CN113527640A - 一种用烷硫基来取代噻并苯类共轭聚合物及其应用 - Google Patents

一种用烷硫基来取代噻并苯类共轭聚合物及其应用 Download PDF

Info

Publication number
CN113527640A
CN113527640A CN202110756904.7A CN202110756904A CN113527640A CN 113527640 A CN113527640 A CN 113527640A CN 202110756904 A CN202110756904 A CN 202110756904A CN 113527640 A CN113527640 A CN 113527640A
Authority
CN
China
Prior art keywords
alkylthio
polymer
alkyl
conjugated polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110756904.7A
Other languages
English (en)
Inventor
夏养君
周渊
郭鹏智
同军锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Jiaotong University
Original Assignee
Lanzhou Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Jiaotong University filed Critical Lanzhou Jiaotong University
Priority to CN202110756904.7A priority Critical patent/CN113527640A/zh
Publication of CN113527640A publication Critical patent/CN113527640A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种用含烷硫基取代基来取代噻并苯类共轭聚合物,所述的含烷硫基取代的噻并苯类共轭聚合物主要含Ar1和Ar2两部分构成,其化学结构如式I所示。其中,Ar1为烷硫基修饰的噻并苯稠环共轭单元,Ar2为含共轭π桥或不含共轭π桥的缺电子单元部分。通过在噻并苯单元上引入烷硫基均可提高此类聚合物的介电常数,利于以此类聚合物为基础的光电器件中激子的拆分,抑制激子复合,进而提高光电器件的性能。

Description

一种用烷硫基来取代噻并苯类共轭聚合物及其应用
技术领域
本发明涉及共轭聚合物材料技术领域,具体的说涉及一种用烷硫基来取代噻并苯类共轭聚合物及其应用。
背景技术
在清洁、绿色的太阳能利用技术中,具有成本低廉、质量轻、制作工艺简单、可制备大面积柔性器件等突出优点的聚合物太阳能电池,具有广阔的发展前景,已成为当今新材料与新能源领域最具活力的研究方向(Li G.,Zhu R.and Yang Y.Nat.Photonics,2012,6,153–161;Li Y.Acc.Chem.Res.,2012,45,723–733;Lu L.,Zheng T.,Wu Q.,SchneiderA.M.,Zhao D and Yu L.Chem.Rev.,2015,115,12666-12731.)。借助于新材料开发和器件制备工艺优化,单节本体异质结型聚合物太阳能电池的能量转化效率(PCE)已突破13%(Zhao W.,Li S.,Yao H.,Zhang S.,Zhang Y.,Yang B.and HouJ.J.Am.Chem.Soc.,2017,139,7148–7151)。虽然电池的PCE已离商业化和大规模制备越来越近,但是对构成光敏活性层的关键材料共轭聚合物结构进行设计和研究依旧是当前研究的核心,对促进电池进一步发展具有重要意义。
烷硫基侧链被证实是一种调节共轭聚合物的吸收光谱、分子能级、链间聚集行为,进而改善光伏器件性能的易于实施且非常有效策略之一(Huo L.,Zhou Y.,LiY.Macromol.Rapid Commun.,2009,30,925–931;Mei J.and Bao Z.Chem.Mater.,2014,26,604-615)。最近,利用烷硫基侧链对共轭聚合物结构进行修饰,明显改善电池性能的范例包括下面文献:(1)Cui C.,Wong W.-Y.and Li Y.EnergyEnviron.Sci.,2014,7,2276–2284;(2)Ye L.,Zhang S.,Zhao W.,Yao H.and Hou J.Chem.Mater.,2014,26,3603-3605;(3)Kim J.-H.,Park J.B,Jung I.H.,Yoon S.C.,Kwak J.and Hwang D.-H.J.Mater.Chem.C,2015,3,4250–4253;(4)Zhang S.,Uddin M.A.,Zhao W.,Ye L.,Woo H.Y.,Liu D.,YangB.,Yao H.,Cui Y.and Hou J;Polym.Chem.,2015,6,2752–2760;(5)Cui C.,He Z.,Wu Y.,Cheng X.,Wu H.,Li Y.,Cao Y.and Wong W.-Y.EnergyEnviron.Sci.,2016,9,885–891;(6)Bin H.,Zhang Z.-G.,Gao L.,Chen S.,Zhong L.,Xue L.,Yang C.,and LiY.J.Am.Chem.Soc.,2016,138,4657-4664.烷硫基除了在拓宽吸收光谱、降低HOMO能级和调控聚合物链间聚集作用之外,在调控聚合物的介电常数方面也扮演重要角色。
聚合物半导体材料与无机半导体材料相比,最大的区别是介电常数(εr=2~4)较低,而无机半导体的εr则通常在介于10和16之间(Proctor C.M.,Kuika M.,Nguyena T.-Q.Prog.Polym.Sci.,2013,38,1941–1960;Constantinou I.,Yi X.,Shewmon N.T.,KlumpE.D.,Peng C.,Garakyaraghi S.,Lo C.K.,Reynolds J.R.,Castellano F.N.and SoF.Adv.EnergyMater.,2017,7,1601947)。聚合物半导体吸收光子后并非直接产生自由的电子和空穴,而是形成受库仑力
Figure BDA0003148048290000021
束缚的电子空穴对,即激子。共轭聚合物中的Frenkel激子束缚能
Figure BDA0003148048290000022
为数百个meV、激子半径仅
Figure BDA0003148048290000023
左右,需要依靠异质结界界面来进行解离。因此高介电常数的可显著降低激子束缚能,从而显著提高聚合物太阳能电池器件的电荷分离效率。Jen等设在以DPP为缺电子单元的交替共聚物上引入含腈基端基的柔性侧链,使聚合物的εr从3.5提高到5.0,发现相应的双层器件的非孪生复合损失被抑制、载流子迁移寿命被延长,从而使器件开路电压(VOC)从0.63V增加到0.71V、短路电流密度(JSC)从2.40mA cm–2提高到3.0mA cm–2、填充因子(FF)从47%提高到68%和能量转化效率(PCE)从从0.72%提高到1.44%(Cho N.,Schlenker C.W.,Knesting K.M.,Koelsch P.,Yip H.-L.,Ginger D.S.and Jen A.K.-Y.Adv.EnergyMater.,2014,4,1301857)。最近瑞典查尔姆斯理工大学的王二刚等在以PTB7-Th为电子给体材料和系列NDI-氟代噻吩为电子受体材料的全聚合物太阳能电池体系中,发现随这共混层的εr随受体材料的氟含量增大而增大,从而减小了激子束缚能、促进激子解离效率,使相应电池的PCE明显提高(Xu X.,Li Z.,Wang J.,Lin B.,Ma W.,Xia Y.,Andersson M.R.Wang E.Nano Energy,DOI:10.1016/j.nanoen.2018.01.02)。
因此,如何在聚合物共轭单元中引入烷硫基及烷硫基取代的芳基以及烷硫基取代的芳杂环基团,从而有效提高对应聚合物的介电常数是本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本发明提供了一种烷硫基取代噻并苯类共轭聚合物来提高噻并苯类共轭聚合物的介电常数,降低激子束缚能减少电荷复合损失,从而实现电池性能的提升。
为了实现上述目的,本发明采用如下技术方案:
一种用烷硫基来取代噻并苯类共轭聚合物,其结构如式Ⅰ所示:
Figure BDA0003148048290000031
其中,n为所述共轭聚合物的重复单元个数,且n取值为5-1000的正整数;所述Ar1为富电子的噻并苯稠环单元;Ar2为下面所述式Ⅵ所示基团或式V所示基团,
Figure BDA0003148048290000032
其中,式VI和式V所示基团中,A单元表示缺电子基团;Ar3为共轭π桥。
进一步,所述富电子的噻并苯稠环单元,选自下述结构中的任一种:
Figure BDA0003148048290000041
其中,所述式II-1至式II-8中的虚线为Ar1基团与Ar2基团的连接位点;
更进一步,所述结构式II-1至结构式II-8中的侧链R1为下述结构单元中的任一种:
Figure BDA0003148048290000042
其中,式III-1中的R2为碳原子数为1~30的直链或支链烷基;
式III-2至式III-8中的R3、R4、R5为至少一个为碳原子数为1~30的直链或支链烷硫基,或碳原子数为1~30的直链或支链磺酰基;其余的R3、R4、R5独立地选自:氢、卤素、卤代烷基、烯基、烷基、芳烷基、杂烷基、烷氧基、烷硫基、氰基、硝基、酯基中的任一种,且所述的烷基为碳原子数为1~30的直链或支链烷基;式III-1至式III-8中的虚线为R1基团与Ar1基团的连接位点。
进一步,所述缺电子基团为下述结构中的任一种:
Figure BDA0003148048290000051
其中,X代表氧原子、硫原子或硒原子;Y代表氢原子或氟原子;R6为氢、卤素、烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基,且所述烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基中的烷基均为碳原子数为1至30的支链或支链烷基或环烷基;式VI-1至式VI-21中的虚线为A基团与Ar3基团的连接位点,或者为A基团与Ar1的连接位点。
更进一步,所述共轭π桥,为下述基团中的任一种:
Figure BDA0003148048290000061
其中,X代表氧原子、硫原子或硒原子;R7为氢、卤素、烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基,且所述烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基中的烷基均为碳原子数为1至30的支链或支链烷基或环烷基;式VII-1至式VII-4中的虚线为Ar3基团与A基团的连接位点;
优选的,上述含烷硫基的噻并苯类聚合物具体可为式PBDT-T-DPP、PBDT-TS-DPP;PDBDT-T-DPP、PBDT-TS-DPP;PDTBDT-T-DTB、PDTBDT-TS-DTB、PDTBDT-DTS-DTB;PBDT-T-DTNT、PBDT-TS-DTNT、PBDT-DTS-DTNT。
其具体结构式为:
Figure BDA0003148048290000062
Figure BDA0003148048290000071
一种聚合物介电常数测试器件,其结构为:ITO/PEDOT:PSS/上述共轭聚合物/MoO3/Al。
本发明还提供了所述聚合物介电常数测试器件的制备方法,包括以下步骤:
(1)用洗洁净水溶液清洗ITO表面,再用超声洗涤,然后保存在异丙醇中,防止用前灰尘对其污染;
(2)将ITO基板进行臭氧等离子体处理,在等离子体处理过的ITO玻璃上立即旋涂PEDOT:PSS溶液,然后在100~150℃条件下退火5~30min;
(3)将退火后的ITO基板转入手套箱中旋涂150nm以上厚度的共轭聚合物,静置5~30min后,在真空度大于5×10-4的条件下依次蒸镀MoO3和Al电极,得到聚合物介电常数测试器件。
进一步,上述步骤(1)中超声清洗方法为按顺序依次是清洗液两次、超纯水一次、丙酮两次、超纯水一次和异丙醇两次,每次超声5~30min。
进一步,上述步骤(2)中臭氧等离子体处理时间为5-30min;
更进一步,上述步骤(2)中旋涂掺有不同浓度丙三醇的PEDOT:PSS溶液时,转速是500~3000r/s,旋涂时间为40s。
进一步,上述步骤(3)中MoO3厚度为10nm,Al厚度为100nm;活性层的有效面积为0.16cm2
进一步,器件制作好后,在仪器名为KEYSIGHT E4980A测试出电容,根据公式计算出介电常数。
Figure BDA0003148048290000081
其中,ε0为材料的介电常数,C为测试材料的电容,ε0为真空介电常数,数值为8.85×10-12F/m,d为材料的厚度,A是电池的面积为0.16cm2
本发明还提供了一种光敏活性层,由上述含烷硫基的噻并苯共轭聚合物和n-型电子受体组成;其中,n-型电子受体组成为富勒烯及其衍生物、非富勒烯类有机小分子、非富勒烯类聚合物电子受体材料中的至少一种;
光敏活性层中含烷硫基的噻并苯类共轭聚合物与n-型电子受体材料的共混质量比为1:0.1~10:1。
进一步,所述富勒烯衍生物为PCBM和含茚富勒烯;
所述PCBM为[6,6]-苯基C61丁酸甲酯或[6,6]-苯基C71丁酸甲酯。
本发明还提供了所述用烷硫基来取代噻并苯类共轭聚合物在制备薄膜半导体器件、电化学器件、光伏器件和光电器件中的应用。
本发明还提供了所述用烷硫基来取代噻并苯类共轭聚合物在提高噻并苯类共轭聚合物的介电常数中的应用。
本发明的有益效果在于:本发明系统研究在共轭聚合物主链引入烷硫基侧链来调节聚合物能级、聚集性能、光伏性能中发现,在聚合物共轭单元中引入烷硫基及烷硫基取代的芳基以及烷硫基取代的芳杂环基团,不但可以对相应聚合物的能聚集、电荷传输性能以及进行调节,而且通过聚合物共轭单元中引入烷硫基及烷硫基取代的芳基以及烷硫基取代的芳杂环基团,可以有效的提高对应聚合物的介电常数。
本发明用含烷硫基来取代噻并苯类共轭聚合物,可以显著提高此类聚合物的介电常数,利于以此类聚合物为基础的光电器件中激子的拆分,抑制激子复合,进而提高其光电器件性能。
试验证明,本发明提供的共轭聚合物具有良好的光电活性,可用于设计高效的TFT及聚合物光伏器件,具有良好的市场应用前景。
附图说明
图1为实施例1中的聚合物的介电常数-频率(εr-f)图;
图2为实施例1中的聚合物的电流密度-电压(J-V)曲线图;
图3为实施例1中的聚合物外量子效率(EQE)曲线图;
图4为实施例2中的聚合物的介电常数-频率(εr-f)图;
图5为实施例2中的聚合物的电流密度-电压(J-V)曲线图;
图6为实施例2中的聚合物的外量子效率(EQE)曲线图;
图7为实施例3中的介电常数-频率(εr-f)图;
图8为实施例4中的聚合物介电常数-频率(εr-f)图;
图9为实施例4中的聚合物电流密度-电压(J-V)曲线图;
图10为实施例4中的聚合物外量子效率(EQE)曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
聚合物PBDT-TS-DPP和对照物PBDT-T-DPP的介电常数与器件结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al的电池性能;
聚合物PBDT-TS-DPP和对照物PBDT-T-DPP介电常数的测试:首先,将ITO的清洗,用表面活性剂清洗其表面,再用超声洗涤,按顺序依次分别是清洗液两次、超纯水一次、丙酮两次、超纯水一次和异丙醇两次,每次超声5~30min,清洗完成后将其保存到异丙醇中,防止用前灰尘对其污染。然后,ITO基板进行臭氧等离子体处理,时间为5~30min。最后,在等离子体处理过的ITO玻璃上立即旋涂掺有不同浓度丙三醇的PEDOT:PSS溶液,转速是500~3000r/s,旋涂40s,然后在100~150℃条件下退火5~30min,随后转入手套箱旋涂150nm以上的聚合物层,静置5~30min后。最后在真空度大于5×10-4的条件下依次蒸镀MoO3(10nm)和Al(100nm)电极,活性层的有效面积为0.16cm2。测试的器件结构为:ITO/PEDOT:PSS/Polymers/MoO3/Al,器件制作好后,在仪器名为KEYSIGHT E4980A测试出电容,根据公式计算出介电常数列于表2中。
Figure BDA0003148048290000101
其中,εr材料的介电常数,C测试材料的电容,ε0真空介电常数8.85×10-12F/m,d为材料的厚度,A是电池的面积0.16cm2
聚合物PBDT-TS-DPP和对照物PBDT-T-DPP器件性能:在清洗干净的透明氧化铟锡(ITO)玻璃衬底上制备倒置的聚合物太阳能电池。首先,将阴极修饰层PFN(J.Am.Chem.Soc.2013,135,15326)旋涂于洗干净的ITO玻璃上。然后,将聚合物PBDT-TS-DPP和对照物PBDT-T-DPP溶解于氯苯中,然后与不同质量比的[6,6]-苯基C61丁酸甲酯或[6,6]-苯基C71丁酸甲酯或含茚富勒烯共混,确定最优质量比,(在最优质量比的条件下,加入3%1,8-二碘辛烷(DIO))旋涂成薄膜;最后,在10-4Pa的压力下相继蒸镀三氧化钼和银的薄层,得到反式结构的聚合物太阳能电池。在填充N2的手套箱中使用太阳能模拟器的AM 1.5G强度(100mW/cm2)下对所制备的聚合物太阳能电池器件的开路电压、短路电流及填充因子这三个参数进行测试,见表1。
表1聚合物PBDT-TS-DPP和对照物PBDT-T-DPP的介电常数与相应光伏器件器件(结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al)性能参数
Figure BDA0003148048290000111
实施例2
聚合物PDTBDT-TS-DPP和对照物PDTBDT-T-DPP的介电常数与器件结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al的电池性能
聚合物PDTBDT-TS-DPP和对照物PDTBDT-T-DPP介电常数的测试:首先,将ITO的清洗,用表面活性剂清洗其表面,再用超声洗涤,按顺序依次分别是清洗液两次、超纯水一次、丙酮两次、超纯水一次和异丙醇两次,每次超声5~30min,清洗完成后将其保存到异丙醇中,防止用前灰尘对其污染。然后,ITO基板进行臭氧等离子体处理,时间为5~30min。最后,在等离子体处理过的ITO玻璃上立即旋涂掺有不同浓度丙三醇的PEDOT:PSS溶液,转速是500~3000r/s,旋涂40s,然后在100~150℃条件下退火5~30min,随后转入手套箱旋涂150nm以上的聚合物层,静置5~30min后。最后在真空度大于5×10-4的条件下依次蒸镀MoO3(10nm)和Al(100nm)电极,活性层的有效面积为0.16cm2。测试的器件结构为:ITO/PEDOT:PSS/Polymers/MoO3/Al,器件制作好后,在仪器名为KEYSIGHT E4980A测试出电容,根据公式计算出介电常数列于表3中。
Figure BDA0003148048290000112
其中,εr材料的介电常数,C测试材料的电容,ε0真空介电常数8.85×10-12F/m,d为材料的厚度,A是电池的面积0.16cm2
聚合物PDTBDT-TS-DPP和对照物PDTBDT-T-DPP器件性能:在清洗干净的透明氧化铟锡(ITO)玻璃衬底上制备倒置的聚合物太阳能电池。首先,将阴极修饰层PFN(J.Am.Chem.Soc.2013,135,15326)旋涂于洗干净的ITO玻璃上。然后,将聚合物PDTBDT-TS-DPP和对照物PDTBDT-T-DPP溶解于氯苯中,然后与不同质量比的[6,6]-苯基C61丁酸甲酯或[6,6]-苯基C71丁酸甲酯或含茚富勒烯共混,确定最优质量比,(在最优质量比的条件下,加入3%1,8-二碘辛烷(DIO))旋涂成薄膜;最后,在10-4Pa的压力下相继蒸镀三氧化钼和银的薄层,得到反式结构的聚合物太阳能电池。在填充N2的手套箱中使用太阳能模拟器的AM1.5G强度(100mW/cm2)下对所制备的聚合物太阳能电池器件的开路电压、短路电流及填充因子这三个参数进行测试,见表2。
表2聚合物PBDT-TS-DPP和对照物PBDT-T-DPP的介电常数与相应光伏器件器件(结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al)性能参数
Figure BDA0003148048290000121
实施例3
聚合物PDTBDT-DTS-DTB、PDTBDT-TS-DTB和对照物PBDT-T-DTB的介电常数与器件结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al的电池性能
聚合物PDTBDT-DTS-DTB、PDTBDT-TS-DTB和对照物PBDT-T-DTB介电常数的测试:首先,将ITO的清洗,用表面活性剂清洗其表面,再用超声洗涤,按顺序依次分别是清洗液两次、超纯水一次、丙酮两次、超纯水一次和异丙醇两次,每次超声5~30min,清洗完成后将其保存到异丙醇中,防止用前灰尘对其污染。然后,ITO基板进行臭氧等离子体处理,时间为5~30min。最后,在等离子体处理过的ITO玻璃上立即旋涂掺有不同浓度丙三醇的PEDOT:PSS溶液,转速是500~3000r/s,旋涂40s,然后在100~150℃条件下退火5~30min,随后转入手套箱旋涂150nm以上的聚合物层,静置5~30min后。最后在真空度大于5×10-4的条件下依次蒸镀MoO3(10nm)和Al(100nm)电极,活性层的有效面积为0.16cm2。测试的器件结构为:ITO/PEDOT:PSS/Polymers/MoO3/Al,器件制作好后,在仪器名为KEYSIGHT E4980A测试出电容,根据公式计算出介电常数列于表4中。
Figure BDA0003148048290000131
其中,εr材料的介电常数,C测试材料的电容,ε0真空介电常数8.85×10-12F/m,d为材料的厚度,A是电池的面积0.16cm2
聚合物PDTBDT-DTS-DTB、PDTBDT-TS-DTB和对照物PBDT-T-DTB器件性能:在清洗干净的透明氧化铟锡(ITO)玻璃衬底上制备倒置的聚合物太阳能电池。首先,将阴极修饰层PFN(J.Am.Chem.Soc.2013,135,15326)旋涂于洗干净的ITO玻璃上。然后,将聚合物PDTBDT-DTS-DTB、PDTBDT-TS-DTB和对照物PBDT-T-DTB溶解于氯苯中,然后与不同质量比的[6,6]-苯基C61丁酸甲酯或[6,6]-苯基C71丁酸甲酯或含茚富勒烯共混,确定最优质量比,(在最优质量比的条件下,加入含3%1,8-二碘辛烷(DIO))旋涂成薄膜;最后,在10-4Pa的压力下相继蒸镀三氧化钼和银的薄层,得到反式结构的聚合物太阳能电池。在填充N2的手套箱中使用太阳能模拟器的AM 1.5G强度(100mW/cm2)下对所制备的聚合物太阳能电池器件的开路电压、短路电流及填充因子这三个参数进行测试,见表3。
表3聚合物PDTBDT-DTS-DTB、PDTBDT-TS-DTB和对照物PDTBDT-T-DTB的介电常数与相应光伏器件器件(结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al)性能参数
Figure BDA0003148048290000132
实施例4
聚合物PBDT-DTS-DTNT、PDTBDT-TS-DTNT和对照物PBDT-T-DTNT的介电常数与器件结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al的电池性能
聚合物PBDT-DTS-DTNT、PDTBDT-TS-DTNT和对照物PBDT-T-DTNT介电常数的测试:首先,将ITO的清洗,用表面活性剂清洗其表面,再用超声洗涤,按顺序依次分别是清洗液两次、超纯水一次、丙酮两次、超纯水一次和异丙醇两次,每次超声5~30min,清洗完成后将其保存到异丙醇中,防止用前灰尘对其污染。然后,ITO基板进行臭氧等离子体处理,时间为5~30min。最后,在等离子体处理过的ITO玻璃上立即旋涂掺有不同浓度丙三醇的PEDOT:PSS溶液,转速是500~3000r/s,旋涂40s,然后在100~150℃条件下退火5~30min,随后转入手套箱旋涂150nm以上的聚合物层,静置5~30min后。最后在真空度大于5×10-4的条件下依次蒸镀MoO3(10nm)和Al(100nm)电极,活性层的有效面积为0.16cm2。测试的器件结构为:ITO/PEDOT:PSS/Polymers/MoO3/Al,器件制作好后,在仪器名为KEYSIGHT E4980A测试出电容,根据公式计算出介电常数列于表4中。
Figure BDA0003148048290000141
其中,εr材料的介电常数,C测试材料的电容,ε0真空介电常数8.85×10-12F/m,d为材料的厚度,A是电池的面积0.16cm2
表4聚合物PBDT-DTS-DTNT、PBDT-TS-DTNT和对照物PBDT-T-DTNT的介电常数与相应光伏器件器件(结构为ITO/PEDOT:PSS/聚合物:PC71BM/PFN/Al)性能参数
Figure BDA0003148048290000142
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种用烷硫基来取代噻并苯类共轭聚合物,其特征在于,其结构如式Ⅰ所示:
Figure FDA0003148048280000011
其中,n为所述共轭聚合物的重复单元个数,且n取值为5-1000的正整数;所述Ar1为富电子的噻并苯稠环单元;Ar2为下面所述式Ⅵ所示基团或式V所示基团,
Figure FDA0003148048280000012
其中,式VI和式V所示基团中,A单元表示缺电子基团;Ar3为共轭π桥。
2.根据权利要求1所述一种用烷硫基来取代噻并苯类共轭聚合物,其特征在于,所述富电子的噻并苯稠环单元,选自下述结构中的任一种:
Figure FDA0003148048280000013
3.根据权利要求2所述一种用烷硫基来取代噻并苯类共轭聚合物,其特征在于,所述结构式II-1至结构式II-8中的侧链R1为下述结构单元中的任一种:
Figure FDA0003148048280000021
其中,R2为碳原子数为1~30的直链或支链烷基;
R3、R4、R5为碳原子数为1~30的直链或支链烷硫基,或碳原子数为1~30的直链或支链磺酰基;或选自:氢、卤素、卤代烷基、烯基、烷基、芳烷基、杂烷基、烷氧基、烷硫基、氰基、硝基、酯基中的任一种,且所述的烷基为碳原子数为1~30的直链或支链烷基。
4.根据权利要求1所述一种用烷硫基来取代噻并苯类共轭聚合物,其特征在于,所述缺电子基团为下述结构中的任一种:
Figure FDA0003148048280000031
其中,X代表氧原子、硫原子或硒原子;Y代表氢原子或氟原子;R6为氢、卤素、烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基,且所述烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基中的烷基均为碳原子数为1至30的支链或支链烷基或环烷基。
5.根据权利要求1所述一种用烷硫基来取代噻并苯类共轭聚合物,其特征在于,所述共轭π桥,为下述基团中的任一种:
Figure FDA0003148048280000032
其中,X代表氧原子、硫原子或硒原子;R7为氢、卤素、烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基,且所述烷基、烷氧基、烷硫基、酯基、羰基、芳烷基或杂烷基中的烷基均为碳原子数为1至30的支链或支链烷基或环烷基。
6.一种聚合物介电常数测试器件,其特征在于,其结构为:ITO/PEDOT:PSS/权利要求1-5任一项所述共轭聚合物/MoO3/Al。
7.一种权利要求6所述聚合物介电常数测试器件的制备方法,其特征在于,包括以下步骤:
(1)用洗洁净水溶液清洗ITO表面,再用超声洗涤,然后保存在异丙醇中;
(2)将ITO基板进行臭氧等离子体处理,在等离子体处理过的ITO玻璃上立即旋涂PEDOT:PSS溶液,然后在100~150℃条件下退火5~30min;
(3)将退火后的ITO基板转入手套箱中旋涂150nm以上厚度的权利要求1-5任一项所述的共轭聚合物,静置5~30min后,在真空度大于5×10-4的条件下依次蒸镀MoO3和Al电极,得到聚合物介电常数测试器件。
8.一种光敏活性层,其特征在于,由权利要求1-5任一项所述的含烷硫基的噻并苯共轭聚合物和n-型电子受体组成;其中,n-型电子受体组成为富勒烯及其衍生物、非富勒烯类有机小分子、非富勒烯类聚合物电子受体材料中的至少一种;
光敏活性层中含烷硫基的噻并苯类共轭聚合物与n-型电子受体材料的共混质量比为1:0.1~10:1。
9.根据权利要求1-5任一项所述用烷硫基来取代噻并苯类共轭聚合物在制备薄膜半导体器件、电化学器件、光伏器件和光电器件中的应用。
10.根据权利要求1-5任一项所述用烷硫基来取代噻并苯类共轭聚合物在提高噻并苯类共轭聚合物的介电常数中的应用。
CN202110756904.7A 2021-07-05 2021-07-05 一种用烷硫基来取代噻并苯类共轭聚合物及其应用 Pending CN113527640A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110756904.7A CN113527640A (zh) 2021-07-05 2021-07-05 一种用烷硫基来取代噻并苯类共轭聚合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110756904.7A CN113527640A (zh) 2021-07-05 2021-07-05 一种用烷硫基来取代噻并苯类共轭聚合物及其应用

Publications (1)

Publication Number Publication Date
CN113527640A true CN113527640A (zh) 2021-10-22

Family

ID=78097749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110756904.7A Pending CN113527640A (zh) 2021-07-05 2021-07-05 一种用烷硫基来取代噻并苯类共轭聚合物及其应用

Country Status (1)

Country Link
CN (1) CN113527640A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060982A (zh) * 2010-12-03 2011-05-18 华南理工大学 含萘[1,2-c:5,6-c]二[1,2,5]噻二唑的有机半导体材料及其应用
CN105367584A (zh) * 2015-09-22 2016-03-02 兰州交通大学 一种含硫的取代基取代的二噻吩衍生物及其共轭聚合物的制备方法及应用
CN110511235A (zh) * 2019-07-19 2019-11-29 山东师范大学 一种氧族元素稠合苝二酰亚胺受体材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060982A (zh) * 2010-12-03 2011-05-18 华南理工大学 含萘[1,2-c:5,6-c]二[1,2,5]噻二唑的有机半导体材料及其应用
CN105367584A (zh) * 2015-09-22 2016-03-02 兰州交通大学 一种含硫的取代基取代的二噻吩衍生物及其共轭聚合物的制备方法及应用
CN110511235A (zh) * 2019-07-19 2019-11-29 山东师范大学 一种氧族元素稠合苝二酰亚胺受体材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG CHENGLONG等: "Simultaneously enhancing the dielectric constant, photo-response and deepening HOMO levels of benzo[1,2-b;4,5-b\']dithiophene derivatives-based conjugated polymers", 《DYES AND PIGMENTS》, vol. 177 *
XUNCHANG WANG: "Low-bandgap conjugated polymers based on alkylthiothienyl-substituted benzodithiophene for efficient bulk heterojunction polymer solar cells", vol. 122, pages 96 - 104, XP085137799, DOI: 10.1016/j.polymer.2017.06.047 *

Similar Documents

Publication Publication Date Title
Liu et al. Nonfullerene tandem organic solar cells with high open-circuit voltage of 1.97 V
Zhang et al. Evaluation of small molecules as front cell donor materials for high‐efficiency tandem solar cells
Yin et al. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt
Zhen et al. An ethanolamine-functionalized fullerene as an efficient electron transport layer for high-efficiency inverted polymer solar cells
Murugan et al. Fused ring A–DA′ D–A (Y-series) non-fullerene acceptors: recent developments and design strategies for organic photovoltaics
Izawa et al. Efficient charge generation and collection in organic solar cells based on low band gap dyad molecules
Zhang et al. Enhanced performance of inverted non-fullerene organic solar cells through modifying zinc oxide surface with self-assembled monolayers
Beaupré et al. Random D–A 1–D–A 2 terpolymers based on benzodithiophene, thiadiazole [3, 4-e] isoindole-5, 7-dione and thieno [3, 4-c] pyrrole-4, 6-dione for efficient polymer solar cells
CN112018242A (zh) 一种钙钛矿太阳能电池及其制备方法
Shi et al. Solution‐Processed Titanium Chelate Used as Both Electrode Modification Layer and Intermediate Layer for Efficient Inverted Tandem Polymer Solar Cells
CN106410037A (zh) 一种基于有机小分子给体材料的双结太阳能电池器件及其制备方法
WO2013053216A1 (zh) 一种倒置结构的聚合物本体异质结太阳电池及其制备方法
Wang et al. Efficient ternary organic photovoltaic cells with better trade-off photon harvesting and phase separation by doping DIB-SQ
CN112646129B (zh) 含苯并双噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
KR101189664B1 (ko) 고전도성 버퍼층 및 저 일함수 금속 버퍼층을 도입한 유기 태양전지 및 그의 제조방법
KR20100107624A (ko) 태양 전지 및 그 제조 방법
KR20180004470A (ko) 페로브스카이트 구조의 화합물, 이를 이용한 태양전지 및 박막트랜지스터
CN113527640A (zh) 一种用烷硫基来取代噻并苯类共轭聚合物及其应用
Zhu et al. The effects of SQ additive on charge carrier transport and recombination in PCDTBT: PC71BM based ternary organic solar cells
Sacramento et al. Degradation study of inverted polymer solar cells using inkjet printed ZnO electron transport layer
Ghaderian et al. The versatility of polymers in perovskite solar cells
KR101414011B1 (ko) 유기 태양 전지 및 이의 제조 방법
He et al. High-performance as-cast non-fullerene polymer solar cells from benzo [1, 2-b: 4, 5-b′] difuran polymer via a rational copolymer design
Zhu et al. Asymmetric ITIC acceptor for asymmetric benzodithiophene polymer solar cells
CN112778504B (zh) 一种d-a型共轭聚合物给体光伏材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211022

RJ01 Rejection of invention patent application after publication