CN113527455A - Grain development related protein TaGSR1 and application thereof in wheat plant type breeding - Google Patents

Grain development related protein TaGSR1 and application thereof in wheat plant type breeding Download PDF

Info

Publication number
CN113527455A
CN113527455A CN202111006791.5A CN202111006791A CN113527455A CN 113527455 A CN113527455 A CN 113527455A CN 202111006791 A CN202111006791 A CN 202111006791A CN 113527455 A CN113527455 A CN 113527455A
Authority
CN
China
Prior art keywords
tagsr1
wheat
gene
seq
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111006791.5A
Other languages
Chinese (zh)
Other versions
CN113527455B (en
Inventor
白明义
吕金洋
樊敏
李根英
韩超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202111006791.5A priority Critical patent/CN113527455B/en
Publication of CN113527455A publication Critical patent/CN113527455A/en
Application granted granted Critical
Publication of CN113527455B publication Critical patent/CN113527455B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses an application of a grain development related protein TaGSR1 or an encoding gene thereof in wheat plant type breeding; wherein the amino acid sequence of the grain development related protein TaGSR1 is shown as SEQ ID NO.1, and the nucleotide sequence of the coding gene thereof is shown as SEQ ID NO. 2; the application in the wheat plant type breeding refers to the application of regulating and controlling the wheat plant height or the application of regulating and controlling the included angle of wheat leaves. The invention defines the relationship between the TaGSR1 gene of wheat and the plant height and leaf angle of wheat, and verifies that the high expression of TaGSR1 can reduce the plant height of wheat and the leaf angle. The invention realizes the rapid breeding of the ideal plant type of the wheat by utilizing the genetic engineering technology, provides a feasible method for improving the lodging resistance of the wheat and reasonably close planting, and has important breeding application value and wide market application prospect.

Description

Grain development related protein TaGSR1 and application thereof in wheat plant type breeding
Technical Field
The invention relates to a seed grain development related protein and application thereof, in particular to application of a seed grain development related protein TaGSR1 or an encoding gene thereof in wheat plant type breeding; belongs to the technical field of plant genetic engineering and molecular breeding.
Background
Wheat is the second largest food crop in the world, providing 20% carbohydrate and 23% protein to humans. The human food safety problem faces the problems of reduction of cultivated land area, global climate warming, continuous population growth, aggravation of environmental pollution and the like, and how to improve the wheat yield under the condition of limited resources has important significance on food safety. The green revolution of wheat reduces the plant height of wheat, increases the lodging resistance of wheat, greatly increases the yield of wheat, and proves the importance of the ideal plant type of crops to the yield.
Brassinolide (BR) as the sixth plant hormone plays an important role in the processes of cell elongation and division, leaf senescence, plant morphogenesis, plant stress resistance and the like. Due to the wide role of BR in the growth and development of plants, its application in agricultural production is also gaining increasing attention. BRI1 (Brassicasteroid-inducing 1) is used as a BR receptor located on a cell membrane, after being combined with BR, the BR receptor is mutually phosphorylated with a co-receptor BAK1(BRI1-associated receptor) to initiate downstream signal transduction and further phosphorylate BSK/CDG1 kinase, the phosphorylated BSK/CDG1 further activates BSU1(BRI 1-repressisor 1) downstream through phosphorylation, the BSU1 is used as a phosphatase, and negative regulatory factors in the BR signal channel of BIN2 are inactivated through dephosphorylation BIN2 (Brassicasteroid-inducing 2) to further regulate the expression of downstream genes.
The applicant researches and discovers that TaGSR1(Grain Size Regulator 1of Triticum aestivum L.) is a transcription factor downstream of BR signals, has a function of regulating and controlling the Size of wheat grains, and has an important regulating and controlling effect on plant types such as wheat leaf included angles and plant heights. The regulation and control function provides very important information for researching growth and development of BR in wheat and breeding of yield. Through retrieval, the coding sequence of the wheat TaGSR1 gene, the grain development related protein TaGSR1 coded by the coding sequence and the application of the protein TaGSR1 in the regulation and control of wheat plant type breeding are not reported.
Disclosure of Invention
Aiming at the defects of the prior art, the invention aims to provide the application of a seed grain development related protein TaGSR1 or a coding gene thereof in wheat plant type breeding.
The grain development related protein is characterized in that: the protein is named as protein TaGSR1, is derived from common wheat, and is the protein described in the following 1) or 2):
1) a protein consisting of an amino acid sequence shown by SEQ ID NO.1 in a sequence table;
2) the protein which is obtained by substituting and/or deleting and/or increasing one or more amino acid residues of the amino acid sequence shown by SEQ ID NO.1 in the sequence table, is related to grain development and is derived from the SEQ ID NO. 1.
Further preferred embodiments are: the amino acid sequence of the protein TaGSR1 is composed of 203 amino acids, and the amino acid sequence is shown in SEQ ID NO. 1.
The invention discloses a coding gene of the grain development related protein TaGSR1, which is characterized in that: the nucleic acid sequence of the coding gene is the nucleotide sequence of a) or b) or c) as follows:
a) a deoxyribonucleotide sequence shown by SEQ ID NO.2 in the sequence table;
b) a deoxyribonucleotide sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to the deoxyribonucleotide sequence represented by SEQ ID No.2 and encoding the protein;
c) a ribonucleotide sequence that is complementary to the deoxyribonucleotide sequence defined in a) or b) and encodes said protein under stringent conditions.
Further preferred embodiments are: the coding gene consists of 612 deoxyribonucleotides, and the nucleotide sequence of the coding gene is shown as SEQ ID NO. 2.
The invention also discloses a binary vector with the function of ectopically highly expressing the TaGSR1 gene in wheat, which is characterized in that: the binary vector is named as pLGY02-TaGSR1, and the nucleotide sequence of the binary vector is shown in SEQ ID NO. 4; the binary vector contains an expression cassette E1 of a TaGSR1 gene playing a main role in the genetic transformation process of wheat, wherein the nucleotide sequence of the expression cassette E1 is shown as SEQ ID NO.3, and the expression cassette E1 comprises the following components in sequence from upstream to downstream: ubiquitin promoter Ubi from corn, coding sequence of TaGSR1 gene, fluorescence enhanced green fluorescent protein coding gene GFP from multipipecacer, and terminator T1.
Wherein: the nucleotide sequence of the ubiquitin promoter Ubi is shown as SEQ ID NO.5, the coding sequence of the TaGSR1 gene is shown as SEQ ID NO.2, and the nucleotide sequence of the fluorescence enhanced green fluorescent protein coding gene GFP from the aequorea is shown as SEQ ID NO. 6; the nucleotide sequence of the terminator T1 is shown as SEQ ID NO. 7.
The invention further discloses application of the grain development related protein TaGSR1 or the coding gene thereof in wheat plant type breeding; wherein the amino acid sequence of the grain development related protein TaGSR1 is shown as SEQ ID NO.1, and the nucleotide sequence of the coding gene thereof is shown as SEQ ID NO. 2; the application in the wheat plant type breeding refers to the application of regulating and controlling the wheat plant height or the application of regulating and controlling the included angle of wheat leaves.
Wherein, the application method comprises the following steps: constructing a binary expression vector pLGY02-TaGSR 1of ectopic expression TaGSR1 gene, and transforming the binary expression vector into wheat to realize the ectopic high expression of TaGSR1 gene; or the binary expression vector is transformed into common wheat through agrobacterium to obtain transgenic wheat with TaGSR1 gene over-expression, so that the reduction of the plant height of the wheat and the reduction of the included angle of leaves are realized; wherein the nucleotide sequence of the TaGSR1 gene is shown in SEQ ID NO. 2.
The invention provides a grain development related protein TaGSR1 or a coding gene thereof and application thereof in optimizing wheat ideal plant type breeding; wherein, the grain development related protein TaGSR1 or the coding gene thereof is disclosed for the first time. The invention further determines that TaGSR1 is a transcription factor of BR signal downstream, has the function of regulating and controlling the size of wheat grains, and has important regulation and control effects on plant types such as wheat leaf included angle, plant height and the like. Meanwhile, experiments are utilized to confirm the relationship between the TaGSR1 gene of the wheat and the plant height and the leaf included angle of the wheat, and the high expression of the TaGSR1 is verified to reduce the plant height reduction of the wheat and the leaf included angle. The invention has the following outstanding effects: by constructing a binary expression vector pLGY02-TaGSR1 capable of ectopically expressing the TaGSR1 gene and genetically transforming the binary expression vector into common wheat to obtain a descendant with high expression of the TaGSR1 gene, the overexpression of the TaGSR1 gene is realized. Experiments prove that the obtained TaGSR1 gene overexpression transgenic wheat realizes the reduction of the plant height and the upright leaves of the wheat, and the plant type is more suitable for close planting. The invention realizes the rapid breeding of the ideal plant type of the wheat by utilizing the genetic engineering technology, provides a feasible method for improving the lodging resistance of the wheat and reasonably close planting, and has important breeding application value and wide market application prospect.
Drawings
FIG. 1 is the electrophoresis diagram of the TaGSR1 gene amplification of Shixin 828.
Wherein: lane 1 is Transgen 2K plus marker, and lane 2 is TaGSR1 band.
FIG. 2 sequencing result of the cloning vector pDOOR 221 into which the TaGSR1 gene had been ligated.
FIG. 3TaGSR1 gene was ligated into binary expression vector pLGY02 vector by LR reaction.
Wherein: 1 is Transgen 2K plus marker, 2-6 is a positive clone of TaGSR1 successfully ligated into pLGY02 vector.
FIG. 4 PCR identification of transgenic progeny overexpressing TaGSR 1.
Wherein: 1 is a Transgen 2K plus marker, and 2-9 are transgenic strains 1#~8#The target band detection result of (1).
FIG. 5 protein expression quantity identification of transgenic offspring overexpressing TaGSR 1.
FIG. 6OE-TaGSR1 overexpression transgenic line and its gene editing knockout line TaGSR1-ko seed size comparison.
Wherein: a & B, compared with wild type JW1 wheat, the length and width of seeds of OE-TaGSR1 overexpression lines are obviously reduced; c & D, compared with wild JW1 wheat, the homozygous gene knockout strain tagsr1-ko has obviously increased kernel length and no obvious change in kernel width. Bar is 1 cm.
FIG. 7 shows the comparison of the height of OE-TaGSR1 overexpression transgenic line and TaGSR1-ko gene editing knockout line.
Wherein: the plant height of the TaGSR1 overexpression transgenic line is obviously reduced, and the plant height of the TaGSR1-ko knockout line is not obviously changed. Bar is 5 cm.
FIG. 8OE-TaGSR1 overexpression transgenic line and its gene editing knockout line TaGSR1-ko leaf angle trait comparison.
Wherein: the included angle of the leaves of the TaGSR1 overexpression transgenic line is obviously reduced, and the included angle of the leaves of the TaGSR1-ko knockout line is obviously increased. Bar is 1 cm.
Detailed Description
The present invention will be described in detail with reference to the following detailed drawings and examples. The following examples are only preferred embodiments of the present invention, and it should be noted that the following descriptions are only for explaining the present invention and not for limiting the present invention in any form, and any simple modifications, equivalent changes and modifications made to the embodiments according to the technical spirit of the present invention are within the scope of the technical solution of the present invention.
The experimental procedures in the following examples are conventional unless otherwise specified.
The test materials used in the following examples were purchased from conventional biochemicals, unless otherwise specified.
The high fidelity enzyme required for PCR amplification is KOD-FXNEO (Toyobo); the vector used for the BP reaction was pDonor221 (Invitrogen); 2 × PCR master mix was purchased from Beijing Convergence scientific and biological Co., Ltd; t4 ligase was purchased from NEB; BPClonase and LR Clonase for homologous recombination, gel recovery kit, plasmid extraction kit and western blotting antibody required for enzyme digestion fragment recovery were purchased from Saimer Feishell science and technology. The inorganic salts required for the preparation of the culture medium were purchased from the national pharmaceutical group, vitamins and antibiotics and from Sigma. The plasmid pLGY02 was obtained from the crop research institute of agronomy academy of Shandong province. Coli Transgen5 α, purchased from tokyo holotype gold, inc; the primers used were synthesized by Qingdao Optimaki Biotechnology Limited, and the sequences of the relevant primers are shown in Table 1:
table 1: primers used in the present invention
Figure BDA0003237341840000041
The wheat variety JW1 used in the invention is a new germplasm with good tissue culture capability, which is self-bred by crops of agricultural academy of Shandong province, and can be obtained by the public from the crop research institute of agricultural academy of Shandong province; shixin 828 is a wheat variety which is bred in 2001 by 8 generations of pedigree breeding method at New wheat New breed New technology institute in Shijiazhuang City, examined and rated by the variety examination committee of Hebei province in 2005 and has excellent properties of cold resistance, drought resistance, lodging resistance and the like, and can be obtained by Jiafeng variety Co Ltd.
EXAMPLE 1 construction of expression vectors
Cloning of the coding sequence of TaGSR1
In order to obtain a coding sequence of TaGSR1 protein, the sequence of a TaGSR1 gene is amplified in the wheat variety Shixin 828 by the experiment, primers are TaGSR1-F and TaGSR1-R, and a PCR reaction system is as follows: KOD-FX NEO buffer: 25 μ L of dNTP (2 mM): 10 μ L, TaGSR1-F (10 μ M): 1.5 μ L, TaGSR1-F (10 μ M): 1.5 μ L, Shixin 828gDNA (50 ng/. mu.L): 1 μ L, KOD-FXNEO: 1 μ L, ddH2The total amount of O is 50 μ L. The PCR reaction program is: pre-denaturation at 98 ℃ for 2min, and denaturation at 98 ℃ for 12 sec; annealing at 58 ℃ for 20sec, extension at 68 ℃ for 25sec, and reacting for 35 cycles; renaturation at 68 ℃ for 5 min.
The PCR results are shown in FIG. 1, lane 1 is Transgen 2K plus marker, and lane 2 is TaGSR1 band.
The PCR product is sent to Qingdao Zhixi biotechnology Limited company for sequencing, and the similarity of the TaGSR1 gene in Shixin 828 wheat and the known sequence of wheat in Ensembl Plants database (http:// Plants. ensemble. org/index. html) is 93.33%. The gene coding sequence has a total length of 612 bases and does not contain introns. The nucleotide sequence is shown in SEQ ID NO. 2.
BP reaction of TaGSR1 with pDonor221
A homojunction attB1 and attB2 were added to the TaGSR1 gene.
Taking TaGSR1 amplified in the wheat variety Shixin 828 as a template, using primers of TaGSR1-P1 and TaGSR1-P2, and adopting a PCR reaction system as follows: KOD-FX NEO buffer: 25 μ L of dNTP (2 mM): 10 μ L, TaGSR1-P1(10 μ M): 1.5 μ L, TaGSR1-P2(10 μ M): 1.5. mu.L, TaGSR1 PCR gel product DNA (10 ng/. mu.L): 1 μ L, KOD-FXNEO: 1 μ L, ddH2The total amount of O is 50 μ L. The PCR reaction program is: pre-denaturation at 98 ℃ for 2min, and denaturation at 98 ℃ for 12 sec; annealing at 58 ℃ for 20sec, extension at 68 ℃ for 25sec, and reacting for 35 cycles; renaturation at 68 ℃ for 5 min.
And recovering the PCR product through running gel, and carrying out BP reaction with pDOnor221 plasmid by using a reaction system: gel recovery product (about 50 ng/. mu.L): 1 μ L, pDOnor221(50 ng/. mu.L): 1 μ L, BP clonase: 0.5. mu.L, ddH2Make up to 10. mu.L of O. The reaction system reacts for 1h at 25 ℃, the reaction product is transformed into Escherichia coli Transgen5 alpha, the Escherichia coli Transgen5 alpha is cultured on an LB (containing kanamycin) plate until a clone grows out, a single clone is selected for carrying out PCR identification and sequencing on bacterial liquid, and primers are M13F and M13R.
The positive recombinant strain is sent to Qingdao Hingxi biotechnology Limited company for sequencing, the sequencing result is shown in figure 2, and the result shows that the TaGSR1 gene is connected into an entry vector pDonor221, and the recombinant vector is named as pDonor221-TaGSR 1.
3. Transformation of
The PCR product was recovered by running gel, and subjected to LR reaction with pLGY02 plasmid in the following reaction system: pDOnor221-TaGSR1 plasmid (10 ng/. mu.L): 1 μ L, pLGY02(50 ng/. mu.L): 1 μ L, LR clonase: 0.5. mu.L, ddH2Make up to 10. mu.L of O. The reaction system reacts for 1h at 25 ℃, the reaction product is transformed into Escherichia coli Transgen5 alpha, the Escherichia coli Transgen5 alpha is cultured on an LB (containing kanamycin) plate until a clone grows out, a single clone is selected for carrying out PCR identification and sequencing on bacterial liquid, and TaGSR1-F and CCFP-R are used as primers.
The electrophoresis results are shown in FIG. 3, and the clone having the objective band is a positive clone carrying the binary vector pLGY02-TaGSR 1. Wherein the nucleotide sequence of the binary expression vector pLGY02-TaGSR1 is shown in SEQ ID NO. 4.
Example 2 transgenic progeny acquisition and characterization
Obtaining transgenic progeny of TaGSR1
The binary expression vector pLGY02-TaGSR1 constructed in the experimental example 1 is transformed into agrobacterium EHA105 competent cells, specifically: adding a recombinant binary expression vector pLGY02-TaGSR1 into agrobacterium EHA105 competence, performing ice bath for 5min, performing liquid nitrogen quick freezing for 5min, performing heat shock reaction at 37 ℃ for 5min, performing ice bath for 5min, adding nonresistant LB, putting into a shaker at 28 ℃ for recovery for 2h, then coating on an LB (containing rifampicin, streptomycin and kanamycin) plate by using an applicator, and performing inverted culture at 28 ℃ until clone grows out. The single clone was selected and inoculated into LB medium containing the corresponding resistance, shaken at 28 ℃ and cultured at 160rpm for 24 hours.
Taking JW1 wheat seeds about 15 days after pollination, and stripping young embryos. The Agrobacterium suspension was prepared by placing 1ml of the suspension in a 1.5ml centrifuge tube, adding 1.4ul acetosyringone (0.1M), and mixing. Adding prepared bacterial liquid to infect for 5 minutes, placing on a co-culture medium, and culturing in dark at 23 ℃ for 3 days. After co-cultivation, the cells were cultured in the dark at 25 ℃ for 5 days in a resting medium. The callus was transferred to the screening medium 1, sealed with a sealing film, and cultured in the dark in an incubator at 25.5 ℃ for 2 weeks. The callus was cut and transferred to screening medium 2, the petri dish was sealed again with a sealing film, and dark culture was continued in an incubator at 25.5 ℃ for 2 weeks. After 2 weeks of callus cutting and selection, resistant calli exhibiting green shoots were transferred to regeneration medium. The dishes were sealed and placed in an incubator at 25 ℃ for 2 weeks in light/dark (16h/8 h). After 2 weeks of regeneration, healthy growing plantlets were transferred to new resistant regeneration pods. When the seedlings grow to a certain size, sampling detection can be carried out.
The various culture media involved in the genetic transformation of wheat and the preparation thereof are disclosed in the following documents:
Kan Wang(ed.),Agrobacterium Protocals:Volume 1,Methods in Molecular Biology,vol.1223DOI10.007/978-1-4939-1695-5_15,Spring Science+Businedd Media New York 2015。
identification of transgenic progeny of TaGSR1
DNA of young leaves of T0 generation wheat plants is extracted by a CTAB method, and PCR identification is carried out on transgenic wheat by taking gDNA as a template and LGY-DF and LGY-DR as primers. The reaction system is as follows: 2 × PCR master mix: 10 μ L, LGY-DF (10 μ M): 0.5 μ L, LGY-DR (10 μ M): 0.5. mu.L, gDNA (50 ng/. mu.L): 1 μ L, ddH2Make up to 20. mu.L of O. The PCR reaction conditions are as follows: pre-denaturation at 94 ℃ for 2 min; denaturation at 94 ℃ for 30s, annealing at 60 ℃ for 30s, and extension at 72 ℃ for 30s for 33 cycles; finally, extension is carried out for 5min at 72 ℃. The electrophoresis result is shown in figure 4, and the total number of transgenic positive plants of 6T 0 generations is.
Selecting a positive transgenic strain OE-TaGSR1-1#、OE-TaGSR1-5#And OE-TaGSR1-6#And (3) carrying out western blotting protein expression quantity identification. The main experimental operations were: SDS method extracts total leaf protein, using 12% SDS-PAGE glue to make electrophoretic separation, using GFP antibody fused with TaGSR1 protein to make western blotting detection to express transgenic wheat, the result is shown in figure 5, showing positive transgenic line OE-TaGSR1-1#With OE-TaGSR1-6#Has high expression amount.
Example 3 phenotypic identification of wheat progeny overexpressing the TaGSR1 Gene
Wild type receptor variety JW1, over-expression transgenic wheat OE-TaGSR1 and TaGSR1 and homozygous knockout strains TaGSR1-ko of homologous copies thereof are planted in a climatic chamber of Qingdao school district of Shandong university under the culture conditions: illuminating for 16h and darkness for 8 h; the temperature in the daytime is 22 ℃, and the temperature at night is 16 ℃; humidity is 40% -50%; CO 22The concentration is 500ppm-700 ppm.
Grain length, width and thousand kernel weight were analyzed for JW, OE-TaGSR1 and TaGSR 1-ko.
Compared with the wild JW1, the grain length and width of the over-expression strain OE-TaGSR1 are obviously reduced, while the grain length of the mutant strain TaGSR1-ko is obviously increased, and the grain width is not obviously changed (as shown in Table 2 and figure 6). Measurement of thousand kernel weight of grains showed that the thousand kernel weight of the OE-TaGSR1 overexpression transgenic line was significantly reduced, and the thousand kernel weight of TaGSR1-ko was significantly increased (see table 2). The result shows that the TaGSR1 gene has negative regulation and control effect on wheat grain development.
TABLE 2 statistics of the yield traits of homozygous three-copy knockout mutant tagsr1-ko
Figure BDA0003237341840000071
Note: different lower case superscripts indicate significant differences at the 95% confidence level.
And analyzing the plant height and the leaf angle of a transgenic strain OE-TaGSR1 and a gene knockout strain TaGSR1-ko of the over-expression TaGSR1 gene.
The analysis result of the plant height is shown in FIG. 7, compared with JW1, the plant height of OE-TaGSR1 is obviously reduced, and the plant height of the gene knockout strain TaGSR1-ko has no obvious difference compared with JW1, which indicates that the TaGSR1 gene has obvious inhibition effect on the wheat plant height. Meanwhile, compared with the wild plant JW1, the included angle of leaves of OE-TaGSR1 is obviously reduced, the leaves are upright, and the included angle of leaves of the gene knockout strain TaGSR1-ko is obviously larger than that of JW1, as shown in FIG. 8. The reduction of the included angle of the leaves leads to the erect leaves, so that the plant type of the OE-TaGSR1 transgenic plant is more compact, and the plant type of the gene knockout strain TaGSR1-ko is looser than that of JW1, as shown in FIG. 7.
In the experiment, TaGSR1 element is transferred into wheat by constructing a TaGSR1 overexpression vector and infecting wheat immature embryo callus through agrobacterium, and the Ubi is verified that although TaGSR1 has a negative effect on the grain size, the overexpression of the TaGSR1 obviously reduces the plant height of the wheat and reduces the included angle of leaves, so that the generated wheat plant type with short stems and compact plant type has important significance for lodging-resistant and high-density planting in crop production, and an excellent candidate gene site and a feasible method are provided for plant type breeding of wheat.
Sequence listing
<110> Shandong university
<120> seed grain development related protein TaGSR1 and application thereof in wheat plant type breeding
<141> 2021-08-06
<160> 7
<210> 1
<211> 203
<212> PRT
<213> wheat (Triticum aestivum L.)
<221> amino acid sequence of protein TaGSR1
<222>(1)…(203)
<400> 1
MET Asp Ala Lys Gly Ala Thr Glu Ser Ser Asn Pro Asn Arg Arg Pro Ala Ser Val Pro
5 10 15 20
Ser Ala Ala Val Ala Ser Ala Ser Ala Pro Thr Lys Arg MET Leu Ala Phe His Phe Leu
25 30 35 40
Arg Ala Leu Ser Arg Ile His Gly Ala Ala Gly Pro Ala Arg Arg Arg Thr Arg Thr Ile
45 50 55 60
Arg Arg Ala Ala Tyr Ser Ser MET Ala Arg Ala Thr Gly Pro Arg Arg Ala Trp Ser Arg
65 70 75 80
Ala Leu Leu Leu Gln Ala Gln Ala Arg Ala Arg Arg Ser Arg Ala Glu Thr Ser Arg Arg
85 90 95 100
Ala Ala Val Leu Val Arg Arg Arg Val Val Ala Gly Pro Ala Val Ala Ala Ala Pro Ala
105 110 115 120
Pro Ala Arg Ala Ala Ser Val Gly Gly Gln Thr Ser Ser Ala Ala Ala Ile Arg Ala Ala
125 130 135 140
Leu Val Pro Pro Pro Pro Pro Ala Arg Gln Ala Gly Glu Pro Ala Arg Ser Asp Ala Leu
145 150 155 160
Arg Arg Leu Val Pro Gly Gly Ala Gly MET Glu Tyr Cys Ser Leu Leu Glu Glu Thr Ala
165 170 175 180
Asp Tyr Val Arg Cys Leu Arg Ala Gln Val Gln Leu MET Gln Gly Leu Ala Asp Leu Phe
185 190 195 200
Ser Cys Gln
203
<210> 2
<211> 612
<212> DNA
<213> wheat (Triticum aestivum L.)
<221> nucleotide sequence encoding protein TaGSR1
<222>(1)…(612)
<400> 2
atggacgcca agggcgcgac ggagagctca aaccctaacc gccgtccagc cagcgtaccg 60
tcggccgccg tggcgtcggc gtcggcgccg acgaagcgca tgctggcgtt ccacttcctg 120
cgcgcgctgt cccggatcca cggcgcggcc ggcccggcga ggcgccgcac gcgcaccatc 180
cgccgcgcgg cctactcctc catggcgcgc gccaccggcc cgcgccgcgc ctggagccgc 240
gcgctgctgc tccaggccca ggcgcgcgcg cggagatcca gggcggagac gtcgaggcgg 300
gccgccgtgc tcgtacggcg gcgcgtcgtc gccggaccgg cggtagcagc agcaccagca 360
ccggcacgcg ccgcttctgt cggcggacag acgtcgtcgg cggctgctat tcgcgcggcg 420
ctggtccctc cgccccctcc ggcgcggcag gcgggggagc cggccaggag cgacgcgctg 480
cggcggctcg tccccggagg cgccgggatg gagtactgca gcctgctgga ggagaccgcc 540
gactacgtcc gctgcctccg cgcgcaggtg cagctcatgc agggcctcgc cgacctcttc 600
tcctgccaat ga 612
<210> 3
<211> 3705
<212> DNA
<213> Artificial sequence
<221> nucleotide sequence of expression cassette E1
<222>(1)…(3705)
<400> 3
ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta 60
agttataaaa aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta 120
tctttataca tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa 180
tatcagtgtt ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga 240
gtattttgac aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt 300
ttttgcaaat agcttcacct atataatact tcatccattt tattagtaca tccatttagg 360
gtttagggtt aatggttttt atagactaat ttttttagta catctatttt attctatttt 420
agcctctaaa ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata 480
taaaatagaa taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa 540
aactaaggaa acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga 600
cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc gtcgggccaa gcgaagcaga 660
cggcacggca tctctgtcgc tgcctctgga cccctctcga gagttccgct ccaccgttgg 720
acttgctccg ctgtcggcat ccagaaattg cgtggcggag cggcagacgt gagccggcac 780
ggcaggcggc ctcctcctcc tctcacggca ccggcagcta cgggggattc ctttcccacc 840
gctccttcgc tttcccttcc tcgcccgccg taataaatag acaccccctc cacaccctct 900
ttccccaacc tcgtgttgtt cggagcgcac acacacacaa ccagatctcc cccaaatcca 960
cccgtcggca cctccgcttc aaggtacgcc gctcgtcctc cccccccccc cctctctacc 1020
ttctctagat cggcgttccg gtccatggtt agggcccggt agttctactt ctgttcatgt 1080
ttgtgttaga tccgtgtttg tgttagatcc gtgctgctag cgttcgtaca cggatgcgac 1140
ctgtacgtca gacacgttct gattgctaac ttgccagtgt ttctctttgg ggaatcctgg 1200
gatggctcta gccgttccgc agacgggatc gatttcatga ttttttttgt ttcgttgcat 1260
agggtttggt ttgccctttt cctttatttc aatatatgcc gtgcacttgt ttgtcgggtc 1320
atcttttcat gctttttttt gtcttggttg tgatgatgtg gtctggttgg gcggtcgttc 1380
tagatcggag tagaattctg tttcaaacta cctggtggat ttattaattt tggatctgta 1440
tgtgtgtgcc atacatattc atagttacga attgaagatg atggatggaa atatcgatct 1500
aggataggta tacatgttga tgcgggtttt actgatgcat atacagagat gctttttgtt 1560
cgcttggttg tgatgatgtg gtgtggttgg gcggtcgttc attcgttcta gatcggagta 1620
gaatactgtt tcaaactacc tggtgtattt attaattttg gaactgtatg tgtgtgtcat 1680
acatcttcat agttacgagt ttaagatgga tggaaatatc gatctaggat aggtatacat 1740
gttgatgtgg gttttactga tgcatataca tgatggcata tgcagcatct attcatatgc 1800
tctaaccttg agtacctatc tattataata aacaagtatg ttttataatt attttgatct 1860
tgatatactt ggatgatggc atatgcagca gctatatgtg gattttttta gccctgcctt 1920
catacgctat ttatttgctt ggtactgttt cttttgtcga tgctcaccct gttgtttggt 1980
gttacttctg caggtcgact ctagaggatc cacaagtttg tacaaaaaag caggctctat 2040
ggacgccaag ggcgcgacgg agagctcaaa ccctaaccgc cgtccagcca gcgtaccgtc 2100
ggccgccgtg gcgtcggcgt cggcgccgac gaagcgcatg ctggcgttcc acttcctgcg 2160
cgcgctgtcc cggatccacg gcgcggccgg cccggcgagg cgccgcacgc gcaccatccg 2220
ccgcgcggcc tactcctcca tggcgcgcgc caccggcccg cgccgcgcct ggagccgcgc 2280
gctgctgctc caggcccagg cgcgcgcgcg gagatccagg gcggagacgt cgaggcgggc 2340
cgccgtgctc gtacggcggc gcgtcgtcgc cggaccggcg gtagcagcag caccagcacc 2400
ggcacgcgcc gcttctgtcg gcggacagac gtcgtcggcg gctgctattc gcgcggcgct 2460
ggtccctccg ccccctccgg cgcggcaggc gggggagccg gccaggagcg acgcgctgcg 2520
gcggctcgtc cccggaggcg ccgggatgga gtactgcagc ctgctggagg agaccgccga 2580
ctacgtccgc tgcctccgcg cgcaggtgca gctcatgcag ggcctcgccg acctcttctc 2640
ctgccaaagt attggggata agggtgggcg cgccgaccca gctttcttgt acaaagtggt 2700
gcctatggtg agcaagggcg aggagctgtt caccggggtg gtgcccatcc tggtcgagct 2760
ggacggcgac gtaaacggcc acaagttcag cgtgtccggc gagggcgagg gcgatgccac 2820
ctacggcaag ctgaccctga agttcatctg caccaccggc aagctgcccg tgccctggcc 2880
caccctcgtg accaccttcg gctacggcct gcagtgcttc gcccgctacc ccgaccacat 2940
gaagcagcac gacttcttca agtccgccat gcccgaaggc tacgtccagg agcgcaccat 3000
cttcttcaag gacgacggca actacaagac ccgcgccgag gtgaagttcg agggcgacac 3060
cctggtgaac cgcatcgagc tgaagggcat cgacttcaag gaggacggca acatcctggg 3120
gcacaagctg gagtacaact acaacagcca caacgtctat atcatggccg acaagcagaa 3180
gaacggcatc aaggtgaact tcaagatccg ccacaacatc gaggacggca gcgtgcagct 3240
cgccgaccac taccagcaga acacccccat cggcgacggc cccgtgctgc tgcccgacaa 3300
ccactacctg agctaccagt ccgccctgag caaagacccc aacgagaagc gcgatcacat 3360
ggtcctgctg gagttcgtga ccgccgccgg gatcactctc ggcatggacg agctgtacaa 3420
gtagactagt tctagagagc tcgaatttcc ccgatcgttc aaacatttgg caataaagtt 3480
tcttaagatt gaatcctgtt gccggtcttg cgatgattat catataattt ctgttgaatt 3540
acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga tgggttttta 3600
tgattagagt cccgcaatta tacatttaat acgcgataga aaacaaaata tagcgcgcaa 3660
actaggataa attatcgcgc gcggtgtcat ctatgttact agatc 3705
<210> 4
<211> 12699
<212> DNA
<213> Artificial sequence
<221> nucleotide sequence of recombinant vector pLGY02-TaGSR1
<222>(1)…(12699)
<400> 4
cgtcagacac gttctgattg ctaacttgcc agtgtttctc tttggggaat cctgggatgg 60
ctctagccgt tccgcagacg ggatcgattt catgattttt tttgtttcgt tgcatagggt 120
ttggtttgcc cttttccttt atttcaatat atgccgtgca cttgtttgtc gggtcatctt 180
ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg gttgggcggt cgttctagat 240
cggagtagaa ttctgtttca aactacctgg tggatttatt aattttggat ctgtatgtgt 300
gtgccataca tattcatagt tacgaattga agatgatgga tggaaatatc gatctaggat 360
aggtatacat gttgatgcgg gttttactga tgcatataca gagatgcttt ttgttcgctt 420
ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg ttctagatcg gagtagaata 480
ctgtttcaaa ctacctggtg tatttattaa ttttggaact gtatgtgtgt gtcatacatc 540
ttcatagtta cgagtttaag atggatggaa atatcgatct aggataggta tacatgttga 600
tgtgggtttt actgatgcat atacatgatg gcatatgcag catctattca tatgctctaa 660
ccttgagtac ctatctatta taataaacaa gtatgtttta taattatttt gatcttgata 720
tacttggatg atggcatatg cagcagctat atgtggattt ttttagccct gccttcatac 780
gctatttatt tgcttggtac tgtttctttt gtcgatgctc accctgttgt ttggtgttac 840
ttctgcaggt cgactctaga ggatccacaa gtttgtacaa aaaagcaggc tctatggacg 900
ccaagggcgc gacggagagc tcaaacccta accgccgtcc agccagcgta ccgtcggccg 960
ccgtggcgtc ggcgtcggcg ccgacgaagc gcatgctggc gttccacttc ctgcgcgcgc 1020
tgtcccggat ccacggcgcg gccggcccgg cgaggcgccg cacgcgcacc atccgccgcg 1080
cggcctactc ctccatggcg cgcgccaccg gcccgcgccg cgcctggagc cgcgcgctgc 1140
tgctccaggc ccaggcgcgc gcgcggagat ccagggcgga gacgtcgagg cgggccgccg 1200
tgctcgtacg gcggcgcgtc gtcgccggac cggcggtagc agcagcacca gcaccggcac 1260
gcgccgcttc tgtcggcgga cagacgtcgt cggcggctgc tattcgcgcg gcgctggtcc 1320
ctccgccccc tccggcgcgg caggcggggg agccggccag gagcgacgcg ctgcggcggc 1380
tcgtccccgg aggcgccggg atggagtact gcagcctgct ggaggagacc gccgactacg 1440
tccgctgcct ccgcgcgcag gtgcagctca tgcagggcct cgccgacctc ttctcctgcc 1500
aaagtattgg ggataagggt gggcgcgccg acccagcttt cttgtacaaa gtggtgccta 1560
tggtgagcaa gggcgaggag ctgttcaccg gggtggtgcc catcctggtc gagctggacg 1620
gcgacgtaaa cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg 1680
gcaagctgac cctgaagttc atctgcacca ccggcaagct gcccgtgccc tggcccaccc 1740
tcgtgaccac cttcggctac ggcctgcagt gcttcgcccg ctaccccgac cacatgaagc 1800
agcacgactt cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc accatcttct 1860
tcaaggacga cggcaactac aagacccgcg ccgaggtgaa gttcgagggc gacaccctgg 1920
tgaaccgcat cgagctgaag ggcatcgact tcaaggagga cggcaacatc ctggggcaca 1980
agctggagta caactacaac agccacaacg tctatatcat ggccgacaag cagaagaacg 2040
gcatcaaggt gaacttcaag atccgccaca acatcgagga cggcagcgtg cagctcgccg 2100
accactacca gcagaacacc cccatcggcg acggccccgt gctgctgccc gacaaccact 2160
acctgagcta ccagtccgcc ctgagcaaag accccaacga gaagcgcgat cacatggtcc 2220
tgctggagtt cgtgaccgcc gccgggatca ctctcggcat ggacgagctg tacaagtaga 2280
ctagttctag agagctcgaa tttccccgat cgttcaaaca tttggcaata aagtttctta 2340
agattgaatc ctgttgccgg tcttgcgatg attatcatat aatttctgtt gaattacgtt 2400
aagcatgtaa taattaacat gtaatgcatg acgttattta tgagatgggt ttttatgatt 2460
agagtcccgc aattatacat ttaatacgcg atagaaaaca aaatatagcg cgcaaactag 2520
gataaattat cgcgcgcggt gtcatctatg ttactagatc gggaattcgt aatcatgtca 2580
tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 2640
agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 2700
cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 2760
caacgcgcgg ggagaggcgg tttgcgtatt ggctagagca gcttgccaaa catggtggag 2820
cacgacactc tcgtctactc caagaatatc aaagatacag tctcagaaga ccaaagggct 2880
attgagactt ttcaacaaag ggtaatatcg ggaaacctcc tcggattcca ttgcccagct 2940
atctgtcact tcatcaaaag gacagtagaa aaggaaggtg gcacctacaa atgccatcat 3000
tgcgataaag gaaaggctat cgttcaagat gcctctgccg acagtggtcc caaagatgga 3060
cccccaccca cgaggagcat cgtggaaaaa gaagacgttc caaccacgtc ttcaaagcaa 3120
gtggattgat gtgataacat ggtggagcac gacactctcg tctactccaa gaatatcaaa 3180
gatacagtct cagaagacca aagggctatt gagacttttc aacaaagggt aatatcggga 3240
aacctcctcg gattccattg cccagctatc tgtcacttca tcaaaaggac agtagaaaag 3300
gaaggtggca cctacaaatg ccatcattgc gataaaggaa aggctatcgt tcaagatgcc 3360
tctgccgaca gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa 3420
gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg atatctccac tgacgtaagg 3480
gatgacgcac aatcccacta tccttcgcaa gaccttcctc tatataagga agttcatttc 3540
atttggagag gacacgctga aatcaccagt ctctctctac aaatctatct cctcgagctt 3600
tcgcagatcc cggggggcaa tgagatatga aaaagcctga actcaccgcg acgtctgtcg 3660
agaagtttct gatcgaaaag ttcgacagcg tctccgacct gatgcagctc tcggagggcg 3720
aagaatctcg tgctttcagc ttcgatgtag gagggcgtgg atatgtcctg cgggtaaata 3780
gctgcgccga tggtttctac aaagatcgtt atgtttatcg gcactttgca tcggccgcgc 3840
tcccgattcc ggaagtgctt gacattgggg agtttagcga gagcctgacc tattgcatct 3900
cccgccgtgc acagggtgtc acgttgcaag acctgcctga aaccgaactg cccgctgttc 3960
tacaaccggt cgcggaggct atggatgcga tcgctgcggc cgatcttagc cagacgagcg 4020
ggttcggccc attcggaccg caaggaatcg gtcaatacac tacatggcgt gatttcatat 4080
gcgcgattgc tgatccccat gtgtatcact ggcaaactgt gatggacgac accgtcagtg 4140
cgtccgtcgc gcaggctctc gatgagctga tgctttgggc cgaggactgc cccgaagtcc 4200
ggcacctcgt gcacgcggat ttcggctcca acaatgtcct gacggacaat ggccgcataa 4260
cagcggtcat tgactggagc gaggcgatgt tcggggattc ccaatacgag gtcgccaaca 4320
tcttcttctg gaggccgtgg ttggcttgta tggagcagca gacgcgctac ttcgagcgga 4380
ggcatccgga gcttgcagga tcgccacgac tccgggcgta tatgctccgc attggtcttg 4440
accaactcta tcagagcttg gttgacggca atttcgatga tgcagcttgg gcgcagggtc 4500
gatgcgacgc aatcgtccga tccggagccg ggactgtcgg gcgtacacaa atcgcccgca 4560
gaagcgcggc cgtctggacc gatggctgtg tagaagtact cgccgatagt ggaaaccgac 4620
gccccagcac tcgtccgagg gcaaagaaat agagtagatg ccgaccggat ctgtcgatcg 4680
acaagctcga gtttctccat aataatgtgt gagtagttcc cagataaggg aattagggtt 4740
cctatagggt ttcgctcatg tgttgagcat ataagaaacc cttagtatgt atttgtattt 4800
gtaaaatact tctatcaata aaatttctaa ttcctaaaac caaaatccag tactaaaatc 4860
cagatccccc gaattaattc ggcgttaatt cagtacatta aaaacgtccg caatgtgtta 4920
ttaagttgtc taagcgtcaa tttgtttaca ccacaatata tcctgccacc agccagccaa 4980
cagctccccg accggcagct cggcacaaaa tcaccactcg atacaggcag cccatcagtc 5040
cgggacggcg tcagcgggag agccgttgta aggcggcaga ctttgctcat gttaccgatg 5100
ctattcggaa gaacggcaac taagctgccg ggtttgaaac acggatgatc tcgcggaggg 5160
tagcatgttg attgtaacga tgacagagcg ttgctgcctg tgatcaccgc ggtttcaaaa 5220
tcggctccgt cgatactatg ttatacgcca actttgaaaa caactttgaa aaagctgttt 5280
tctggtattt aaggttttag aatgcaagga acagtgaatt ggagttcgtc ttgttataat 5340
tagcttcttg gggtatcttt aaatactgta gaaaagagga aggaaataat aaatggctaa 5400
aatgagaata tcaccggaat tgaaaaaact gatcgaaaaa taccgctgcg taaaagatac 5460
ggaaggaatg tctcctgcta aggtatataa gctggtggga gaaaatgaaa acctatattt 5520
aaaaatgacg gacagccggt ataaagggac cacctatgat gtggaacggg aaaaggacat 5580
gatgctatgg ctggaaggaa agctgcctgt tccaaaggtc ctgcactttg aacggcatga 5640
tggctggagc aatctgctca tgagtgaggc cgatggcgtc ctttgctcgg aagagtatga 5700
agatgaacaa agccctgaaa agattatcga gctgtatgcg gagtgcatca ggctctttca 5760
ctccatcgac atatcggatt gtccctatac gaatagctta gacagccgct tagccgaatt 5820
ggattactta ctgaataacg atctggccga tgtggattgc gaaaactggg aagaagacac 5880
tccatttaaa gatccgcgcg agctgtatga ttttttaaag acggaaaagc ccgaagagga 5940
acttgtcttt tcccacggcg acctgggaga cagcaacatc tttgtgaaag atggcaaagt 6000
aagtggcttt attgatcttg ggagaagcgg cagggcggac aagtggtatg acattgcctt 6060
ctgcgtccgg tcgatcaggg aggatatcgg ggaagaacag tatgtcgagc tattttttga 6120
cttactgggg atcaagcctg attgggagaa aataaaatat tatattttac tggatgaatt 6180
gttttagtac ctagaatgca tgaccaaaat cccttaacgt gagttttcgt tccactgagc 6240
gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat cctttttttc tgcgcgtaat 6300
ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc cggatcaaga 6360
gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac caaatactgt 6420
ccttctagtg tagccgtagt taggccacca cttcaagaac tctgtagcac cgcctacata 6480
cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt cgtgtcttac 6540
cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcgggct gaacgggggg 6600
ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat acctacagcg 6660
tgagctatga gaaagcgcca cgcttcccga agggagaaag gcggacaggt atccggtaag 6720
cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg cctggtatct 6780
ttatagtcct gtcgggtttc gccacctctg acttgagcgt cgatttttgt gatgctcgtc 6840
aggggggcgg agcctatgga aaaacgccag caacgcggcc tttttacggt tcctggcctt 6900
ttgctggcct tttgctcaca tgttctttcc tgcgttatcc cctgattctg tggataaccg 6960
tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg agcgcagcga 7020
gtcagtgagc gaggaagcgg aagagcgcct gatgcggtat tttctcctta cgcatctgtg 7080
cggtatttca caccgcatat ggtgcactct cagtacaatc tgctctgatg ccgcatagtt 7140
aagccagtat acactccgct atcgctacgt gactgggtca tggctgcgcc ccgacacccg 7200
ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc ttacagacaa 7260
gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc 7320
gcgaggcagg gtgccttgat gtgggcgccg gcggtcgagt ggcgacggcg cggcttgtcc 7380
gcgccctggt agattgcctg gccgtaggcc agccattttt gagcggccag cggccgcgat 7440
aggccgacgc gaagcggcgg ggcgtaggga gcgcagcgac cgaagggtag gcgctttttg 7500
cagctcttcg gctgtgcgct ggccagacag ttatgcacag gccaggcggg ttttaagagt 7560
tttaatagtt ttccgtctgt cgaagcgtga ccgacgagct ggcgaggtga tccgctacga 7620
gcttccagac gggcacgtag aggtttccgc agggccggcc ggcatggcca gtgtgtggga 7680
ttacgacctg gtactgatgg cggtttccca tctaaccgaa tccatgaacc gataccggga 7740
agggaaggga gacaagcccg gccgcgtgtt ccgtccacac gttgcggacg tactcaagtt 7800
ctgccggcga gccgatggcg gaaagcagaa agacgacctg gtagaaacct gcattcggtt 7860
aaacaccacg cacgttgcca tgcagcgtac gaagaaggcc aagaacggcc gcctggtgac 7920
ggtatccgag ggtgaagcct tgattagccg ctacaagatc gtaaagagcg aaaccgggcg 7980
gccggagtac atcgagatcg agctagctga ttggatgtac cgcgagatca cagaaggcaa 8040
gaacccggac gtgctgacgg ttcaccccga ttactttttg atcgatcccg gcatcggccg 8100
ttttctctac cgcctggcac gccgcgccgc aggcaaggca gaagccagat ggttgttcaa 8160
gacgatctac gaacgcagtg gcagcgccgg agagttcaag aagttctgtt tcaccgtgcg 8220
caagctgatc gggtcaaatg acctgccgga gtacgatttg aaggaggagg cggggcaggc 8280
tggcccgatc ctagtcatgc gctaccgcaa cctgatcgag ggcgaagcat ccgccggttc 8340
ctaatgtacg gagcagatgc tagggcaaat tgccctagca ggggaaaaag gtcgaaaagg 8400
tctctttcct gtggatagca cgtacattgg gaacccaaag ccgtacattg ggaaccggaa 8460
cccgtacatt gggaacccaa agccgtacat tgggaaccgg tcacacatgt aagtgactga 8520
tataaaagag aaaaaaggcg atttttccgc ctaaaactct ttaaaactgg ccacgtccat 8580
gatgctgcga ctatcgcggg tgcccacgtc atagagcatc ggaacgaaaa aatctggttg 8640
ctcgtcgccc ttgggcggct tcctaatcga cggcgcaccg gctgccggcg gttgccggga 8700
ttctttgcgg attcgatcag cggccgcttg ccacgattca ccggggcgtg cttctgcctc 8760
gatgcgttgc cgctgggcgg cctgcgcggc cttcaacttc tccaccaggt catcacccag 8820
cgccgcgccg atttgtaccg ggccggatgg tttgcgaccg tcacgccgat tcctcgggct 8880
tgggggttcc agtgccattg cagggccggc agacaaccca gccgcttacg cctggccaac 8940
cgcccgttcc tccacacatg gggcattcca cggcgtcggt gcctggttgt tcttgatttt 9000
ccatgccgcc tcctttagcc gctaaaattc atctactcat ttattcattt gctcatttac 9060
tctggtagct gcgcgatgta ttcagatagc agctcggtaa tggtcttgcc ttggcgtacc 9120
gcgtacatct tcagcttggt gtgatcctcc gccggcaact gaaagttgac ccgcttcatg 9180
gctggcgtgt ctgccaggct ggccaacgtt gcagccttgc tgctgcgtgc gctcggacgg 9240
ccggcactta gcgtgtttgt gcttttgctc attttctctt tacctcatta actcaaatga 9300
gttttgattt aatttcagcg gccagcgcct ggacctcgcg ggcagcgtcg ccctcgggtt 9360
ctgattcaag aacggttgtg ccggcggcgg cagtgcctgg gtagctcacg cgctgcgtga 9420
tacgggactc aagaatgggc agctcgtacc cggccagcgc ctcggcaacc tcaccgccga 9480
tgcgcgtgcc tttgatcgcc cgcgacacga caaaggccgc ttgtagcctt ccatccgtga 9540
cctcaatgcg ctgcttaacc agctccacca ggtcggcggt ggcccatatg tcgtaagggc 9600
ttggctgcac cggaatcagc acgaagtcgg ctgccttgat cgcggacaca gccaagtccg 9660
ccgcctgggg cgctccgtcg atcactacga agtcgcgccg gccgatggcc ttcacgtcgc 9720
ggtcaatcgt cgggcggtcg atgccgacaa cggttagcgg ttgatcttcc cgcacggccg 9780
cccaatcgcg ggcactgccc tggggatcgg aatcgactaa cagaacatcg gccccggcga 9840
gttgcagggc gcgggctaga tgggttgcga tggtcgtctt gcctgacccg cctttctggt 9900
taagtacagc gataaccttc atgcgttccc cttgcgtatt tgtttattta ctcatcgcat 9960
catatacgca gcgaccgcat gacgcaagct gttttactca aatacacatc acctttttag 10020
acggcggcgc tcggtttctt cagcggccaa gctggccggc caggccgcca gcttggcatc 10080
agacaaaccg gccaggattt catgcagccg cacggttgag acgtgcgcgg gcggctcgaa 10140
cacgtacccg gccgcgatca tctccgcctc gatctcttcg gtaatgaaaa acggttcgtc 10200
ctggccgtcc tggtgcggtt tcatgcttgt tcctcttggc gttcattctc ggcggccgcc 10260
agggcgtcgg cctcggtcaa tgcgtcctca cggaaggcac cgcgccgcct ggcctcggtg 10320
ggcgtcactt cctcgctgcg ctcaagtgcg cggtacaggg tcgagcgatg cacgccaagc 10380
agtgcagccg cctctttcac ggtgcggcct tcctggtcga tcagctcgcg ggcgtgcgcg 10440
atctgtgccg gggtgagggt agggcggggg ccaaacttca cgcctcgggc cttggcggcc 10500
tcgcgcccgc tccgggtgcg gtcgatgatt agggaacgct cgaactcggc aatgccggcg 10560
aacacggtca acaccatgcg gccggccggc gtggtggtgt cggcccacgg ctctgccagg 10620
ctacgcaggc ccgcgccggc ctcctggatg cgctcggcaa tgtccagtag gtcgcgggtg 10680
ctgcgggcca ggcggtctag cctggtcact gtcacaacgt cgccagggcg taggtggtca 10740
agcatcctgg ccagctccgg gcggtcgcgc ctggtgccgg tgatcttctc ggaaaacagc 10800
ttggtgcagc cggccgcgtg cagttcggcc cgttggttgg tcaagtcctg gtcgtcggtg 10860
ctgacgcggg catagcccag caggccagcg gcggcgctct tgttcatggc gtaatgtctc 10920
cggttctagt cgcaagtatt ctactttatg cgactaaaac acgcgacaag aaaacgccag 10980
gaaaagggca gggcggcagc ctgtcgcgta acttaggact tgtgcgacat gtcgttttca 11040
gaagacggct gcactgaacg tcagaagccg actgcactat agcagcggag gggttggatc 11100
aaagtacttt gatcccgagg ggaaccctgt ggttggcatg cacatacaaa tggacgaacg 11160
gataaacctt ttcacgccct tttaaatatc cgttattcta ataaacgctc ttttctctta 11220
ggtttacccg ccaatatatc ctgtcaaaca ctgatagttt aattcccgat ctagtaacat 11280
agatgacacc gcgcgcgata atttatccta gtttgcgcgc tatattttgt tttctatcgc 11340
gtattaaatg tataattgcg ggactctaat cataaaaacc catctcataa ataacgtcat 11400
gcattacatg ttaattatta catgcttaac gtaattcaac agaaattata tgataatcat 11460
cgcaagaccg gcaacaggat tcaatcttaa gaaactttat tgccaaatgt ttgaacgatc 11520
ggggaaattc gagctggtca ccaagcttgc atgcctgcag tgcagcgtga cccggtcgtg 11580
cccctctcta gagataatga gcattgcatg tctaagttat aaaaaattac cacatatttt 11640
ttttgtcaca cttgtttgaa gtgcagttta tctatcttta tacatatatt taaactttac 11700
tctacgaata atataatcta tagtactaca ataatatcag tgttttagag aatcatataa 11760
atgaacagtt agacatggtc taaaggacaa ttgagtattt tgacaacagg actctacagt 11820
tttatctttt tagtgtgcat gtgttctcct ttttttttgc aaatagcttc acctatataa 11880
tacttcatcc attttattag tacatccatt tagggtttag ggttaatggt ttttatagac 11940
taattttttt agtacatcta ttttattcta ttttagcctc taaattaaga aaactaaaac 12000
tctattttag tttttttatt taataattta gatataaaat agaataaaat aaagtgacta 12060
aaaattaaac aaataccctt taagaaatta aaaaaactaa ggaaacattt ttcttgtttc 12120
gagtagataa tgccagcctg ttaaacgccg tcgacgagtc taacggacac caaccagcga 12180
accagcagcg tcgcgtcggg ccaagcgaag cagacggcac ggcatctctg tcgctgcctc 12240
tggacccctc tcgagagttc cgctccaccg ttggacttgc tccgctgtcg gcatccagaa 12300
attgcgtggc ggagcggcag acgtgagccg gcacggcagg cggcctcctc ctcctctcac 12360
ggcaccggca gctacggggg attcctttcc caccgctcct tcgctttccc ttcctcgccc 12420
gccgtaataa atagacaccc cctccacacc ctctttcccc aacctcgtgt tgttcggagc 12480
gcacacacac acaaccagat ctcccccaaa tccacccgtc ggcacctccg cttcaaggta 12540
cgccgctcgt cctccccccc cccccctctc taccttctct agatcggcgt tccggtccat 12600
ggttagggcc cggtagttct acttctgttc atgtttgtgt tagatccgtg tttgtgttag 12660
atccgtgctg ctagcgttcg tacacggatg cgacctgta 12699
<210> 5
<211> 1992
<212> DNA
<213> corn (Zea mays L.)
<221> nucleotide sequence of ubiquitin promoter Ubi of Zea mays
<222>(1)…(1992)
<400> 5
ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta 60
agttataaaa aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta 120
tctttataca tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa 180
tatcagtgtt ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga 240
gtattttgac aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt 300
ttttgcaaat agcttcacct atataatact tcatccattt tattagtaca tccatttagg 360
gtttagggtt aatggttttt atagactaat ttttttagta catctatttt attctatttt 420
agcctctaaa ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata 480
taaaatagaa taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa 540
aactaaggaa acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga 600
cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc gtcgggccaa gcgaagcaga 660
cggcacggca tctctgtcgc tgcctctgga cccctctcga gagttccgct ccaccgttgg 720
acttgctccg ctgtcggcat ccagaaattg cgtggcggag cggcagacgt gagccggcac 780
ggcaggcggc ctcctcctcc tctcacggca cggcagctac gggggattcc tttcccaccg 840
ctccttcgct ttcccttcct cgcccgccgt aataaataga caccccctcc acaccctctt 900
tccccaacct cgtgttgttc ggagcgcaca cacacacaac cagatctccc ccaaatccac 960
ccgtcggcac ctccgcttca aggtacgccg ctcgtcctcc cccccccccc ctctctacct 1020
tctctagatc ggcgttccgg tccatggtta gggcccggta gttctacttc tgttcatgtt 1080
tgtgttagat ccgtgtttgt gttagatccg tgctgctagc gttcgtacac ggatgcgacc 1140
tgtacgtcag acacgttctg attgctaact tgccagtgtt tctctttggg gaatcctggg 1200
atggctctag ccgttccgca gacgggatcg atttcatgat tttttttgtt tcgttgcata 1260
gggtttggtt tgcccttttc ctttatttca atatatgccg tgcacttgtt tgtcgggtca 1320
tcttttcatg cttttttttg tcttggttgt gatgatgtgg tctggttggg cggtcgttct 1380
agatcggagt agaattctgt ttcaaactac ctggtggatt tattaatttt ggatctgtat 1440
gtgtgtgcca tacatattca tagttacgaa ttgaagatga tggatggaaa tatcgatcta 1500
ggataggtat acatgttgat gcgggtttta ctgatgcata tacagagatg ctttttgttc 1560
gcttggttgt gatgatgtgg tgtggttggg cggtcgttca ttcgttctag atcggagtag 1620
aatactgttt caaactacct ggtgtattta ttaattttgg aactgtatgt gtgtgtcata 1680
catcttcata gttacgagtt taagatggat ggaaatatcg atctaggata ggtatacatg 1740
ttgatgtggg ttttactgat gcatatacat gatggcatat gcagcatcta ttcatatgct 1800
ctaaccttga gtacctatct attataataa acaagtatgt tttataatta ttttgatctt 1860
gatatacttg gatgatggca tatgcagcag ctatatgtgg atttttttag ccctgccttc 1920
atacgctatt tatttgcttg gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg 1980
ttacttctgc ag 1992
<210> 6
<211> 720
<212> DNA
<213> Artificial sequence
<221> nucleotide sequence of Green fluorescent protein GFP
<222>(1)…(720)
<400> 6
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180
ctcgtgacca ccttcggcta cggcctgcag tgcttcgccc gctaccccga ccacatgaag 240
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
tacctgagct accagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660
ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtag 720
<210> 7
<211> 253
<212> DNA
<213> Artificial sequence
<221> nucleotide sequence of terminator T1
<222>(1)…(253)
<400> 7
gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 60
atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 120
atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata catttaatac 180
gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 240
atgttactag atc 253

Claims (8)

1. A seed development-associated protein, characterized by: the protein is named as protein TaGSR1, is derived from common wheat, and is the protein described in the following 1) or 2):
1) a protein consisting of an amino acid sequence shown by SEQ ID NO.1 in a sequence table;
2) the protein which is obtained by substituting and/or deleting and/or increasing one or more amino acid residues of the amino acid sequence shown by SEQ ID NO.1 in the sequence table, is related to grain development and is derived from the SEQ ID NO. 1.
2. The grain development associated protein of claim 1, wherein: the amino acid sequence of the protein TaGSR1 is composed of 203 amino acids, and the amino acid sequence is shown in SEQ ID NO. 1.
3. A gene encoding the grain development associated protein TaGSR 1of claim 1, wherein the gene comprises the following genes: the nucleic acid sequence of the coding gene is the nucleotide sequence of a) or b) or c) as follows:
a) a deoxyribonucleotide sequence shown by SEQ ID NO.2 in the sequence table;
b) a deoxyribonucleotide sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to the deoxyribonucleotide sequence represented by SEQ ID No.2 and encoding the protein;
c) a ribonucleotide sequence that is complementary to the deoxyribonucleotide sequence defined in a) or b) and encodes said protein under stringent conditions.
4. The coding gene according to claim 3, characterized in that: the coding gene consists of 612 deoxyribonucleotides, and the nucleotide sequence of the coding gene is shown as SEQ ID NO. 2.
5. A binary vector with the function of ectopically and highly expressing TaGSR1 gene in wheat is characterized in that: the binary vector is named as pLGY02-TaGSR1, and the nucleotide sequence of the binary vector is shown in SEQ ID NO. 4; the binary vector contains an expression cassette E1 of a TaGSR1 gene playing a main role in the genetic transformation process of wheat, wherein the nucleotide sequence of the expression cassette E1 is shown as SEQ ID NO.3, and the expression cassette E1 comprises the following components in sequence from upstream to downstream: ubiquitin promoter Ubi from corn, coding sequence of TaGSR1 gene, fluorescence enhanced green fluorescent protein coding gene GFP from multipipecacer, and terminator T1.
6. The binary vector having the function of ectopically highly expressing TaGSR1 gene in wheat according to claim 5, wherein: the nucleotide sequence of the ubiquitin promoter Ubi is shown as SEQ ID NO.5, the coding sequence of the TaGSR1 gene is shown as SEQ ID NO.2, and the nucleotide sequence of the fluorescence enhanced green fluorescent protein coding gene GFP from the aequorea is shown as SEQ ID NO. 6; the nucleotide sequence of the terminator T1 is shown as SEQ ID NO. 7.
7. The application of grain development related protein TaGSR1 or the coding gene thereof in wheat plant type breeding; wherein the amino acid sequence of the grain development related protein TaGSR1 is shown as SEQ ID NO.1, and the nucleotide sequence of the coding gene thereof is shown as SEQ ID NO. 2; the application in the wheat plant type breeding refers to the application of regulating and controlling the wheat plant height or the application of regulating and controlling the included angle of wheat leaves.
8. The application according to claim 7, wherein the application method is: constructing a binary expression vector pLGY02-TaGSR 1of ectopic expression TaGSR1 gene, and transforming the binary expression vector into wheat to realize the ectopic high expression of TaGSR1 gene; or the binary expression vector is transformed into common wheat through agrobacterium to obtain transgenic wheat with TaGSR1 gene over-expression, so that the reduction of the plant height of the wheat and the reduction of the included angle of leaves are realized; wherein the nucleotide sequence of the TaGSR1 gene is shown in SEQ ID NO. 2.
CN202111006791.5A 2021-08-30 2021-08-30 Seed development related protein TaGSR1 and application thereof in wheat strain type breeding Active CN113527455B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111006791.5A CN113527455B (en) 2021-08-30 2021-08-30 Seed development related protein TaGSR1 and application thereof in wheat strain type breeding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111006791.5A CN113527455B (en) 2021-08-30 2021-08-30 Seed development related protein TaGSR1 and application thereof in wheat strain type breeding

Publications (2)

Publication Number Publication Date
CN113527455A true CN113527455A (en) 2021-10-22
CN113527455B CN113527455B (en) 2023-10-13

Family

ID=78092283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111006791.5A Active CN113527455B (en) 2021-08-30 2021-08-30 Seed development related protein TaGSR1 and application thereof in wheat strain type breeding

Country Status (1)

Country Link
CN (1) CN113527455B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2497799A1 (en) * 2004-03-12 2005-09-12 Kumiai Chemical Industry Co., Ltd. Acetolactate synthase gene promoter
US20070044171A1 (en) * 2000-12-14 2007-02-22 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
CN101781362A (en) * 2009-11-19 2010-07-21 中国科学院植物研究所 Plant development associated protein, encoding gene and application thereof
CN106892971A (en) * 2015-12-18 2017-06-27 深圳市农科集团有限公司 A kind of corn is bloomed and Grain Development GAP-associated protein GAP, encoding gene and application
CN109022450A (en) * 2018-08-15 2018-12-18 河南农业大学 It is a kind of regulate and control corn Leaf angle ZmCLA2-1 gene and its application
CN110407921A (en) * 2018-04-27 2019-11-05 中国农业科学院作物科学研究所 From the plant seed development associated protein SGDW1 and its encoding gene of millet and application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044171A1 (en) * 2000-12-14 2007-02-22 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
CA2497799A1 (en) * 2004-03-12 2005-09-12 Kumiai Chemical Industry Co., Ltd. Acetolactate synthase gene promoter
CN101781362A (en) * 2009-11-19 2010-07-21 中国科学院植物研究所 Plant development associated protein, encoding gene and application thereof
CN106892971A (en) * 2015-12-18 2017-06-27 深圳市农科集团有限公司 A kind of corn is bloomed and Grain Development GAP-associated protein GAP, encoding gene and application
CN110407921A (en) * 2018-04-27 2019-11-05 中国农业科学院作物科学研究所 From the plant seed development associated protein SGDW1 and its encoding gene of millet and application
CN109022450A (en) * 2018-08-15 2018-12-18 河南农业大学 It is a kind of regulate and control corn Leaf angle ZmCLA2-1 gene and its application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GENEBANK: "unnamed protein product [Triticum aestivum], SPT20327.1", GENEBANK, pages 1 *
韩秀丽: "大麦转化中潮霉素和草丁膦的筛选效果研究", 山东农业大学学报, pages 525 - 532 *

Also Published As

Publication number Publication date
CN113527455B (en) 2023-10-13

Similar Documents

Publication Publication Date Title
CN106834341B (en) Gene site-directed mutagenesis vector and construction method and application thereof
CN112852801B (en) Transgenic corn event LP007-1 and detection method thereof
CN112852991B (en) Transgenic corn event LP007-7 and detection method thereof
CN110144363A (en) Pest-resistant herbicide-resistant corn transformation event
CN112831584A (en) Transgenic maize event LP007-2 and methods of detecting same
CN107177610B (en) Arabidopsis thaliana MPK gene for regulating seed size and method for increasing seed size
AU2019460919B2 (en) Nucleic acid sequence for detecting soybean plant DBN8002 and detection method therefor
WO2021026689A1 (en) Nucleic acid sequence used for detecting soybean plant dbn8007 and detection method therefor
CN111574605B (en) Application of rice gene OsLAT5 in regulation of absorption and accumulation of diquat
CN113151533A (en) Transgenic maize event LP007-6 and methods of detecting same
CN114672511B (en) Application of corn ZmBES1/BZR1-3 gene in increasing plant seed yield
WO2023155193A1 (en) Nucleic acid sequence for detecting glycine max plant dbn8205 and detection method therefor
BG60686B1 (en) Method for plant nematode control
CN110881367A (en) Corn event Ttrans-4 and methods of use thereof
CN113527455B (en) Seed development related protein TaGSR1 and application thereof in wheat strain type breeding
CN114134171B (en) Method for inhibiting or killing Oriental myxomycetes and application thereof
Jin et al. Transgenic japonica rice expressing the cry1C gene is resistant to striped stem borers in Northeast China
CN111321162B (en) Plasmid system and method for comprehensively representing strength of escherichia coli terminator
CN112522289B (en) Upland cotton diacylglycerol kinase gene GhDGK7b and application thereof
CN101883572A (en) Sorghum aluminum tolerance gene, sbmate
CN114507673A (en) Method for inhibiting or killing black cutworm and application
CN117210488B (en) Application of arabidopsis AtFLZ13 gene in plant high temperature resistant breeding
CN116063431B (en) Plant insect-resistant protein and application thereof
CN115044592B (en) Gene ZmADT2 for regulating and controlling maize plant type and resistance to tumor smut, and encoding protein and application thereof
CN115786346B (en) Application of knockout TaSnRK2.10 in increasing tillering number, spike number and grain width of wheat

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant