛋白,补加1 mM DTT后超滤离心管浓缩蛋白得到上清液,最终获得查尔酮异构酶CHI,其氨基酸序列如SEQ ID No.3所示。
从大豆中克隆查尔酮异构酶基因CHI、从高粱中克隆查尔酮合酶基因CHS2,并利用重叠延伸PCR技术拼接基因CHS2CHI,采用南京诺唯赞生物科技股份有限公司的非连接酶依赖型单片段快速克隆试剂盒(ClonExpress II One Step Cloning Kit)将PCR片段克隆
至原核表达载体pET-32a(+),构建重组质粒pET-32a-CHS2-(GGGGS)2-CHI。克隆CHS2基因时,设计一对PCR引物:
正向引物为5’-ACGACGACGACAAGGCCATGGCCGGCGCGACTGTG-3’(如SEQ ID No.12所示),斜体碱基示酶切位点NcoI;
反向引物为5’-ACTGCCCCCGCCACCCGATCCCCCGCCACCGGATCCGGCGGTGATGGCCGCTCCG-3’(如SEQ ID No.9所示)。
克隆CHI基因时,设计一对PCR引物:
正向引物为5’-GGTGGCGGGGGCAGTGAATTCATGGCAACGATCAGCGCG-3’(如SEQ IDNo.10所示);
反向引物为
5’-GTGGTGGTGGTGGTGCTCGAGTCAGACTATAATGCCGTGGC-3’(如SEQ ID No.11所示),斜体碱基示酶切位点XhoI。
将序列正确的重组质粒pET-32a-CHS2-(GGGGS)2-CHI按常规方法转化大肠杆菌BL21(DE3),20℃、0.2 mM IPTG诱导表达3 h,离心收集大肠杆菌,用细菌裂解缓冲液(50 mMNaH2PO4,300 mM NaCl,pH8.0,1 mM DTT,1 mM PMSF,1 μg/ mL抑肽酶,1 μg/ mL亮肽素和1μg/ mL胃蛋白酶抑制剂)重悬菌体,经超声破碎,用镍琼脂糖凝胶纯化重组蛋白,具体操作按制造商说明书进行,最终获得双功能酶CHS2-(GGGGS)2-CHI,其氨基酸序列如SEQ IDNo.4所示。
从大豆中克隆4-香豆酰辅酶A连接酶基因4CL1和查尔酮异构酶基因CHI、从高粱中克隆查尔酮合酶基因CHS,并利用重叠延伸PCR技术拼接基因4CL1CHS2CHI,再用南京诺唯赞生物科技股份有限公司的非连接酶依赖型单片段快速克隆试剂盒(ClonExpress IIOne Step Cloning Kit)将PCR片段克隆至原核表达质粒pET-32a-SUMO,构建重组质粒
pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI。克隆4CL1基因时,设计一对PCR引物:正向引物为5’-GAACAGATTGGTGGTGGATCCATGGCACCTTCTCCACAA-3’(如SEQ ID No.6所示),斜体碱基示酶切位点BamHI;
反向引物为5’-CGACCCACCTCCGCCCGACCCACCTCCGCCACTAGTATTGGCCACCACCAAACC-3’(如SEQ ID No.7所示);
克隆CHS2基因时,设计一对PCR引物:
正向引物为5’-GGCGGAGGTGGGTCGGCTAGCATGGCCGGCGCGACTGTG-3’(如SEQ ID No.8所示);
反向引物为5’-ACTGCCCCCGCCACCCGATCCCCCGCCACCGGATCCGGCGGTGATGGCCGCTCCG-3’(如SEQ ID No.9所示);
克隆CHI基因时,设计一对PCR引物:
正向引物为5’-GGTGGCGGGGGCAGTGAATTCATGGCAACGATCAGCGCG-3’(如SEQ IDNo.10所示);
反向引物为5’-GTGGTGGTGGTGGTGCTCGAGTCAGACTATAATGCCGTGGC-3’(如SEQ IDNo.11所示),斜体碱基示酶切位点XhoI。
将序列正确的重组质粒
pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI按常规方法转化大肠杆菌Rosetta(DE3),16℃、0.05 mM IPTG诱导表达12 h,离心收集大肠杆菌,用细菌裂解缓冲液重悬菌体,经超声破碎,用镍琼脂糖凝胶纯化重组蛋白,具体操作按制造商说明书进行,最终获得三功能酶4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI,其氨基酸序列如SEQ ID No.5所示。
对上述酶进行SDS-PAGE电泳分析,结果见图2。
2.基于多个自由酶简单混合的黄烷酮体外合成
建立多个自由酶简单混合的黄烷酮体外合成反应体系,该反应体系包含0.1 MTris-HCl(pH 7.5-7.8)、0.1M磷酸钾缓冲液(pH 7.5-7.8)、10%甘油,5 mM MgCl2,0.1 mg/mL BSA,1% DMSO,1 mM β-ME,5 mM ATP,0.3 mM CoA,0.6 mM 丙二酰辅酶A和40 μg/mL各重组酶。
在30–35℃、600 rpm恒温混匀仪中振荡反应3–4 h。反应过程见图1。反应完成后反应产物经等体积乙酸乙酯萃取后进行聚酰胺薄层色谱(TLC)和高效液相色谱质谱(HPLC-MS)分析,结果见图3和图4。
薄层色谱检测条件:展开剂氯仿与甲醇比例为1:3,加入1mL乙酸防止拖尾;显色剂为1%的三氯化铝乙醇溶液。
高效液相色谱质谱联用仪的检测条件:
检测前样品处理:反应组和对照组以及标准品用优级甲醇重新溶解到1mL离心管中,依次用0.45 μm和0.22 μm滤器过滤到样品瓶中,进行高效液相分析。
仪器设备:美国安捷伦公司高效液相色谱仪(1260)
色谱条件:
色谱柱:Agilent C18 column (150×4.6 mm, 5μm, Thermo FisherScientific. Inc., San Jose, CA, USA)
流动相:A(乙腈),B(蒸馏水),梯度洗脱:0-4 min, A: 20%-22%, B:80%-78%; 4-7min, A: 22%-42%, B: 78%-58%; 7-10 min, A: 42%-38%, B: 58%-62%; 10-15 min, A:38%-95%, B: 52%-5%; 15-24min, A: 95%, B: 5%。
进样量:20 μL;柱温:35℃;
流速:1 mL/min ,柱后分流流速:0.2 mL/min;
检测器:光电二级阵列管检测器(DAD);
检测波长:λ=280 nm;330nm;370nm。
质谱条件:电喷雾离子源(ESI), 正负离子模式, 全扫描(m/z):50-2000, 气体流速45 arb,辅助吹气流速0 arb,电子喷雾电压5.00KV,毛细管温度300.00℃,毛细管电压20.00V,管路偏移电压30.00V。
3.基于三功能酶的黄烷酮体外合成
建立基于三功能酶的黄烷酮体外合成反应体系,该体系包含0.1 M Tris-HCl(pH7.5-7.8)、0.1M磷酸钾缓冲液(pH 7.5-7.8)、10%甘油,5 mM MgCl2,0.1 mg/mL BSA,1%DMSO,1 mM β-ME,5 mM ATP,0.3 mM CoA,0.6 mM 丙二酰辅酶A和60 μg/mL三功能酶。
在30℃、600 rpm恒温混匀仪中振荡反应4 h。反应完成后用乙酸乙酯萃取,进行TCL和HPLC-MS分析,检测条件同上,分析结果见图3和图4。
本发明采用多个自由酶简单混合制备黄烷酮的产量为2.87±0.30 mg/L,而采用三功能酶体外合成黄烷酮的产量高达16.16±0.70 mg/L,是多个自由酶简单混合反应体系的产量的5.6倍。由此可知,由“单独酶”或“双功能酶+单功能酶”建立的体系,合成目标分子的产量并没有明显差别,但由三功能酶建立的体系,合成目标分子的产量明显升高,说明仅仅构建双功能酶并不足以提高目标分子的合成效率。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。
序列表
<110> 扬州大学
<120> 一种从头合成黄烷酮的三功能酶及其合成方法和应用
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 546
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Ala Pro Ser Pro Gln Glu Ile Ile Phe Arg Ser Pro Leu Pro Asp
1 5 10 15
Ile Pro Ile Pro Thr His Leu Pro Leu Tyr Ser Tyr Cys Phe Gln Asn
20 25 30
Leu Ser Gln Phe His Asp Arg Pro Cys Leu Ile Asp Gly Asp Thr Gly
35 40 45
Glu Thr Leu Thr Tyr Ala Asp Val Asp Leu Ala Ala Arg Arg Ile Ala
50 55 60
Ser Gly Leu His Lys Ile Gly Ile Arg Gln Gly Asp Val Ile Met Leu
65 70 75 80
Val Leu Arg Asn Cys Pro Gln Phe Ala Leu Ala Phe Leu Gly Ala Thr
85 90 95
His Arg Gly Ala Val Val Thr Thr Ala Asn Pro Phe Tyr Thr Pro Ala
100 105 110
Glu Leu Ala Lys Gln Ala Thr Ala Thr Lys Thr Arg Leu Val Ile Thr
115 120 125
Gln Ser Ala Tyr Val Glu Lys Ile Lys Ser Phe Ala Asp Ser Ser Ser
130 135 140
Asp Val Met Val Met Cys Ile Asp Asp Asp Phe Ser Tyr Glu Asn Asp
145 150 155 160
Gly Val Leu His Phe Ser Thr Leu Ser Asn Ala Asp Glu Thr Glu Ala
165 170 175
Pro Ala Val Lys Ile Asn Pro Asp Glu Leu Val Ala Leu Pro Phe Ser
180 185 190
Ser Gly Thr Ser Gly Leu Pro Lys Gly Val Met Leu Ser His Lys Asn
195 200 205
Leu Val Thr Thr Ile Ala Gln Leu Val Asp Gly Glu Asn Pro His Gln
210 215 220
Tyr Thr His Ser Glu Asp Val Leu Leu Cys Val Leu Pro Met Phe His
225 230 235 240
Ile Tyr Ala Leu Asn Ser Ile Leu Leu Cys Gly Ile Arg Ser Gly Ala
245 250 255
Ala Val Leu Ile Leu Gln Lys Phe Glu Ile Thr Thr Leu Leu Glu Leu
260 265 270
Ile Glu Lys Tyr Lys Val Thr Val Ala Ser Phe Val Pro Pro Ile Val
275 280 285
Leu Ala Leu Val Lys Ser Gly Glu Thr His Arg Tyr Asp Leu Ser Ser
290 295 300
Ile Arg Ala Val Val Thr Gly Ala Ala Pro Leu Gly Gly Glu Leu Gln
305 310 315 320
Glu Ala Val Lys Ala Arg Leu Pro His Ala Thr Phe Gly Gln Gly Tyr
325 330 335
Gly Met Thr Glu Ala Gly Pro Leu Ala Ile Ser Met Ala Phe Ala Lys
340 345 350
Val Pro Ser Lys Ile Lys Pro Gly Ala Cys Gly Thr Val Val Arg Asn
355 360 365
Ala Glu Met Lys Ile Val Asp Thr Glu Thr Gly Asp Ser Leu Pro Arg
370 375 380
Asn Lys His Gly Glu Ile Cys Ile Ile Gly Thr Lys Val Met Lys Gly
385 390 395 400
Tyr Leu Asn Asp Pro Glu Ala Thr Glu Arg Thr Val Asp Lys Glu Gly
405 410 415
Trp Leu His Thr Gly Asp Ile Gly Phe Ile Asp Asp Asp Asp Glu Leu
420 425 430
Phe Ile Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln
435 440 445
Val Ala Pro Ala Glu Leu Glu Ala Leu Leu Ile Ala His Pro Asn Ile
450 455 460
Ser Asp Ala Ala Val Val Gly Met Lys Asp Glu Ala Ala Gly Glu Ile
465 470 475 480
Pro Val Ala Phe Val Val Arg Ser Asn Gly Ser Glu Ile Ala Glu Asp
485 490 495
Glu Ile Lys Lys Tyr Ile Ser Gln Gln Val Val Phe Tyr Lys Arg Ile
500 505 510
Cys Arg Val Phe Phe Thr Asp Ser Ile Pro Lys Ala Pro Ser Gly Lys
515 520 525
Ile Leu Arg Lys Val Leu Thr Ala Arg Leu Asn Glu Gly Leu Val Val
530 535 540
Ala Asn
545
<210> 2
<211> 401
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Ala Gly Ala Thr Val Thr Val Glu Glu Val Arg Lys Ala Gln Arg
1 5 10 15
Ala Thr Gly Pro Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Ala
20 25 30
Asn Cys Val His Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr
35 40 45
Lys Ser Glu His Met Thr Glu Leu Lys Glu Lys Phe Lys Arg Met Cys
50 55 60
Asp Lys Ser Gln Ile Arg Lys Arg Tyr Met His Leu Thr Glu Glu Tyr
65 70 75 80
Leu Ala Glu Asn Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Leu Asp
85 90 95
Ala Arg Gln Asp Ile Val Val Val Glu Val Pro Lys Leu Gly Lys Ala
100 105 110
Ala Ala Gln Lys Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile
115 120 125
Thr His Leu Val Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala
130 135 140
Asp Tyr Gln Leu Thr Lys Met Leu Gly Leu Arg Pro Ser Val Asn Arg
145 150 155 160
Leu Met Met Tyr Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg
165 170 175
Val Ala Lys Asp Leu Ala Glu Asn Asn Arg Gly Ala Arg Val Leu Val
180 185 190
Val Cys Ser Glu Ile Thr Ala Val Thr Phe Arg Gly Pro Ser Glu Ser
195 200 205
His Leu Asp Ser Met Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala
210 215 220
Ala Val Ile Val Gly Ala Asp Pro Asp Glu Arg Val Glu Arg Pro Leu
225 230 235 240
Phe Gln Leu Val Ser Ala Ser Gln Thr Ile Leu Pro Asp Ser Glu Gly
245 250 255
Ala Ile Asp Gly His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu
260 265 270
Lys Asp Val Pro Gly Leu Ile Ser Lys Asn Ile Glu Arg Ser Leu Glu
275 280 285
Glu Ala Phe Lys Pro Leu Gly Ile Thr Asp Tyr Asn Ser Ile Phe Trp
290 295 300
Val Ala His Pro Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys
305 310 315 320
Val Gly Leu Glu Lys Glu Arg Met Arg Ala Thr Arg His Val Leu Ser
325 330 335
Glu Tyr Gly Asn Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu
340 345 350
Met Arg Lys Arg Ser Ala Glu Asp Gly Arg Ala Thr Thr Gly Glu Gly
355 360 365
Phe Glu Trp Gly Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu
370 375 380
Thr Val Val Leu His Ser Val Pro Ile Thr Thr Gly Ala Ala Ile Thr
385 390 395 400
Ala
<210> 3
<211> 218
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Ala Thr Ile Ser Ala Val Gln Val Glu Phe Leu Glu Phe Pro Ala
1 5 10 15
Val Val Thr Ser Pro Ala Ser Gly Lys Thr Tyr Phe Leu Gly Gly Ala
20 25 30
Gly Glu Arg Gly Leu Thr Ile Glu Gly Lys Phe Ile Lys Phe Thr Gly
35 40 45
Ile Gly Val Tyr Leu Glu Asp Lys Ala Val Pro Ser Leu Ala Ala Lys
50 55 60
Trp Lys Gly Lys Thr Ser Glu Glu Leu Val His Thr Leu His Phe Tyr
65 70 75 80
Arg Asp Ile Ile Ser Gly Pro Phe Glu Lys Leu Ile Arg Gly Ser Lys
85 90 95
Ile Leu Pro Leu Ala Gly Ala Glu Tyr Ser Lys Lys Val Met Glu Asn
100 105 110
Cys Val Ala His Met Lys Ser Val Gly Thr Tyr Gly Asp Ala Glu Ala
115 120 125
Ala Ala Ile Glu Lys Phe Ala Glu Ala Phe Lys Asn Val Asn Phe Ala
130 135 140
Pro Gly Ala Ser Val Phe Tyr Arg Gln Ser Pro Asp Gly Ile Leu Gly
145 150 155 160
Leu Ser Phe Ser Glu Asp Ala Thr Ile Pro Glu Lys Glu Ala Ala Val
165 170 175
Ile Glu Asn Lys Ala Val Ser Ala Ala Val Leu Glu Thr Met Ile Gly
180 185 190
Glu His Ala Val Ser Pro Asp Leu Lys Arg Ser Leu Ala Ser Arg Leu
195 200 205
Pro Ala Val Leu Ser His Gly Ile Ile Val
210 215
<210> 4
<211> 633
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Ala Gly Ala Thr Val Thr Val Glu Glu Val Arg Lys Ala Gln Arg
1 5 10 15
Ala Thr Gly Pro Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Ala
20 25 30
Asn Cys Val His Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr
35 40 45
Lys Ser Glu His Met Thr Glu Leu Lys Glu Lys Phe Lys Arg Met Cys
50 55 60
Asp Lys Ser Gln Ile Arg Lys Arg Tyr Met His Leu Thr Glu Glu Tyr
65 70 75 80
Leu Ala Glu Asn Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Leu Asp
85 90 95
Ala Arg Gln Asp Ile Val Val Val Glu Val Pro Lys Leu Gly Lys Ala
100 105 110
Ala Ala Gln Lys Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile
115 120 125
Thr His Leu Val Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala
130 135 140
Asp Tyr Gln Leu Thr Lys Met Leu Gly Leu Arg Pro Ser Val Asn Arg
145 150 155 160
Leu Met Met Tyr Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg
165 170 175
Val Ala Lys Asp Leu Ala Glu Asn Asn Arg Gly Ala Arg Val Leu Val
180 185 190
Val Cys Ser Glu Ile Thr Ala Val Thr Phe Arg Gly Pro Ser Glu Ser
195 200 205
His Leu Asp Ser Met Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala
210 215 220
Ala Val Ile Val Gly Ala Asp Pro Asp Glu Arg Val Glu Arg Pro Leu
225 230 235 240
Phe Gln Leu Val Ser Ala Ser Gln Thr Ile Leu Pro Asp Ser Glu Gly
245 250 255
Ala Ile Asp Gly His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu
260 265 270
Lys Asp Val Pro Gly Leu Ile Ser Lys Asn Ile Glu Arg Ser Leu Glu
275 280 285
Glu Ala Phe Lys Pro Leu Gly Ile Thr Asp Tyr Asn Ser Ile Phe Trp
290 295 300
Val Ala His Pro Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys
305 310 315 320
Val Gly Leu Glu Lys Glu Arg Met Arg Ala Thr Arg His Val Leu Ser
325 330 335
Glu Tyr Gly Asn Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu
340 345 350
Met Arg Lys Arg Ser Ala Glu Asp Gly Arg Ala Thr Thr Gly Glu Gly
355 360 365
Phe Glu Trp Gly Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu
370 375 380
Thr Val Val Leu His Ser Val Pro Ile Thr Thr Gly Ala Ala Ile Thr
385 390 395 400
Ala Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Phe Met
405 410 415
Ala Thr Ile Ser Ala Val Gln Val Glu Phe Leu Glu Phe Pro Ala Val
420 425 430
Val Thr Ser Pro Ala Ser Gly Lys Thr Tyr Phe Leu Gly Gly Ala Gly
435 440 445
Glu Arg Gly Leu Thr Ile Glu Gly Lys Phe Ile Lys Phe Thr Gly Ile
450 455 460
Gly Val Tyr Leu Glu Asp Lys Ala Val Pro Ser Leu Ala Ala Lys Trp
465 470 475 480
Lys Gly Lys Thr Ser Glu Glu Leu Val His Thr Leu His Phe Tyr Arg
485 490 495
Asp Ile Ile Ser Gly Pro Phe Glu Lys Leu Ile Arg Gly Ser Lys Ile
500 505 510
Leu Pro Leu Ala Gly Ala Glu Tyr Ser Lys Lys Val Met Glu Asn Cys
515 520 525
Val Ala His Met Lys Ser Val Gly Thr Tyr Gly Asp Ala Glu Ala Ala
530 535 540
Ala Ile Glu Lys Phe Ala Glu Ala Phe Lys Asn Val Asn Phe Ala Pro
545 550 555 560
Gly Ala Ser Val Phe Tyr Arg Gln Ser Pro Asp Gly Ile Leu Gly Leu
565 570 575
Ser Phe Ser Glu Asp Ala Thr Ile Pro Glu Lys Glu Ala Ala Val Ile
580 585 590
Glu Asn Lys Ala Val Ser Ala Ala Val Leu Glu Thr Met Ile Gly Glu
595 600 605
His Ala Val Ser Pro Asp Leu Lys Arg Ser Leu Ala Ser Arg Leu Pro
610 615 620
Ala Val Leu Ser His Gly Ile Ile Val
625 630
<210> 5
<211> 1193
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 5
Met Ala Pro Ser Pro Gln Glu Ile Ile Phe Arg Ser Pro Leu Pro Asp
1 5 10 15
Ile Pro Ile Pro Thr His Leu Pro Leu Tyr Ser Tyr Cys Phe Gln Asn
20 25 30
Leu Ser Gln Phe His Asp Arg Pro Cys Leu Ile Asp Gly Asp Thr Gly
35 40 45
Glu Thr Leu Thr Tyr Ala Asp Val Asp Leu Ala Ala Arg Arg Ile Ala
50 55 60
Ser Gly Leu His Lys Ile Gly Ile Arg Gln Gly Asp Val Ile Met Leu
65 70 75 80
Val Leu Arg Asn Cys Pro Gln Phe Ala Leu Ala Phe Leu Gly Ala Thr
85 90 95
His Arg Gly Ala Val Val Thr Thr Ala Asn Pro Phe Tyr Thr Pro Ala
100 105 110
Glu Leu Ala Lys Gln Ala Thr Ala Thr Lys Thr Arg Leu Val Ile Thr
115 120 125
Gln Ser Ala Tyr Val Glu Lys Ile Lys Ser Phe Ala Asp Ser Ser Ser
130 135 140
Asp Val Met Val Met Cys Ile Asp Asp Asp Phe Ser Tyr Glu Asn Asp
145 150 155 160
Gly Val Leu His Phe Ser Thr Leu Ser Asn Ala Asp Glu Thr Glu Ala
165 170 175
Pro Ala Val Lys Ile Asn Pro Asp Glu Leu Val Ala Leu Pro Phe Ser
180 185 190
Ser Gly Thr Ser Gly Leu Pro Lys Gly Val Met Leu Ser His Lys Asn
195 200 205
Leu Val Thr Thr Ile Ala Gln Leu Val Asp Gly Glu Asn Pro His Gln
210 215 220
Tyr Thr His Ser Glu Asp Val Leu Leu Cys Val Leu Pro Met Phe His
225 230 235 240
Ile Tyr Ala Leu Asn Ser Ile Leu Leu Cys Gly Ile Arg Ser Gly Ala
245 250 255
Ala Val Leu Ile Leu Gln Lys Phe Glu Ile Thr Thr Leu Leu Glu Leu
260 265 270
Ile Glu Lys Tyr Lys Val Thr Val Ala Ser Phe Val Pro Pro Ile Val
275 280 285
Leu Ala Leu Val Lys Ser Gly Glu Thr His Arg Tyr Asp Leu Ser Ser
290 295 300
Ile Arg Ala Val Val Thr Gly Ala Ala Pro Leu Gly Gly Glu Leu Gln
305 310 315 320
Glu Ala Val Lys Ala Arg Leu Pro His Ala Thr Phe Gly Gln Gly Tyr
325 330 335
Gly Met Thr Glu Ala Gly Pro Leu Ala Ile Ser Met Ala Phe Ala Lys
340 345 350
Val Pro Ser Lys Ile Lys Pro Gly Ala Cys Gly Thr Val Val Arg Asn
355 360 365
Ala Glu Met Lys Ile Val Asp Thr Glu Thr Gly Asp Ser Leu Pro Arg
370 375 380
Asn Lys His Gly Glu Ile Cys Ile Ile Gly Thr Lys Val Met Lys Gly
385 390 395 400
Tyr Leu Asn Asp Pro Glu Ala Thr Glu Arg Thr Val Asp Lys Glu Gly
405 410 415
Trp Leu His Thr Gly Asp Ile Gly Phe Ile Asp Asp Asp Asp Glu Leu
420 425 430
Phe Ile Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln
435 440 445
Val Ala Pro Ala Glu Leu Glu Ala Leu Leu Ile Ala His Pro Asn Ile
450 455 460
Ser Asp Ala Ala Val Val Gly Met Lys Asp Glu Ala Ala Gly Glu Ile
465 470 475 480
Pro Val Ala Phe Val Val Arg Ser Asn Gly Ser Glu Ile Ala Glu Asp
485 490 495
Glu Ile Lys Lys Tyr Ile Ser Gln Gln Val Val Phe Tyr Lys Arg Ile
500 505 510
Cys Arg Val Phe Phe Thr Asp Ser Ile Pro Lys Ala Pro Ser Gly Lys
515 520 525
Ile Leu Arg Lys Val Leu Thr Ala Arg Leu Asn Glu Gly Leu Val Val
530 535 540
Ala Asn Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Ser
545 550 555 560
Met Ala Gly Ala Thr Val Thr Val Glu Glu Val Arg Lys Ala Gln Arg
565 570 575
Ala Thr Gly Pro Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Ala
580 585 590
Asn Cys Val His Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr
595 600 605
Lys Ser Glu His Met Thr Glu Leu Lys Glu Lys Phe Lys Arg Met Cys
610 615 620
Asp Lys Ser Gln Ile Arg Lys Arg Tyr Met His Leu Thr Glu Glu Tyr
625 630 635 640
Leu Ala Glu Asn Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Leu Asp
645 650 655
Ala Arg Gln Asp Ile Val Val Val Glu Val Pro Lys Leu Gly Lys Ala
660 665 670
Ala Ala Gln Lys Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile
675 680 685
Thr His Leu Val Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala
690 695 700
Asp Tyr Gln Leu Thr Lys Met Leu Gly Leu Arg Pro Ser Val Asn Arg
705 710 715 720
Leu Met Met Tyr Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg
725 730 735
Val Ala Lys Asp Leu Ala Glu Asn Asn Arg Gly Ala Arg Val Leu Val
740 745 750
Val Cys Ser Glu Ile Thr Ala Val Thr Phe Arg Gly Pro Ser Glu Ser
755 760 765
His Leu Asp Ser Met Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala
770 775 780
Ala Val Ile Val Gly Ala Asp Pro Asp Glu Arg Val Glu Arg Pro Leu
785 790 795 800
Phe Gln Leu Val Ser Ala Ser Gln Thr Ile Leu Pro Asp Ser Glu Gly
805 810 815
Ala Ile Asp Gly His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu
820 825 830
Lys Asp Val Pro Gly Leu Ile Ser Lys Asn Ile Glu Arg Ser Leu Glu
835 840 845
Glu Ala Phe Lys Pro Leu Gly Ile Thr Asp Tyr Asn Ser Ile Phe Trp
850 855 860
Val Ala His Pro Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys
865 870 875 880
Val Gly Leu Glu Lys Glu Arg Met Arg Ala Thr Arg His Val Leu Ser
885 890 895
Glu Tyr Gly Asn Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu
900 905 910
Met Arg Lys Arg Ser Ala Glu Asp Gly Arg Ala Thr Thr Gly Glu Gly
915 920 925
Phe Glu Trp Gly Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu
930 935 940
Thr Val Val Leu His Ser Val Pro Ile Thr Thr Gly Ala Ala Ile Thr
945 950 955 960
Ala Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Phe Met
965 970 975
Ala Thr Ile Ser Ala Val Gln Val Glu Phe Leu Glu Phe Pro Ala Val
980 985 990
Val Thr Ser Pro Ala Ser Gly Lys Thr Tyr Phe Leu Gly Gly Ala Gly
995 1000 1005
Glu Arg Gly Leu Thr Ile Glu Gly Lys Phe Ile Lys Phe Thr Gly Ile
1010 1015 1020
Gly Val Tyr Leu Glu Asp Lys Ala Val Pro Ser Leu Ala Ala Lys Trp
1025 1030 1035 1040
Lys Gly Lys Thr Ser Glu Glu Leu Val His Thr Leu His Phe Tyr Arg
1045 1050 1055
Asp Ile Ile Ser Gly Pro Phe Glu Lys Leu Ile Arg Gly Ser Lys Ile
1060 1065 1070
Leu Pro Leu Ala Gly Ala Glu Tyr Ser Lys Lys Val Met Glu Asn Cys
1075 1080 1085
Val Ala His Met Lys Ser Val Gly Thr Tyr Gly Asp Ala Glu Ala Ala
1090 1095 1100
Ala Ile Glu Lys Phe Ala Glu Ala Phe Lys Asn Val Asn Phe Ala Pro
1105 1110 1115 1120
Gly Ala Ser Val Phe Tyr Arg Gln Ser Pro Asp Gly Ile Leu Gly Leu
1125 1130 1135
Ser Phe Ser Glu Asp Ala Thr Ile Pro Glu Lys Glu Ala Ala Val Ile
1140 1145 1150
Glu Asn Lys Ala Val Ser Ala Ala Val Leu Glu Thr Met Ile Gly Glu
1155 1160 1165
His Ala Val Ser Pro Asp Leu Lys Arg Ser Leu Ala Ser Arg Leu Pro
1170 1175 1180
Ala Val Leu Ser His Gly Ile Ile Val
1185 1190
<210> 6
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gaacagattg gtggtggatc catggcacct tctccacaa 39
<210> 7
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cgacccacct ccgcccgacc cacctccgcc actagtattg gccaccacca aacc 54
<210> 8
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ggcggaggtg ggtcggctag catggccggc gcgactgtg 39
<210> 9
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
actgcccccg ccacccgatc ccccgccacc ggatccggcg gtgatggccg ctccg 55
<210> 10
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ggtggcgggg gcagtgaatt catggcaacg atcagcgcg 39
<210> 11
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gtggtggtgg tggtgctcga gtcagactat aatgccgtgg c 41
<210> 12
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
acgacgacga caaggccatg gccggcgcga ctgtg 35

Claims (4)

1.一种从头合成黄烷酮的三功能酶,其特征在于:所述三功能酶的氨基酸序列如SEQID NO.5所示。
2.一种权利要求1所述从头合成黄烷酮的三功能酶的合成方法,其特征在于,包括以下步骤:
步骤1、从大豆中克隆4-香豆酰辅酶A连接酶基因4CL1和查尔酮异构酶基因CHI、从高粱中克隆查尔酮合酶基因CHS2至原核表达载体pET-32a-SUMO,构建重组质粒pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI;克隆4CL1基因时,设计一对PCR引物:正向引物为5’-GAACAGATTGGTGGTGGATCCATGGCACCTTCTCCACAA-3’;
反向引物为5’-CGACCCACCTCCGCCCGACCCACCTCCGCCACTAGTATTGGCCACCACCAAACC-3’;
克隆CHS2基因时,设计一对PCR引物:
正向引物为5’-GGCGGAGGTGGGTCGGCTAGCATGGCCGGCGCGACTGTG-3’;
反向引物为5’-ACTGCCCCCGCCACCCGATCCCCCGCCACCGGATCCGGCGGTGATGGCCGCTCCG-3’;
克隆CHI基因时,设计一对PCR引物:
正向引物为5’-GGTGGCGGGGGCAGTGAATTCATGGCAACGATCAGCGCG-3’;
反向引物为5’-GTGGTGGTGGTGGTGCTCGAGTCAGACTATAATGCCGTGGC-3’;
步骤2、将重组质粒pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI转化大肠杆菌表达株,经IPTG诱导、表达,纯化得到重组酶蛋白。
3. 根据权利要求2所述一种从头合成黄烷酮的三功能酶的合成方法,其特征在于,所述步骤2中,将重组质粒pET-32a-SUMO-4CL1-(GGGGS)2-CHS2-(GGGGS)2-CHI转化大肠杆菌表达株Rosetta(DE3),在16℃条件下由0.05 mM IPTG诱导表达12h,离心收集大肠杆菌,采用细菌裂解缓冲液重悬菌体,经超声破碎后,用镍琼脂糖凝胶纯化重组蛋白。
4.一种权利要求1所述三功能酶在生物催化4-香豆酸合成黄烷酮中的应用,其特征在于,所述应用为体外酶促合成黄烷酮。
CN202110817915.1A 2021-07-20 2021-07-20 一种从头合成黄烷酮的三功能酶及其合成方法和应用 Active CN113528471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110817915.1A CN113528471B (zh) 2021-07-20 2021-07-20 一种从头合成黄烷酮的三功能酶及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110817915.1A CN113528471B (zh) 2021-07-20 2021-07-20 一种从头合成黄烷酮的三功能酶及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN113528471A CN113528471A (zh) 2021-10-22
CN113528471B true CN113528471B (zh) 2023-05-30

Family

ID=78128933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110817915.1A Active CN113528471B (zh) 2021-07-20 2021-07-20 一种从头合成黄烷酮的三功能酶及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN113528471B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140344A1 (en) * 2010-05-07 2011-11-10 Massachusetts Institute Of Technology Strains for the production of flavonoids from glucose
CN103484420B (zh) * 2013-10-15 2015-05-13 江南大学 一株以酪氨酸为底物合成柚皮素的基因工程菌及其构建方法
US10954543B2 (en) * 2015-11-02 2021-03-23 Rensselaer Polytechnic Institute Microbial polycultures and methods of use thereof
CN108300728A (zh) * 2017-01-12 2018-07-20 中国科学院沈阳应用生态研究所 一种TrxA和SUMO双促溶表达标签序列及应用

Also Published As

Publication number Publication date
CN113528471A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN104357418B (zh) 一种糖基转移酶及其突变体在合成人参皂苷Rh2中的应用
CN113322288B (zh) 新型黄酮羟基化酶、合成黄酮碳苷类化合物的微生物及其应用
CN113186183B (zh) 双功能二倍半萜/二萜合酶LcTPS2、编码基因及其产物和应用
WO2020048523A1 (zh) 合成黄芩素和野黄芩素的微生物、其制备方法及其应用
CN114507648B (zh) 一类p450酶突变体及其应用
CN115873836A (zh) 一种橙花叔醇合成酶及应用
CN111154665B (zh) 一株重组解脂耶罗维亚酵母及其构建方法和应用
CN113528471B (zh) 一种从头合成黄烷酮的三功能酶及其合成方法和应用
CN107880134B (zh) 一种酶促合成山奈酚的方法
CN113106109A (zh) 一种突变酶cyp153a m228l及其在合成10-羟基-2-癸烯酸中的应用
CN110317765B (zh) 一种高产香叶醇葡萄糖苷的大肠杆菌表达菌株及其应用
CN113621629B (zh) 一种基于丙二酰辅酶a再生的柚皮素体外酶促合成方法
CN110055232B (zh) 二个甘草蔗糖合酶及其在合成甘草次酸糖基化衍生物中的应用
CN107903227B (zh) 琥珀酸酐类化合物、与其相关的基因和蛋白及其制备方法
CN114717170B (zh) 异源合成黄酮类化合物的宿主细胞及其应用
CN114686452B (zh) 一种人工蛋白骨架及其应用
CN104212772A (zh) 一种来源于虎眼万年青的4-香豆酸辅酶a连接酶,其核苷酸序列及应用
CN114774442B (zh) 一种产灯盏乙素的重组解脂耶氏酵母及其构建方法和用途
CN111454338B (zh) 塞普霉素前体肽的突变体、其应用及制得的塞普霉素类似物
CN113755458B (zh) 一种参与紫草素和/或阿卡宁生物合成的cyp82ar2蛋白及其编码基因与应用
CN117586970A (zh) 细胞色素p450氧化酶变体及其应用
CN117625506A (zh) 一种生产n-乙酰基-反式-4-羟基脯氨酸的工程菌及应用
KR101667677B1 (ko) 재조합 ST6Gal1 단백질을 활성형으로 제조하는 방법
Uzair et al. From Cells to Cell-Free Platforms: A Comprehensive Overview
CN116926033A (zh) 一类提高β-烟酰胺单核苷酸产量的突变体,其编码基因、氨基酸序列及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant